1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __POWERNV_PCI_H
3 #define __POWERNV_PCI_H
5 #include <linux/compiler.h> /* for __printf */
6 #include <linux/iommu.h>
8 #include <asm/msi_bitmap.h>
15 PNV_PHB_NPU_NVLINK
= 2,
16 PNV_PHB_NPU_OCAPI
= 3,
19 /* Precise PHB model for error management */
21 PNV_PHB_MODEL_UNKNOWN
,
28 #define PNV_PCI_DIAG_BUF_SIZE 8192
29 #define PNV_IODA_PE_DEV (1 << 0) /* PE has single PCI device */
30 #define PNV_IODA_PE_BUS (1 << 1) /* PE has primary PCI bus */
31 #define PNV_IODA_PE_BUS_ALL (1 << 2) /* PE has subordinate buses */
32 #define PNV_IODA_PE_MASTER (1 << 3) /* Master PE in compound case */
33 #define PNV_IODA_PE_SLAVE (1 << 4) /* Slave PE in compound case */
34 #define PNV_IODA_PE_VF (1 << 5) /* PE for one VF */
37 * A brief note on PNV_IODA_PE_BUS_ALL
39 * This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
40 * the Requester ID field of the PCIe request header to determine the device
41 * (and PE) that initiated a DMA. In legacy PCI individual memory read/write
42 * requests aren't tagged with the RID. To work around this the PCIe-to-PCI
43 * bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
45 * PCIe-to-X bridges have a similar issue even though PCI-X requests also have
46 * a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
47 * ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
50 * To work around these problems we use the BUS_ALL flag since every subordinate
51 * bus of the bridge should go into the same PE.
54 /* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
55 #define PNV_IODA_STOPPED_STATE 0x8000000000000000
57 /* Data associated with a PE, including IOMMU tracking etc.. */
64 /* A PE can be associated with a single device or an
65 * entire bus (& children). In the former case, pdev
66 * is populated, in the later case, pbus is.
69 struct pci_dev
*parent_dev
;
74 /* Effective RID (device RID for a device PE and base bus
75 * RID with devfn 0 for a bus PE)
80 unsigned int pe_number
;
82 /* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
83 struct iommu_table_group table_group
;
84 struct npu_comp
*npucomp
;
86 /* 64-bit TCE bypass region */
87 bool tce_bypass_enabled
;
88 uint64_t tce_bypass_base
;
91 * Used to track whether we've done DMA setup for this PE or not. We
92 * want to defer allocating TCE tables, etc until we've added a
93 * non-bridge device to the PE.
97 /* MSIs. MVE index is identical for 32 and 64 bit MSI
98 * and -1 if not supported. (It's actually identical to the
103 /* PEs in compound case */
104 struct pnv_ioda_pe
*master
;
105 struct list_head slaves
;
107 /* Link in list of PE#s */
108 struct list_head list
;
111 #define PNV_PHB_FLAG_EEH (1 << 0)
114 struct pci_controller
*hose
;
115 enum pnv_phb_type type
;
116 enum pnv_phb_model model
;
125 #ifdef CONFIG_DEBUG_FS
127 struct dentry
*dbgfs
;
130 unsigned int msi_base
;
131 unsigned int msi32_support
;
132 struct msi_bitmap msi_bmp
;
133 int (*msi_setup
)(struct pnv_phb
*phb
, struct pci_dev
*dev
,
134 unsigned int hwirq
, unsigned int virq
,
135 unsigned int is_64
, struct msi_msg
*msg
);
136 int (*init_m64
)(struct pnv_phb
*phb
);
137 int (*get_pe_state
)(struct pnv_phb
*phb
, int pe_no
);
138 void (*freeze_pe
)(struct pnv_phb
*phb
, int pe_no
);
139 int (*unfreeze_pe
)(struct pnv_phb
*phb
, int pe_no
, int opt
);
142 /* Global bridge info */
143 unsigned int total_pe_num
;
144 unsigned int reserved_pe_idx
;
145 unsigned int root_pe_idx
;
147 /* 32-bit MMIO window */
148 unsigned int m32_size
;
149 unsigned int m32_segsize
;
150 unsigned int m32_pci_base
;
152 /* 64-bit MMIO window */
153 unsigned int m64_bar_idx
;
154 unsigned long m64_size
;
155 unsigned long m64_segsize
;
156 unsigned long m64_base
;
157 #define MAX_M64_BARS 64
158 unsigned long m64_bar_alloc
;
161 unsigned int io_size
;
162 unsigned int io_segsize
;
163 unsigned int io_pci_base
;
166 struct mutex pe_alloc_mutex
;
167 unsigned long *pe_alloc
;
168 struct pnv_ioda_pe
*pe_array
;
170 /* M32 & IO segment maps */
171 unsigned int *m64_segmap
;
172 unsigned int *m32_segmap
;
173 unsigned int *io_segmap
;
175 /* DMA32 segment maps - IODA1 only */
176 unsigned int dma32_count
;
177 unsigned int *dma32_segmap
;
181 struct irq_chip irq_chip
;
183 /* Sorted list of used PE's based
184 * on the sequence of creation
186 struct list_head pe_list
;
187 struct mutex pe_list_mutex
;
189 /* Reverse map of PEs, indexed by {bus, devfn} */
190 unsigned int pe_rmap
[0x10000];
193 /* PHB and hub diagnostics */
194 unsigned int diag_data_size
;
199 /* IODA PE management */
201 static inline bool pnv_pci_is_m64(struct pnv_phb
*phb
, struct resource
*r
)
204 * WARNING: We cannot rely on the resource flags. The Linux PCI
205 * allocation code sometimes decides to put a 64-bit prefetchable
206 * BAR in the 32-bit window, so we have to compare the addresses.
208 * For simplicity we only test resource start.
210 return (r
->start
>= phb
->ioda
.m64_base
&&
211 r
->start
< (phb
->ioda
.m64_base
+ phb
->ioda
.m64_size
));
214 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags
)
216 unsigned long flags
= (IORESOURCE_MEM_64
| IORESOURCE_PREFETCH
);
218 return (resource_flags
& flags
) == flags
;
221 int pnv_ioda_configure_pe(struct pnv_phb
*phb
, struct pnv_ioda_pe
*pe
);
222 int pnv_ioda_deconfigure_pe(struct pnv_phb
*phb
, struct pnv_ioda_pe
*pe
);
224 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb
*phb
, struct pnv_ioda_pe
*pe
);
225 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe
*pe
);
227 struct pnv_ioda_pe
*pnv_ioda_alloc_pe(struct pnv_phb
*phb
, int count
);
228 void pnv_ioda_free_pe(struct pnv_ioda_pe
*pe
);
230 #ifdef CONFIG_PCI_IOV
232 * For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
233 * This requires a bit of acrobatics with the MMIO -> PE configuration
234 * and this structure is used to keep track of it all.
236 struct pnv_iov_data
{
237 /* number of VFs enabled */
240 /* pointer to the array of VF PEs. num_vfs long*/
241 struct pnv_ioda_pe
*vf_pe_arr
;
243 /* Did we map the VF BAR with single-PE IODA BARs? */
244 bool m64_single_mode
[PCI_SRIOV_NUM_BARS
];
247 * True if we're using any segmented windows. In that case we need
248 * shift the start of the IOV resource the segment corresponding to
254 * Bit mask used to track which m64 windows are used to map the
255 * SR-IOV BARs for this device.
257 DECLARE_BITMAP(used_m64_bar_mask
, MAX_M64_BARS
);
260 * If we map the SR-IOV BARs with a segmented window then
261 * parts of that window will be "claimed" by other PEs.
263 * "holes" here is used to reserve the leading portion
264 * of the window that is used by other (non VF) PEs.
266 struct resource holes
[PCI_SRIOV_NUM_BARS
];
269 static inline struct pnv_iov_data
*pnv_iov_get(struct pci_dev
*pdev
)
271 return pdev
->dev
.archdata
.iov_data
;
274 void pnv_pci_ioda_fixup_iov(struct pci_dev
*pdev
);
275 resource_size_t
pnv_pci_iov_resource_alignment(struct pci_dev
*pdev
, int resno
);
277 int pnv_pcibios_sriov_enable(struct pci_dev
*pdev
, u16 num_vfs
);
278 int pnv_pcibios_sriov_disable(struct pci_dev
*pdev
);
279 #endif /* CONFIG_PCI_IOV */
281 extern struct pci_ops pnv_pci_ops
;
283 void pnv_pci_dump_phb_diag_data(struct pci_controller
*hose
,
284 unsigned char *log_buff
);
285 int pnv_pci_cfg_read(struct pci_dn
*pdn
,
286 int where
, int size
, u32
*val
);
287 int pnv_pci_cfg_write(struct pci_dn
*pdn
,
288 int where
, int size
, u32 val
);
289 extern struct iommu_table
*pnv_pci_table_alloc(int nid
);
291 extern void pnv_pci_init_ioda_hub(struct device_node
*np
);
292 extern void pnv_pci_init_ioda2_phb(struct device_node
*np
);
293 extern void pnv_pci_init_npu_phb(struct device_node
*np
);
294 extern void pnv_pci_init_npu2_opencapi_phb(struct device_node
*np
);
295 extern void pnv_npu2_map_lpar(struct pnv_ioda_pe
*gpe
, unsigned long msr
);
296 extern void pnv_pci_reset_secondary_bus(struct pci_dev
*dev
);
297 extern int pnv_eeh_phb_reset(struct pci_controller
*hose
, int option
);
299 extern int pnv_setup_msi_irqs(struct pci_dev
*pdev
, int nvec
, int type
);
300 extern void pnv_teardown_msi_irqs(struct pci_dev
*pdev
);
301 extern struct pnv_ioda_pe
*pnv_pci_bdfn_to_pe(struct pnv_phb
*phb
, u16 bdfn
);
302 extern struct pnv_ioda_pe
*pnv_ioda_get_pe(struct pci_dev
*dev
);
303 extern void pnv_set_msi_irq_chip(struct pnv_phb
*phb
, unsigned int virq
);
304 extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift
,
305 __u64 window_size
, __u32 levels
);
306 extern int pnv_eeh_post_init(void);
309 extern void pe_level_printk(const struct pnv_ioda_pe
*pe
, const char *level
,
310 const char *fmt
, ...);
311 #define pe_err(pe, fmt, ...) \
312 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
313 #define pe_warn(pe, fmt, ...) \
314 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
315 #define pe_info(pe, fmt, ...) \
316 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
318 /* Nvlink functions */
319 extern void pnv_npu_try_dma_set_bypass(struct pci_dev
*gpdev
, bool bypass
);
320 extern void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb
*phb
, bool rm
);
321 extern void pnv_pci_npu_setup_iommu_groups(void);
324 #define POWERNV_IOMMU_DEFAULT_LEVELS 2
325 #define POWERNV_IOMMU_MAX_LEVELS 5
327 extern int pnv_tce_build(struct iommu_table
*tbl
, long index
, long npages
,
328 unsigned long uaddr
, enum dma_data_direction direction
,
329 unsigned long attrs
);
330 extern void pnv_tce_free(struct iommu_table
*tbl
, long index
, long npages
);
331 extern int pnv_tce_xchg(struct iommu_table
*tbl
, long index
,
332 unsigned long *hpa
, enum dma_data_direction
*direction
,
334 extern __be64
*pnv_tce_useraddrptr(struct iommu_table
*tbl
, long index
,
336 extern unsigned long pnv_tce_get(struct iommu_table
*tbl
, long index
);
338 extern long pnv_pci_ioda2_table_alloc_pages(int nid
, __u64 bus_offset
,
339 __u32 page_shift
, __u64 window_size
, __u32 levels
,
340 bool alloc_userspace_copy
, struct iommu_table
*tbl
);
341 extern void pnv_pci_ioda2_table_free_pages(struct iommu_table
*tbl
);
343 extern long pnv_pci_link_table_and_group(int node
, int num
,
344 struct iommu_table
*tbl
,
345 struct iommu_table_group
*table_group
);
346 extern void pnv_pci_unlink_table_and_group(struct iommu_table
*tbl
,
347 struct iommu_table_group
*table_group
);
348 extern void pnv_pci_setup_iommu_table(struct iommu_table
*tbl
,
349 void *tce_mem
, u64 tce_size
,
350 u64 dma_offset
, unsigned int page_shift
);
352 extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb
*phb
);
354 static inline struct pnv_phb
*pci_bus_to_pnvhb(struct pci_bus
*bus
)
356 struct pci_controller
*hose
= bus
->sysdata
;
359 return hose
->private_data
;
364 #endif /* __POWERNV_PCI_H */