WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / platforms / powernv / pci-sriov.c
blob28aac933a439176d4ae2a61de6821f23c898b842
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 #include <linux/kernel.h>
4 #include <linux/ioport.h>
5 #include <linux/bitmap.h>
6 #include <linux/pci.h>
8 #include <asm/opal.h>
10 #include "pci.h"
12 /* for pci_dev_is_added() */
13 #include "../../../../drivers/pci/pci.h"
16 * The majority of the complexity in supporting SR-IOV on PowerNV comes from
17 * the need to put the MMIO space for each VF into a separate PE. Internally
18 * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table".
19 * The MBT historically only applied to the 64bit MMIO window of the PHB
20 * so it's common to see it referred to as the "M64BT".
22 * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces
23 * the address range that we want to map to be power-of-two sized and aligned.
24 * For conventional PCI devices this isn't really an issue since PCI device BARs
25 * have the same requirement.
27 * For a SR-IOV BAR things are a little more awkward since size and alignment
28 * are not coupled. The alignment is set based on the the per-VF BAR size, but
29 * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs
30 * isn't necessarily a power of two, so neither is the total size. To fix that
31 * we need to finesse (read: hack) the Linux BAR allocator so that it will
32 * allocate the SR-IOV BARs in a way that lets us map them using the MBT.
34 * The changes to size and alignment that we need to do depend on the "mode"
35 * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above,
36 * so as a baseline we can assume that we have the following BAR modes
37 * available:
39 * NB: $PE_COUNT is the number of PEs that the PHB supports.
41 * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized
42 * segments. The n'th segment is mapped to the n'th PE.
43 * b) An un-segmented BAR that maps the whole address range to a specific PE.
46 * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR
47 * For comparison b) requires one entry per-VF per-BAR, or:
48 * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment
49 * to equal the size of the per-VF BAR area. So:
51 * new_size = per-vf-size * number-of-PEs
53 * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size
54 * to "new_size", calculated above. Implementing this is a convoluted process
55 * which requires several hooks in the PCI core:
57 * 1. In pcibios_add_device() we call pnv_pci_ioda_fixup_iov().
59 * At this point the device has been probed and the device's BARs are sized,
60 * but no resource allocations have been done. The SR-IOV BARs are sized
61 * based on the maximum number of VFs supported by the device and we need
62 * to increase that to new_size.
64 * 2. Later, when Linux actually assigns resources it tries to make the resource
65 * allocations for each PCI bus as compact as possible. As a part of that it
66 * sorts the BARs on a bus by their required alignment, which is calculated
67 * using pci_resource_alignment().
69 * For IOV resources this goes:
70 * pci_resource_alignment()
71 * pci_sriov_resource_alignment()
72 * pcibios_sriov_resource_alignment()
73 * pnv_pci_iov_resource_alignment()
75 * Our hook overrides the default alignment, equal to the per-vf-size, with
76 * new_size computed above.
78 * 3. When userspace enables VFs for a device:
80 * sriov_enable()
81 * pcibios_sriov_enable()
82 * pnv_pcibios_sriov_enable()
84 * This is where we actually allocate PE numbers for each VF and setup the
85 * MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena"
86 * where each MBT segment is equal in size to the VF BAR so we can shift
87 * around the actual SR-IOV BAR location within this arena. We need this
88 * ability because the PE space is shared by all devices on the same PHB.
89 * When using mode a) described above segment 0 in maps to PE#0 which might
90 * be already being used by another device on the PHB.
92 * As a result we need allocate a contigious range of PE numbers, then shift
93 * the address programmed into the SR-IOV BAR of the PF so that the address
94 * of VF0 matches up with the segment corresponding to the first allocated
95 * PE number. This is handled in pnv_pci_vf_resource_shift().
97 * Once all that is done we return to the PCI core which then enables VFs,
98 * scans them and creates pci_devs for each. The init process for a VF is
99 * largely the same as a normal device, but the VF is inserted into the IODA
100 * PE that we allocated for it rather than the PE associated with the bus.
102 * 4. When userspace disables VFs we unwind the above in
103 * pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since
104 * we don't need to validate anything, just tear down the mappings and
105 * move SR-IOV resource back to its "proper" location.
107 * That's how mode a) works. In theory mode b) (single PE mapping) is less work
108 * since we can map each individual VF with a separate BAR. However, there's a
109 * few limitations:
111 * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes
112 * it only usable for devices with very large per-VF BARs. Such devices are
113 * similar to Big Foot. They definitely exist, but I've never seen one.
115 * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only
116 * 16 total and some are needed for. Most SR-IOV capable network cards can support
117 * more than 16 VFs on each port.
119 * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO
120 * window of the PHB.
124 * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It
125 * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows
126 * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since
127 * the Linux BAR allocation will place any BAR marked as non-prefetchable into
128 * the non-prefetchable bridge window, which is 32bit only. It also added two
129 * new modes:
131 * c) A segmented BAR similar to a), but each segment can be individually
132 * mapped to any PE. This is matches how the 32bit MMIO window worked on
133 * IODA1&2.
135 * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a),
136 * but with fewer segments and configurable base PE.
138 * i.e. The n'th segment maps to the (n + base)'th PE.
140 * The base PE is also required to be a multiple of the window size.
142 * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us
143 * to exploit any of the IODA3 features.
146 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
148 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
149 struct resource *res;
150 int i;
151 resource_size_t vf_bar_sz;
152 struct pnv_iov_data *iov;
153 int mul;
155 iov = kzalloc(sizeof(*iov), GFP_KERNEL);
156 if (!iov)
157 goto disable_iov;
158 pdev->dev.archdata.iov_data = iov;
159 mul = phb->ioda.total_pe_num;
161 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
162 res = &pdev->resource[i + PCI_IOV_RESOURCES];
163 if (!res->flags || res->parent)
164 continue;
165 if (!pnv_pci_is_m64_flags(res->flags)) {
166 dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n",
167 i, res);
168 goto disable_iov;
171 vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
174 * Generally, one segmented M64 BAR maps one IOV BAR. However,
175 * if a VF BAR is too large we end up wasting a lot of space.
176 * If each VF needs more than 1/4 of the default m64 segment
177 * then each VF BAR should be mapped in single-PE mode to reduce
178 * the amount of space required. This does however limit the
179 * number of VFs we can support.
181 * The 1/4 limit is arbitrary and can be tweaked.
183 if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) {
185 * On PHB3, the minimum size alignment of M64 BAR in
186 * single mode is 32MB. If this VF BAR is smaller than
187 * 32MB, but still too large for a segmented window
188 * then we can't map it and need to disable SR-IOV for
189 * this device.
191 if (vf_bar_sz < SZ_32M) {
192 pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n",
193 i, res);
194 goto disable_iov;
197 iov->m64_single_mode[i] = true;
198 continue;
202 * This BAR can be mapped with one segmented window, so adjust
203 * te resource size to accommodate.
205 pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res);
206 res->end = res->start + vf_bar_sz * mul - 1;
207 pci_dbg(pdev, " %pR\n", res);
209 pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
210 i, res, mul);
212 iov->need_shift = true;
215 return;
217 disable_iov:
218 /* Save ourselves some MMIO space by disabling the unusable BARs */
219 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
220 res = &pdev->resource[i + PCI_IOV_RESOURCES];
221 res->flags = 0;
222 res->end = res->start - 1;
225 pdev->dev.archdata.iov_data = NULL;
226 kfree(iov);
229 void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
231 if (WARN_ON(pci_dev_is_added(pdev)))
232 return;
234 if (pdev->is_virtfn) {
235 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
238 * VF PEs are single-device PEs so their pdev pointer needs to
239 * be set. The pdev doesn't exist when the PE is allocated (in
240 * (pcibios_sriov_enable()) so we fix it up here.
242 pe->pdev = pdev;
243 WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
244 } else if (pdev->is_physfn) {
246 * For PFs adjust their allocated IOV resources to match what
247 * the PHB can support using it's M64 BAR table.
249 pnv_pci_ioda_fixup_iov_resources(pdev);
253 resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
254 int resno)
256 resource_size_t align = pci_iov_resource_size(pdev, resno);
257 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
258 struct pnv_iov_data *iov = pnv_iov_get(pdev);
261 * iov can be null if we have an SR-IOV device with IOV BAR that can't
262 * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch).
263 * In that case we don't allow VFs to be enabled since one of their
264 * BARs would not be placed in the correct PE.
266 if (!iov)
267 return align;
270 * If we're using single mode then we can just use the native VF BAR
271 * alignment. We validated that it's possible to use a single PE
272 * window above when we did the fixup.
274 if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES])
275 return align;
278 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
279 * SR-IOV. While from hardware perspective, the range mapped by M64
280 * BAR should be size aligned.
282 * This function returns the total IOV BAR size if M64 BAR is in
283 * Shared PE mode or just VF BAR size if not.
284 * If the M64 BAR is in Single PE mode, return the VF BAR size or
285 * M64 segment size if IOV BAR size is less.
287 return phb->ioda.total_pe_num * align;
290 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
292 struct pnv_iov_data *iov;
293 struct pnv_phb *phb;
294 int window_id;
296 phb = pci_bus_to_pnvhb(pdev->bus);
297 iov = pnv_iov_get(pdev);
299 for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) {
300 opal_pci_phb_mmio_enable(phb->opal_id,
301 OPAL_M64_WINDOW_TYPE,
302 window_id,
305 clear_bit(window_id, &phb->ioda.m64_bar_alloc);
308 return 0;
313 * PHB3 and beyond support segmented windows. The window's address range
314 * is subdivided into phb->ioda.total_pe_num segments and there's a 1-1
315 * mapping between PEs and segments.
317 static int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb,
318 int window_id,
319 resource_size_t start,
320 resource_size_t size)
322 int64_t rc;
324 rc = opal_pci_set_phb_mem_window(phb->opal_id,
325 OPAL_M64_WINDOW_TYPE,
326 window_id,
327 start,
328 0, /* unused */
329 size);
330 if (rc)
331 goto out;
333 rc = opal_pci_phb_mmio_enable(phb->opal_id,
334 OPAL_M64_WINDOW_TYPE,
335 window_id,
336 OPAL_ENABLE_M64_SPLIT);
337 out:
338 if (rc)
339 pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc);
341 return rc;
344 static int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb,
345 int pe_num,
346 int window_id,
347 resource_size_t start,
348 resource_size_t size)
350 int64_t rc;
353 * The API for setting up m64 mmio windows seems to have been designed
354 * with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed
355 * split of 8 equally sized segments each of which could individually
356 * assigned to a PE.
358 * The problem with this is that the API doesn't have any way to
359 * communicate the number of segments we want on a BAR. This wasn't
360 * a problem for p7-ioc since you didn't have a choice, but the
361 * single PE windows added in PHB3 don't map cleanly to this API.
363 * As a result we've got this slightly awkward process where we
364 * call opal_pci_map_pe_mmio_window() to put the single in single
365 * PE mode, and set the PE for the window before setting the address
366 * bounds. We need to do it this way because the single PE windows
367 * for PHB3 have different alignment requirements on PHB3.
369 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
370 pe_num,
371 OPAL_M64_WINDOW_TYPE,
372 window_id,
374 if (rc)
375 goto out;
378 * NB: In single PE mode the window needs to be aligned to 32MB
380 rc = opal_pci_set_phb_mem_window(phb->opal_id,
381 OPAL_M64_WINDOW_TYPE,
382 window_id,
383 start,
384 0, /* ignored by FW, m64 is 1-1 */
385 size);
386 if (rc)
387 goto out;
390 * Now actually enable it. We specified the BAR should be in "non-split"
391 * mode so FW will validate that the BAR is in single PE mode.
393 rc = opal_pci_phb_mmio_enable(phb->opal_id,
394 OPAL_M64_WINDOW_TYPE,
395 window_id,
396 OPAL_ENABLE_M64_NON_SPLIT);
397 out:
398 if (rc)
399 pr_err("Error mapping single PE BAR\n");
401 return rc;
404 static int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov)
406 int win;
408 do {
409 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
410 phb->ioda.m64_bar_idx + 1, 0);
412 if (win >= phb->ioda.m64_bar_idx + 1)
413 return -1;
414 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
416 set_bit(win, iov->used_m64_bar_mask);
418 return win;
421 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
423 struct pnv_iov_data *iov;
424 struct pnv_phb *phb;
425 int win;
426 struct resource *res;
427 int i, j;
428 int64_t rc;
429 resource_size_t size, start;
430 int base_pe_num;
432 phb = pci_bus_to_pnvhb(pdev->bus);
433 iov = pnv_iov_get(pdev);
435 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
436 res = &pdev->resource[i + PCI_IOV_RESOURCES];
437 if (!res->flags || !res->parent)
438 continue;
440 /* don't need single mode? map everything in one go! */
441 if (!iov->m64_single_mode[i]) {
442 win = pnv_pci_alloc_m64_bar(phb, iov);
443 if (win < 0)
444 goto m64_failed;
446 size = resource_size(res);
447 start = res->start;
449 rc = pnv_ioda_map_m64_segmented(phb, win, start, size);
450 if (rc)
451 goto m64_failed;
453 continue;
456 /* otherwise map each VF with single PE BARs */
457 size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i);
458 base_pe_num = iov->vf_pe_arr[0].pe_number;
460 for (j = 0; j < num_vfs; j++) {
461 win = pnv_pci_alloc_m64_bar(phb, iov);
462 if (win < 0)
463 goto m64_failed;
465 start = res->start + size * j;
466 rc = pnv_ioda_map_m64_single(phb, win,
467 base_pe_num + j,
468 start,
469 size);
470 if (rc)
471 goto m64_failed;
474 return 0;
476 m64_failed:
477 pnv_pci_vf_release_m64(pdev, num_vfs);
478 return -EBUSY;
481 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
483 struct pnv_phb *phb;
484 struct pnv_ioda_pe *pe, *pe_n;
486 phb = pci_bus_to_pnvhb(pdev->bus);
488 if (!pdev->is_physfn)
489 return;
491 /* FIXME: Use pnv_ioda_release_pe()? */
492 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
493 if (pe->parent_dev != pdev)
494 continue;
496 pnv_pci_ioda2_release_pe_dma(pe);
498 /* Remove from list */
499 mutex_lock(&phb->ioda.pe_list_mutex);
500 list_del(&pe->list);
501 mutex_unlock(&phb->ioda.pe_list_mutex);
503 pnv_ioda_deconfigure_pe(phb, pe);
505 pnv_ioda_free_pe(pe);
509 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
511 struct resource *res, res2;
512 struct pnv_iov_data *iov;
513 resource_size_t size;
514 u16 num_vfs;
515 int i;
517 if (!dev->is_physfn)
518 return -EINVAL;
519 iov = pnv_iov_get(dev);
522 * "offset" is in VFs. The M64 windows are sized so that when they
523 * are segmented, each segment is the same size as the IOV BAR.
524 * Each segment is in a separate PE, and the high order bits of the
525 * address are the PE number. Therefore, each VF's BAR is in a
526 * separate PE, and changing the IOV BAR start address changes the
527 * range of PEs the VFs are in.
529 num_vfs = iov->num_vfs;
530 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
531 res = &dev->resource[i + PCI_IOV_RESOURCES];
532 if (!res->flags || !res->parent)
533 continue;
534 if (iov->m64_single_mode[i])
535 continue;
538 * The actual IOV BAR range is determined by the start address
539 * and the actual size for num_vfs VFs BAR. This check is to
540 * make sure that after shifting, the range will not overlap
541 * with another device.
543 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
544 res2.flags = res->flags;
545 res2.start = res->start + (size * offset);
546 res2.end = res2.start + (size * num_vfs) - 1;
548 if (res2.end > res->end) {
549 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
550 i, &res2, res, num_vfs, offset);
551 return -EBUSY;
556 * Since M64 BAR shares segments among all possible 256 PEs,
557 * we have to shift the beginning of PF IOV BAR to make it start from
558 * the segment which belongs to the PE number assigned to the first VF.
559 * This creates a "hole" in the /proc/iomem which could be used for
560 * allocating other resources so we reserve this area below and
561 * release when IOV is released.
563 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
564 res = &dev->resource[i + PCI_IOV_RESOURCES];
565 if (!res->flags || !res->parent)
566 continue;
567 if (iov->m64_single_mode[i])
568 continue;
570 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
571 res2 = *res;
572 res->start += size * offset;
574 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
575 i, &res2, res, (offset > 0) ? "En" : "Dis",
576 num_vfs, offset);
578 if (offset < 0) {
579 devm_release_resource(&dev->dev, &iov->holes[i]);
580 memset(&iov->holes[i], 0, sizeof(iov->holes[i]));
583 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
585 if (offset > 0) {
586 iov->holes[i].start = res2.start;
587 iov->holes[i].end = res2.start + size * offset - 1;
588 iov->holes[i].flags = IORESOURCE_BUS;
589 iov->holes[i].name = "pnv_iov_reserved";
590 devm_request_resource(&dev->dev, res->parent,
591 &iov->holes[i]);
594 return 0;
597 static void pnv_pci_sriov_disable(struct pci_dev *pdev)
599 u16 num_vfs, base_pe;
600 struct pnv_iov_data *iov;
602 iov = pnv_iov_get(pdev);
603 num_vfs = iov->num_vfs;
604 base_pe = iov->vf_pe_arr[0].pe_number;
606 if (WARN_ON(!iov))
607 return;
609 /* Release VF PEs */
610 pnv_ioda_release_vf_PE(pdev);
612 /* Un-shift the IOV BARs if we need to */
613 if (iov->need_shift)
614 pnv_pci_vf_resource_shift(pdev, -base_pe);
616 /* Release M64 windows */
617 pnv_pci_vf_release_m64(pdev, num_vfs);
620 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
622 struct pnv_phb *phb;
623 struct pnv_ioda_pe *pe;
624 int pe_num;
625 u16 vf_index;
626 struct pnv_iov_data *iov;
627 struct pci_dn *pdn;
629 if (!pdev->is_physfn)
630 return;
632 phb = pci_bus_to_pnvhb(pdev->bus);
633 pdn = pci_get_pdn(pdev);
634 iov = pnv_iov_get(pdev);
636 /* Reserve PE for each VF */
637 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
638 int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
639 int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
640 struct pci_dn *vf_pdn;
642 pe = &iov->vf_pe_arr[vf_index];
643 pe->phb = phb;
644 pe->flags = PNV_IODA_PE_VF;
645 pe->pbus = NULL;
646 pe->parent_dev = pdev;
647 pe->mve_number = -1;
648 pe->rid = (vf_bus << 8) | vf_devfn;
650 pe_num = pe->pe_number;
651 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
652 pci_domain_nr(pdev->bus), pdev->bus->number,
653 PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
655 if (pnv_ioda_configure_pe(phb, pe)) {
656 /* XXX What do we do here ? */
657 pnv_ioda_free_pe(pe);
658 pe->pdev = NULL;
659 continue;
662 /* Put PE to the list */
663 mutex_lock(&phb->ioda.pe_list_mutex);
664 list_add_tail(&pe->list, &phb->ioda.pe_list);
665 mutex_unlock(&phb->ioda.pe_list_mutex);
667 /* associate this pe to it's pdn */
668 list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
669 if (vf_pdn->busno == vf_bus &&
670 vf_pdn->devfn == vf_devfn) {
671 vf_pdn->pe_number = pe_num;
672 break;
676 pnv_pci_ioda2_setup_dma_pe(phb, pe);
680 static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
682 struct pnv_ioda_pe *base_pe;
683 struct pnv_iov_data *iov;
684 struct pnv_phb *phb;
685 int ret;
686 u16 i;
688 phb = pci_bus_to_pnvhb(pdev->bus);
689 iov = pnv_iov_get(pdev);
692 * There's a calls to IODA2 PE setup code littered throughout. We could
693 * probably fix that, but we'd still have problems due to the
694 * restriction inherent on IODA1 PHBs.
696 * NB: We class IODA3 as IODA2 since they're very similar.
698 if (phb->type != PNV_PHB_IODA2) {
699 pci_err(pdev, "SR-IOV is not supported on this PHB\n");
700 return -ENXIO;
703 if (!iov) {
704 dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n");
705 return -ENOSPC;
708 /* allocate a contigious block of PEs for our VFs */
709 base_pe = pnv_ioda_alloc_pe(phb, num_vfs);
710 if (!base_pe) {
711 pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs);
712 return -EBUSY;
715 iov->vf_pe_arr = base_pe;
716 iov->num_vfs = num_vfs;
718 /* Assign M64 window accordingly */
719 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
720 if (ret) {
721 dev_info(&pdev->dev, "Not enough M64 window resources\n");
722 goto m64_failed;
726 * When using one M64 BAR to map one IOV BAR, we need to shift
727 * the IOV BAR according to the PE# allocated to the VFs.
728 * Otherwise, the PE# for the VF will conflict with others.
730 if (iov->need_shift) {
731 ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number);
732 if (ret)
733 goto shift_failed;
736 /* Setup VF PEs */
737 pnv_ioda_setup_vf_PE(pdev, num_vfs);
739 return 0;
741 shift_failed:
742 pnv_pci_vf_release_m64(pdev, num_vfs);
744 m64_failed:
745 for (i = 0; i < num_vfs; i++)
746 pnv_ioda_free_pe(&iov->vf_pe_arr[i]);
748 return ret;
751 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
753 pnv_pci_sriov_disable(pdev);
755 /* Release PCI data */
756 remove_sriov_vf_pdns(pdev);
757 return 0;
760 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
762 /* Allocate PCI data */
763 add_sriov_vf_pdns(pdev);
765 return pnv_pci_sriov_enable(pdev, num_vfs);