WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / platforms / cell / spufs / sched.c
blobf18d5067cd0fa96df0f2d470354491bd55a0ac02
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* sched.c - SPU scheduler.
4 * Copyright (C) IBM 2005
5 * Author: Mark Nutter <mnutter@us.ibm.com>
7 * 2006-03-31 NUMA domains added.
8 */
10 #undef DEBUG
12 #include <linux/errno.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/rt.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/completion.h>
20 #include <linux/vmalloc.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/numa.h>
25 #include <linux/mutex.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/proc_fs.h>
30 #include <linux/seq_file.h>
32 #include <asm/io.h>
33 #include <asm/mmu_context.h>
34 #include <asm/spu.h>
35 #include <asm/spu_csa.h>
36 #include <asm/spu_priv1.h>
37 #include "spufs.h"
38 #define CREATE_TRACE_POINTS
39 #include "sputrace.h"
41 struct spu_prio_array {
42 DECLARE_BITMAP(bitmap, MAX_PRIO);
43 struct list_head runq[MAX_PRIO];
44 spinlock_t runq_lock;
45 int nr_waiting;
48 static unsigned long spu_avenrun[3];
49 static struct spu_prio_array *spu_prio;
50 static struct task_struct *spusched_task;
51 static struct timer_list spusched_timer;
52 static struct timer_list spuloadavg_timer;
55 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
57 #define NORMAL_PRIO 120
60 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
61 * tick for every 10 CPU scheduler ticks.
63 #define SPUSCHED_TICK (10)
66 * These are the 'tuning knobs' of the scheduler:
68 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
69 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
71 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
72 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
74 #define SCALE_PRIO(x, prio) \
75 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
78 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
79 * [800ms ... 100ms ... 5ms]
81 * The higher a thread's priority, the bigger timeslices
82 * it gets during one round of execution. But even the lowest
83 * priority thread gets MIN_TIMESLICE worth of execution time.
85 void spu_set_timeslice(struct spu_context *ctx)
87 if (ctx->prio < NORMAL_PRIO)
88 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
89 else
90 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
94 * Update scheduling information from the owning thread.
96 void __spu_update_sched_info(struct spu_context *ctx)
99 * assert that the context is not on the runqueue, so it is safe
100 * to change its scheduling parameters.
102 BUG_ON(!list_empty(&ctx->rq));
105 * 32-Bit assignments are atomic on powerpc, and we don't care about
106 * memory ordering here because retrieving the controlling thread is
107 * per definition racy.
109 ctx->tid = current->pid;
112 * We do our own priority calculations, so we normally want
113 * ->static_prio to start with. Unfortunately this field
114 * contains junk for threads with a realtime scheduling
115 * policy so we have to look at ->prio in this case.
117 if (rt_prio(current->prio))
118 ctx->prio = current->prio;
119 else
120 ctx->prio = current->static_prio;
121 ctx->policy = current->policy;
124 * TO DO: the context may be loaded, so we may need to activate
125 * it again on a different node. But it shouldn't hurt anything
126 * to update its parameters, because we know that the scheduler
127 * is not actively looking at this field, since it is not on the
128 * runqueue. The context will be rescheduled on the proper node
129 * if it is timesliced or preempted.
131 cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr);
133 /* Save the current cpu id for spu interrupt routing. */
134 ctx->last_ran = raw_smp_processor_id();
137 void spu_update_sched_info(struct spu_context *ctx)
139 int node;
141 if (ctx->state == SPU_STATE_RUNNABLE) {
142 node = ctx->spu->node;
145 * Take list_mutex to sync with find_victim().
147 mutex_lock(&cbe_spu_info[node].list_mutex);
148 __spu_update_sched_info(ctx);
149 mutex_unlock(&cbe_spu_info[node].list_mutex);
150 } else {
151 __spu_update_sched_info(ctx);
155 static int __node_allowed(struct spu_context *ctx, int node)
157 if (nr_cpus_node(node)) {
158 const struct cpumask *mask = cpumask_of_node(node);
160 if (cpumask_intersects(mask, &ctx->cpus_allowed))
161 return 1;
164 return 0;
167 static int node_allowed(struct spu_context *ctx, int node)
169 int rval;
171 spin_lock(&spu_prio->runq_lock);
172 rval = __node_allowed(ctx, node);
173 spin_unlock(&spu_prio->runq_lock);
175 return rval;
178 void do_notify_spus_active(void)
180 int node;
183 * Wake up the active spu_contexts.
185 * When the awakened processes see their "notify_active" flag is set,
186 * they will call spu_switch_notify().
188 for_each_online_node(node) {
189 struct spu *spu;
191 mutex_lock(&cbe_spu_info[node].list_mutex);
192 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
193 if (spu->alloc_state != SPU_FREE) {
194 struct spu_context *ctx = spu->ctx;
195 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
196 &ctx->sched_flags);
197 mb();
198 wake_up_all(&ctx->stop_wq);
201 mutex_unlock(&cbe_spu_info[node].list_mutex);
206 * spu_bind_context - bind spu context to physical spu
207 * @spu: physical spu to bind to
208 * @ctx: context to bind
210 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
212 spu_context_trace(spu_bind_context__enter, ctx, spu);
214 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
216 if (ctx->flags & SPU_CREATE_NOSCHED)
217 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
219 ctx->stats.slb_flt_base = spu->stats.slb_flt;
220 ctx->stats.class2_intr_base = spu->stats.class2_intr;
222 spu_associate_mm(spu, ctx->owner);
224 spin_lock_irq(&spu->register_lock);
225 spu->ctx = ctx;
226 spu->flags = 0;
227 ctx->spu = spu;
228 ctx->ops = &spu_hw_ops;
229 spu->pid = current->pid;
230 spu->tgid = current->tgid;
231 spu->ibox_callback = spufs_ibox_callback;
232 spu->wbox_callback = spufs_wbox_callback;
233 spu->stop_callback = spufs_stop_callback;
234 spu->mfc_callback = spufs_mfc_callback;
235 spin_unlock_irq(&spu->register_lock);
237 spu_unmap_mappings(ctx);
239 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
240 spu_restore(&ctx->csa, spu);
241 spu->timestamp = jiffies;
242 spu_switch_notify(spu, ctx);
243 ctx->state = SPU_STATE_RUNNABLE;
245 spuctx_switch_state(ctx, SPU_UTIL_USER);
249 * Must be used with the list_mutex held.
251 static inline int sched_spu(struct spu *spu)
253 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
255 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
258 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
260 struct spu_context *ctx;
262 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
263 if (list_empty(&ctx->aff_list))
264 list_add(&ctx->aff_list, &gang->aff_list_head);
266 gang->aff_flags |= AFF_MERGED;
269 static void aff_set_offsets(struct spu_gang *gang)
271 struct spu_context *ctx;
272 int offset;
274 offset = -1;
275 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
276 aff_list) {
277 if (&ctx->aff_list == &gang->aff_list_head)
278 break;
279 ctx->aff_offset = offset--;
282 offset = 0;
283 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
284 if (&ctx->aff_list == &gang->aff_list_head)
285 break;
286 ctx->aff_offset = offset++;
289 gang->aff_flags |= AFF_OFFSETS_SET;
292 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
293 int group_size, int lowest_offset)
295 struct spu *spu;
296 int node, n;
299 * TODO: A better algorithm could be used to find a good spu to be
300 * used as reference location for the ctxs chain.
302 node = cpu_to_node(raw_smp_processor_id());
303 for (n = 0; n < MAX_NUMNODES; n++, node++) {
305 * "available_spus" counts how many spus are not potentially
306 * going to be used by other affinity gangs whose reference
307 * context is already in place. Although this code seeks to
308 * avoid having affinity gangs with a summed amount of
309 * contexts bigger than the amount of spus in the node,
310 * this may happen sporadically. In this case, available_spus
311 * becomes negative, which is harmless.
313 int available_spus;
315 node = (node < MAX_NUMNODES) ? node : 0;
316 if (!node_allowed(ctx, node))
317 continue;
319 available_spus = 0;
320 mutex_lock(&cbe_spu_info[node].list_mutex);
321 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
322 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
323 && spu->ctx->gang->aff_ref_spu)
324 available_spus -= spu->ctx->gang->contexts;
325 available_spus++;
327 if (available_spus < ctx->gang->contexts) {
328 mutex_unlock(&cbe_spu_info[node].list_mutex);
329 continue;
332 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
333 if ((!mem_aff || spu->has_mem_affinity) &&
334 sched_spu(spu)) {
335 mutex_unlock(&cbe_spu_info[node].list_mutex);
336 return spu;
339 mutex_unlock(&cbe_spu_info[node].list_mutex);
341 return NULL;
344 static void aff_set_ref_point_location(struct spu_gang *gang)
346 int mem_aff, gs, lowest_offset;
347 struct spu_context *ctx;
348 struct spu *tmp;
350 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
351 lowest_offset = 0;
352 gs = 0;
354 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
355 gs++;
357 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
358 aff_list) {
359 if (&ctx->aff_list == &gang->aff_list_head)
360 break;
361 lowest_offset = ctx->aff_offset;
364 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
365 lowest_offset);
368 static struct spu *ctx_location(struct spu *ref, int offset, int node)
370 struct spu *spu;
372 spu = NULL;
373 if (offset >= 0) {
374 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
375 BUG_ON(spu->node != node);
376 if (offset == 0)
377 break;
378 if (sched_spu(spu))
379 offset--;
381 } else {
382 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
383 BUG_ON(spu->node != node);
384 if (offset == 0)
385 break;
386 if (sched_spu(spu))
387 offset++;
391 return spu;
395 * affinity_check is called each time a context is going to be scheduled.
396 * It returns the spu ptr on which the context must run.
398 static int has_affinity(struct spu_context *ctx)
400 struct spu_gang *gang = ctx->gang;
402 if (list_empty(&ctx->aff_list))
403 return 0;
405 if (atomic_read(&ctx->gang->aff_sched_count) == 0)
406 ctx->gang->aff_ref_spu = NULL;
408 if (!gang->aff_ref_spu) {
409 if (!(gang->aff_flags & AFF_MERGED))
410 aff_merge_remaining_ctxs(gang);
411 if (!(gang->aff_flags & AFF_OFFSETS_SET))
412 aff_set_offsets(gang);
413 aff_set_ref_point_location(gang);
416 return gang->aff_ref_spu != NULL;
420 * spu_unbind_context - unbind spu context from physical spu
421 * @spu: physical spu to unbind from
422 * @ctx: context to unbind
424 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
426 u32 status;
428 spu_context_trace(spu_unbind_context__enter, ctx, spu);
430 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
432 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
433 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
435 if (ctx->gang)
437 * If ctx->gang->aff_sched_count is positive, SPU affinity is
438 * being considered in this gang. Using atomic_dec_if_positive
439 * allow us to skip an explicit check for affinity in this gang
441 atomic_dec_if_positive(&ctx->gang->aff_sched_count);
443 spu_switch_notify(spu, NULL);
444 spu_unmap_mappings(ctx);
445 spu_save(&ctx->csa, spu);
446 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
448 spin_lock_irq(&spu->register_lock);
449 spu->timestamp = jiffies;
450 ctx->state = SPU_STATE_SAVED;
451 spu->ibox_callback = NULL;
452 spu->wbox_callback = NULL;
453 spu->stop_callback = NULL;
454 spu->mfc_callback = NULL;
455 spu->pid = 0;
456 spu->tgid = 0;
457 ctx->ops = &spu_backing_ops;
458 spu->flags = 0;
459 spu->ctx = NULL;
460 spin_unlock_irq(&spu->register_lock);
462 spu_associate_mm(spu, NULL);
464 ctx->stats.slb_flt +=
465 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
466 ctx->stats.class2_intr +=
467 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
469 /* This maps the underlying spu state to idle */
470 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
471 ctx->spu = NULL;
473 if (spu_stopped(ctx, &status))
474 wake_up_all(&ctx->stop_wq);
478 * spu_add_to_rq - add a context to the runqueue
479 * @ctx: context to add
481 static void __spu_add_to_rq(struct spu_context *ctx)
484 * Unfortunately this code path can be called from multiple threads
485 * on behalf of a single context due to the way the problem state
486 * mmap support works.
488 * Fortunately we need to wake up all these threads at the same time
489 * and can simply skip the runqueue addition for every but the first
490 * thread getting into this codepath.
492 * It's still quite hacky, and long-term we should proxy all other
493 * threads through the owner thread so that spu_run is in control
494 * of all the scheduling activity for a given context.
496 if (list_empty(&ctx->rq)) {
497 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
498 set_bit(ctx->prio, spu_prio->bitmap);
499 if (!spu_prio->nr_waiting++)
500 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
504 static void spu_add_to_rq(struct spu_context *ctx)
506 spin_lock(&spu_prio->runq_lock);
507 __spu_add_to_rq(ctx);
508 spin_unlock(&spu_prio->runq_lock);
511 static void __spu_del_from_rq(struct spu_context *ctx)
513 int prio = ctx->prio;
515 if (!list_empty(&ctx->rq)) {
516 if (!--spu_prio->nr_waiting)
517 del_timer(&spusched_timer);
518 list_del_init(&ctx->rq);
520 if (list_empty(&spu_prio->runq[prio]))
521 clear_bit(prio, spu_prio->bitmap);
525 void spu_del_from_rq(struct spu_context *ctx)
527 spin_lock(&spu_prio->runq_lock);
528 __spu_del_from_rq(ctx);
529 spin_unlock(&spu_prio->runq_lock);
532 static void spu_prio_wait(struct spu_context *ctx)
534 DEFINE_WAIT(wait);
537 * The caller must explicitly wait for a context to be loaded
538 * if the nosched flag is set. If NOSCHED is not set, the caller
539 * queues the context and waits for an spu event or error.
541 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
543 spin_lock(&spu_prio->runq_lock);
544 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
545 if (!signal_pending(current)) {
546 __spu_add_to_rq(ctx);
547 spin_unlock(&spu_prio->runq_lock);
548 mutex_unlock(&ctx->state_mutex);
549 schedule();
550 mutex_lock(&ctx->state_mutex);
551 spin_lock(&spu_prio->runq_lock);
552 __spu_del_from_rq(ctx);
554 spin_unlock(&spu_prio->runq_lock);
555 __set_current_state(TASK_RUNNING);
556 remove_wait_queue(&ctx->stop_wq, &wait);
559 static struct spu *spu_get_idle(struct spu_context *ctx)
561 struct spu *spu, *aff_ref_spu;
562 int node, n;
564 spu_context_nospu_trace(spu_get_idle__enter, ctx);
566 if (ctx->gang) {
567 mutex_lock(&ctx->gang->aff_mutex);
568 if (has_affinity(ctx)) {
569 aff_ref_spu = ctx->gang->aff_ref_spu;
570 atomic_inc(&ctx->gang->aff_sched_count);
571 mutex_unlock(&ctx->gang->aff_mutex);
572 node = aff_ref_spu->node;
574 mutex_lock(&cbe_spu_info[node].list_mutex);
575 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
576 if (spu && spu->alloc_state == SPU_FREE)
577 goto found;
578 mutex_unlock(&cbe_spu_info[node].list_mutex);
580 atomic_dec(&ctx->gang->aff_sched_count);
581 goto not_found;
583 mutex_unlock(&ctx->gang->aff_mutex);
585 node = cpu_to_node(raw_smp_processor_id());
586 for (n = 0; n < MAX_NUMNODES; n++, node++) {
587 node = (node < MAX_NUMNODES) ? node : 0;
588 if (!node_allowed(ctx, node))
589 continue;
591 mutex_lock(&cbe_spu_info[node].list_mutex);
592 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
593 if (spu->alloc_state == SPU_FREE)
594 goto found;
596 mutex_unlock(&cbe_spu_info[node].list_mutex);
599 not_found:
600 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
601 return NULL;
603 found:
604 spu->alloc_state = SPU_USED;
605 mutex_unlock(&cbe_spu_info[node].list_mutex);
606 spu_context_trace(spu_get_idle__found, ctx, spu);
607 spu_init_channels(spu);
608 return spu;
612 * find_victim - find a lower priority context to preempt
613 * @ctx: candidate context for running
615 * Returns the freed physical spu to run the new context on.
617 static struct spu *find_victim(struct spu_context *ctx)
619 struct spu_context *victim = NULL;
620 struct spu *spu;
621 int node, n;
623 spu_context_nospu_trace(spu_find_victim__enter, ctx);
626 * Look for a possible preemption candidate on the local node first.
627 * If there is no candidate look at the other nodes. This isn't
628 * exactly fair, but so far the whole spu scheduler tries to keep
629 * a strong node affinity. We might want to fine-tune this in
630 * the future.
632 restart:
633 node = cpu_to_node(raw_smp_processor_id());
634 for (n = 0; n < MAX_NUMNODES; n++, node++) {
635 node = (node < MAX_NUMNODES) ? node : 0;
636 if (!node_allowed(ctx, node))
637 continue;
639 mutex_lock(&cbe_spu_info[node].list_mutex);
640 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
641 struct spu_context *tmp = spu->ctx;
643 if (tmp && tmp->prio > ctx->prio &&
644 !(tmp->flags & SPU_CREATE_NOSCHED) &&
645 (!victim || tmp->prio > victim->prio)) {
646 victim = spu->ctx;
649 if (victim)
650 get_spu_context(victim);
651 mutex_unlock(&cbe_spu_info[node].list_mutex);
653 if (victim) {
655 * This nests ctx->state_mutex, but we always lock
656 * higher priority contexts before lower priority
657 * ones, so this is safe until we introduce
658 * priority inheritance schemes.
660 * XXX if the highest priority context is locked,
661 * this can loop a long time. Might be better to
662 * look at another context or give up after X retries.
664 if (!mutex_trylock(&victim->state_mutex)) {
665 put_spu_context(victim);
666 victim = NULL;
667 goto restart;
670 spu = victim->spu;
671 if (!spu || victim->prio <= ctx->prio) {
673 * This race can happen because we've dropped
674 * the active list mutex. Not a problem, just
675 * restart the search.
677 mutex_unlock(&victim->state_mutex);
678 put_spu_context(victim);
679 victim = NULL;
680 goto restart;
683 spu_context_trace(__spu_deactivate__unload, ctx, spu);
685 mutex_lock(&cbe_spu_info[node].list_mutex);
686 cbe_spu_info[node].nr_active--;
687 spu_unbind_context(spu, victim);
688 mutex_unlock(&cbe_spu_info[node].list_mutex);
690 victim->stats.invol_ctx_switch++;
691 spu->stats.invol_ctx_switch++;
692 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
693 spu_add_to_rq(victim);
695 mutex_unlock(&victim->state_mutex);
696 put_spu_context(victim);
698 return spu;
702 return NULL;
705 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
707 int node = spu->node;
708 int success = 0;
710 spu_set_timeslice(ctx);
712 mutex_lock(&cbe_spu_info[node].list_mutex);
713 if (spu->ctx == NULL) {
714 spu_bind_context(spu, ctx);
715 cbe_spu_info[node].nr_active++;
716 spu->alloc_state = SPU_USED;
717 success = 1;
719 mutex_unlock(&cbe_spu_info[node].list_mutex);
721 if (success)
722 wake_up_all(&ctx->run_wq);
723 else
724 spu_add_to_rq(ctx);
727 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
729 /* not a candidate for interruptible because it's called either
730 from the scheduler thread or from spu_deactivate */
731 mutex_lock(&ctx->state_mutex);
732 if (ctx->state == SPU_STATE_SAVED)
733 __spu_schedule(spu, ctx);
734 spu_release(ctx);
738 * spu_unschedule - remove a context from a spu, and possibly release it.
739 * @spu: The SPU to unschedule from
740 * @ctx: The context currently scheduled on the SPU
741 * @free_spu Whether to free the SPU for other contexts
743 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
744 * SPU is made available for other contexts (ie, may be returned by
745 * spu_get_idle). If this is zero, the caller is expected to schedule another
746 * context to this spu.
748 * Should be called with ctx->state_mutex held.
750 static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
751 int free_spu)
753 int node = spu->node;
755 mutex_lock(&cbe_spu_info[node].list_mutex);
756 cbe_spu_info[node].nr_active--;
757 if (free_spu)
758 spu->alloc_state = SPU_FREE;
759 spu_unbind_context(spu, ctx);
760 ctx->stats.invol_ctx_switch++;
761 spu->stats.invol_ctx_switch++;
762 mutex_unlock(&cbe_spu_info[node].list_mutex);
766 * spu_activate - find a free spu for a context and execute it
767 * @ctx: spu context to schedule
768 * @flags: flags (currently ignored)
770 * Tries to find a free spu to run @ctx. If no free spu is available
771 * add the context to the runqueue so it gets woken up once an spu
772 * is available.
774 int spu_activate(struct spu_context *ctx, unsigned long flags)
776 struct spu *spu;
779 * If there are multiple threads waiting for a single context
780 * only one actually binds the context while the others will
781 * only be able to acquire the state_mutex once the context
782 * already is in runnable state.
784 if (ctx->spu)
785 return 0;
787 spu_activate_top:
788 if (signal_pending(current))
789 return -ERESTARTSYS;
791 spu = spu_get_idle(ctx);
793 * If this is a realtime thread we try to get it running by
794 * preempting a lower priority thread.
796 if (!spu && rt_prio(ctx->prio))
797 spu = find_victim(ctx);
798 if (spu) {
799 unsigned long runcntl;
801 runcntl = ctx->ops->runcntl_read(ctx);
802 __spu_schedule(spu, ctx);
803 if (runcntl & SPU_RUNCNTL_RUNNABLE)
804 spuctx_switch_state(ctx, SPU_UTIL_USER);
806 return 0;
809 if (ctx->flags & SPU_CREATE_NOSCHED) {
810 spu_prio_wait(ctx);
811 goto spu_activate_top;
814 spu_add_to_rq(ctx);
816 return 0;
820 * grab_runnable_context - try to find a runnable context
822 * Remove the highest priority context on the runqueue and return it
823 * to the caller. Returns %NULL if no runnable context was found.
825 static struct spu_context *grab_runnable_context(int prio, int node)
827 struct spu_context *ctx;
828 int best;
830 spin_lock(&spu_prio->runq_lock);
831 best = find_first_bit(spu_prio->bitmap, prio);
832 while (best < prio) {
833 struct list_head *rq = &spu_prio->runq[best];
835 list_for_each_entry(ctx, rq, rq) {
836 /* XXX(hch): check for affinity here as well */
837 if (__node_allowed(ctx, node)) {
838 __spu_del_from_rq(ctx);
839 goto found;
842 best++;
844 ctx = NULL;
845 found:
846 spin_unlock(&spu_prio->runq_lock);
847 return ctx;
850 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
852 struct spu *spu = ctx->spu;
853 struct spu_context *new = NULL;
855 if (spu) {
856 new = grab_runnable_context(max_prio, spu->node);
857 if (new || force) {
858 spu_unschedule(spu, ctx, new == NULL);
859 if (new) {
860 if (new->flags & SPU_CREATE_NOSCHED)
861 wake_up(&new->stop_wq);
862 else {
863 spu_release(ctx);
864 spu_schedule(spu, new);
865 /* this one can't easily be made
866 interruptible */
867 mutex_lock(&ctx->state_mutex);
873 return new != NULL;
877 * spu_deactivate - unbind a context from it's physical spu
878 * @ctx: spu context to unbind
880 * Unbind @ctx from the physical spu it is running on and schedule
881 * the highest priority context to run on the freed physical spu.
883 void spu_deactivate(struct spu_context *ctx)
885 spu_context_nospu_trace(spu_deactivate__enter, ctx);
886 __spu_deactivate(ctx, 1, MAX_PRIO);
890 * spu_yield - yield a physical spu if others are waiting
891 * @ctx: spu context to yield
893 * Check if there is a higher priority context waiting and if yes
894 * unbind @ctx from the physical spu and schedule the highest
895 * priority context to run on the freed physical spu instead.
897 void spu_yield(struct spu_context *ctx)
899 spu_context_nospu_trace(spu_yield__enter, ctx);
900 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
901 mutex_lock(&ctx->state_mutex);
902 __spu_deactivate(ctx, 0, MAX_PRIO);
903 mutex_unlock(&ctx->state_mutex);
907 static noinline void spusched_tick(struct spu_context *ctx)
909 struct spu_context *new = NULL;
910 struct spu *spu = NULL;
912 if (spu_acquire(ctx))
913 BUG(); /* a kernel thread never has signals pending */
915 if (ctx->state != SPU_STATE_RUNNABLE)
916 goto out;
917 if (ctx->flags & SPU_CREATE_NOSCHED)
918 goto out;
919 if (ctx->policy == SCHED_FIFO)
920 goto out;
922 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
923 goto out;
925 spu = ctx->spu;
927 spu_context_trace(spusched_tick__preempt, ctx, spu);
929 new = grab_runnable_context(ctx->prio + 1, spu->node);
930 if (new) {
931 spu_unschedule(spu, ctx, 0);
932 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
933 spu_add_to_rq(ctx);
934 } else {
935 spu_context_nospu_trace(spusched_tick__newslice, ctx);
936 if (!ctx->time_slice)
937 ctx->time_slice++;
939 out:
940 spu_release(ctx);
942 if (new)
943 spu_schedule(spu, new);
947 * count_active_contexts - count nr of active tasks
949 * Return the number of tasks currently running or waiting to run.
951 * Note that we don't take runq_lock / list_mutex here. Reading
952 * a single 32bit value is atomic on powerpc, and we don't care
953 * about memory ordering issues here.
955 static unsigned long count_active_contexts(void)
957 int nr_active = 0, node;
959 for (node = 0; node < MAX_NUMNODES; node++)
960 nr_active += cbe_spu_info[node].nr_active;
961 nr_active += spu_prio->nr_waiting;
963 return nr_active;
967 * spu_calc_load - update the avenrun load estimates.
969 * No locking against reading these values from userspace, as for
970 * the CPU loadavg code.
972 static void spu_calc_load(void)
974 unsigned long active_tasks; /* fixed-point */
976 active_tasks = count_active_contexts() * FIXED_1;
977 spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks);
978 spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks);
979 spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks);
982 static void spusched_wake(struct timer_list *unused)
984 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
985 wake_up_process(spusched_task);
988 static void spuloadavg_wake(struct timer_list *unused)
990 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
991 spu_calc_load();
994 static int spusched_thread(void *unused)
996 struct spu *spu;
997 int node;
999 while (!kthread_should_stop()) {
1000 set_current_state(TASK_INTERRUPTIBLE);
1001 schedule();
1002 for (node = 0; node < MAX_NUMNODES; node++) {
1003 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1005 mutex_lock(mtx);
1006 list_for_each_entry(spu, &cbe_spu_info[node].spus,
1007 cbe_list) {
1008 struct spu_context *ctx = spu->ctx;
1010 if (ctx) {
1011 get_spu_context(ctx);
1012 mutex_unlock(mtx);
1013 spusched_tick(ctx);
1014 mutex_lock(mtx);
1015 put_spu_context(ctx);
1018 mutex_unlock(mtx);
1022 return 0;
1025 void spuctx_switch_state(struct spu_context *ctx,
1026 enum spu_utilization_state new_state)
1028 unsigned long long curtime;
1029 signed long long delta;
1030 struct spu *spu;
1031 enum spu_utilization_state old_state;
1032 int node;
1034 curtime = ktime_get_ns();
1035 delta = curtime - ctx->stats.tstamp;
1037 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1038 WARN_ON(delta < 0);
1040 spu = ctx->spu;
1041 old_state = ctx->stats.util_state;
1042 ctx->stats.util_state = new_state;
1043 ctx->stats.tstamp = curtime;
1046 * Update the physical SPU utilization statistics.
1048 if (spu) {
1049 ctx->stats.times[old_state] += delta;
1050 spu->stats.times[old_state] += delta;
1051 spu->stats.util_state = new_state;
1052 spu->stats.tstamp = curtime;
1053 node = spu->node;
1054 if (old_state == SPU_UTIL_USER)
1055 atomic_dec(&cbe_spu_info[node].busy_spus);
1056 if (new_state == SPU_UTIL_USER)
1057 atomic_inc(&cbe_spu_info[node].busy_spus);
1061 static int show_spu_loadavg(struct seq_file *s, void *private)
1063 int a, b, c;
1065 a = spu_avenrun[0] + (FIXED_1/200);
1066 b = spu_avenrun[1] + (FIXED_1/200);
1067 c = spu_avenrun[2] + (FIXED_1/200);
1070 * Note that last_pid doesn't really make much sense for the
1071 * SPU loadavg (it even seems very odd on the CPU side...),
1072 * but we include it here to have a 100% compatible interface.
1074 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1075 LOAD_INT(a), LOAD_FRAC(a),
1076 LOAD_INT(b), LOAD_FRAC(b),
1077 LOAD_INT(c), LOAD_FRAC(c),
1078 count_active_contexts(),
1079 atomic_read(&nr_spu_contexts),
1080 idr_get_cursor(&task_active_pid_ns(current)->idr) - 1);
1081 return 0;
1084 int __init spu_sched_init(void)
1086 struct proc_dir_entry *entry;
1087 int err = -ENOMEM, i;
1089 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1090 if (!spu_prio)
1091 goto out;
1093 for (i = 0; i < MAX_PRIO; i++) {
1094 INIT_LIST_HEAD(&spu_prio->runq[i]);
1095 __clear_bit(i, spu_prio->bitmap);
1097 spin_lock_init(&spu_prio->runq_lock);
1099 timer_setup(&spusched_timer, spusched_wake, 0);
1100 timer_setup(&spuloadavg_timer, spuloadavg_wake, 0);
1102 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1103 if (IS_ERR(spusched_task)) {
1104 err = PTR_ERR(spusched_task);
1105 goto out_free_spu_prio;
1108 mod_timer(&spuloadavg_timer, 0);
1110 entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg);
1111 if (!entry)
1112 goto out_stop_kthread;
1114 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1115 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1116 return 0;
1118 out_stop_kthread:
1119 kthread_stop(spusched_task);
1120 out_free_spu_prio:
1121 kfree(spu_prio);
1122 out:
1123 return err;
1126 void spu_sched_exit(void)
1128 struct spu *spu;
1129 int node;
1131 remove_proc_entry("spu_loadavg", NULL);
1133 del_timer_sync(&spusched_timer);
1134 del_timer_sync(&spuloadavg_timer);
1135 kthread_stop(spusched_task);
1137 for (node = 0; node < MAX_NUMNODES; node++) {
1138 mutex_lock(&cbe_spu_info[node].list_mutex);
1139 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1140 if (spu->alloc_state != SPU_FREE)
1141 spu->alloc_state = SPU_FREE;
1142 mutex_unlock(&cbe_spu_info[node].list_mutex);
1144 kfree(spu_prio);