WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / platforms / powernv / vas-fault.c
blob3d21fce254b741c3b7bb52edcea631108d42aa9c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * VAS Fault handling.
4 * Copyright 2019, IBM Corporation
5 */
7 #define pr_fmt(fmt) "vas: " fmt
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/uaccess.h>
13 #include <linux/kthread.h>
14 #include <linux/sched/signal.h>
15 #include <linux/mmu_context.h>
16 #include <asm/icswx.h>
18 #include "vas.h"
21 * The maximum FIFO size for fault window can be 8MB
22 * (VAS_RX_FIFO_SIZE_MAX). Using 4MB FIFO since each VAS
23 * instance will be having fault window.
24 * 8MB FIFO can be used if expects more faults for each VAS
25 * instance.
27 #define VAS_FAULT_WIN_FIFO_SIZE (4 << 20)
29 static void dump_crb(struct coprocessor_request_block *crb)
31 struct data_descriptor_entry *dde;
32 struct nx_fault_stamp *nx;
34 dde = &crb->source;
35 pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
36 be64_to_cpu(dde->address), be32_to_cpu(dde->length),
37 dde->count, dde->index, dde->flags);
39 dde = &crb->target;
40 pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
41 be64_to_cpu(dde->address), be32_to_cpu(dde->length),
42 dde->count, dde->index, dde->flags);
44 nx = &crb->stamp.nx;
45 pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n",
46 be32_to_cpu(nx->pswid),
47 be64_to_cpu(crb->stamp.nx.fault_storage_addr),
48 nx->flags, nx->fault_status);
52 * Update the CSB to indicate a translation error.
54 * User space will be polling on CSB after the request is issued.
55 * If NX can handle the request without any issues, it updates CSB.
56 * Whereas if NX encounters page fault, the kernel will handle the
57 * fault and update CSB with translation error.
59 * If we are unable to update the CSB means copy_to_user failed due to
60 * invalid csb_addr, send a signal to the process.
62 static void update_csb(struct vas_window *window,
63 struct coprocessor_request_block *crb)
65 struct coprocessor_status_block csb;
66 struct kernel_siginfo info;
67 struct task_struct *tsk;
68 void __user *csb_addr;
69 struct pid *pid;
70 int rc;
73 * NX user space windows can not be opened for task->mm=NULL
74 * and faults will not be generated for kernel requests.
76 if (WARN_ON_ONCE(!window->mm || !window->user_win))
77 return;
79 csb_addr = (void __user *)be64_to_cpu(crb->csb_addr);
81 memset(&csb, 0, sizeof(csb));
82 csb.cc = CSB_CC_FAULT_ADDRESS;
83 csb.ce = CSB_CE_TERMINATION;
84 csb.cs = 0;
85 csb.count = 0;
88 * NX operates and returns in BE format as defined CRB struct.
89 * So saves fault_storage_addr in BE as NX pastes in FIFO and
90 * expects user space to convert to CPU format.
92 csb.address = crb->stamp.nx.fault_storage_addr;
93 csb.flags = 0;
95 pid = window->pid;
96 tsk = get_pid_task(pid, PIDTYPE_PID);
98 * Process closes send window after all pending NX requests are
99 * completed. In multi-thread applications, a child thread can
100 * open a window and can exit without closing it. May be some
101 * requests are pending or this window can be used by other
102 * threads later. We should handle faults if NX encounters
103 * pages faults on these requests. Update CSB with translation
104 * error and fault address. If csb_addr passed by user space is
105 * invalid, send SEGV signal to pid saved in window. If the
106 * child thread is not running, send the signal to tgid.
107 * Parent thread (tgid) will close this window upon its exit.
109 * pid and mm references are taken when window is opened by
110 * process (pid). So tgid is used only when child thread opens
111 * a window and exits without closing it.
113 if (!tsk) {
114 pid = window->tgid;
115 tsk = get_pid_task(pid, PIDTYPE_PID);
117 * Parent thread (tgid) will be closing window when it
118 * exits. So should not get here.
120 if (WARN_ON_ONCE(!tsk))
121 return;
124 /* Return if the task is exiting. */
125 if (tsk->flags & PF_EXITING) {
126 put_task_struct(tsk);
127 return;
130 kthread_use_mm(window->mm);
131 rc = copy_to_user(csb_addr, &csb, sizeof(csb));
133 * User space polls on csb.flags (first byte). So add barrier
134 * then copy first byte with csb flags update.
136 if (!rc) {
137 csb.flags = CSB_V;
138 /* Make sure update to csb.flags is visible now */
139 smp_mb();
140 rc = copy_to_user(csb_addr, &csb, sizeof(u8));
142 kthread_unuse_mm(window->mm);
143 put_task_struct(tsk);
145 /* Success */
146 if (!rc)
147 return;
149 pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n",
150 csb_addr, pid_vnr(pid));
152 clear_siginfo(&info);
153 info.si_signo = SIGSEGV;
154 info.si_errno = EFAULT;
155 info.si_code = SEGV_MAPERR;
156 info.si_addr = csb_addr;
159 * process will be polling on csb.flags after request is sent to
160 * NX. So generally CSB update should not fail except when an
161 * application passes invalid csb_addr. So an error message will
162 * be displayed and leave it to user space whether to ignore or
163 * handle this signal.
165 rcu_read_lock();
166 rc = kill_pid_info(SIGSEGV, &info, pid);
167 rcu_read_unlock();
169 pr_devel("%s(): pid %d kill_proc_info() rc %d\n", __func__,
170 pid_vnr(pid), rc);
173 static void dump_fifo(struct vas_instance *vinst, void *entry)
175 unsigned long *end = vinst->fault_fifo + vinst->fault_fifo_size;
176 unsigned long *fifo = entry;
177 int i;
179 pr_err("Fault fifo size %d, Max crbs %d\n", vinst->fault_fifo_size,
180 vinst->fault_fifo_size / CRB_SIZE);
182 /* Dump 10 CRB entries or until end of FIFO */
183 pr_err("Fault FIFO Dump:\n");
184 for (i = 0; i < 10*(CRB_SIZE/8) && fifo < end; i += 4, fifo += 4) {
185 pr_err("[%.3d, %p]: 0x%.16lx 0x%.16lx 0x%.16lx 0x%.16lx\n",
186 i, fifo, *fifo, *(fifo+1), *(fifo+2), *(fifo+3));
191 * Process valid CRBs in fault FIFO.
192 * NX process user space requests, return credit and update the status
193 * in CRB. If it encounters transalation error when accessing CRB or
194 * request buffers, raises interrupt on the CPU to handle the fault.
195 * It takes credit on fault window, updates nx_fault_stamp in CRB with
196 * the following information and pastes CRB in fault FIFO.
198 * pswid - window ID of the window on which the request is sent.
199 * fault_storage_addr - fault address
201 * It can raise a single interrupt for multiple faults. Expects OS to
202 * process all valid faults and return credit for each fault on user
203 * space and fault windows. This fault FIFO control will be done with
204 * credit mechanism. NX can continuously paste CRBs until credits are not
205 * available on fault window. Otherwise, returns with RMA_reject.
207 * Total credits available on fault window: FIFO_SIZE(4MB)/CRBS_SIZE(128)
210 irqreturn_t vas_fault_thread_fn(int irq, void *data)
212 struct vas_instance *vinst = data;
213 struct coprocessor_request_block *crb, *entry;
214 struct coprocessor_request_block buf;
215 struct vas_window *window;
216 unsigned long flags;
217 void *fifo;
219 crb = &buf;
222 * VAS can interrupt with multiple page faults. So process all
223 * valid CRBs within fault FIFO until reaches invalid CRB.
224 * We use CCW[0] and pswid to validate validate CRBs:
226 * CCW[0] Reserved bit. When NX pastes CRB, CCW[0]=0
227 * OS sets this bit to 1 after reading CRB.
228 * pswid NX assigns window ID. Set pswid to -1 after
229 * reading CRB from fault FIFO.
231 * We exit this function if no valid CRBs are available to process.
232 * So acquire fault_lock and reset fifo_in_progress to 0 before
233 * exit.
234 * In case kernel receives another interrupt with different page
235 * fault, interrupt handler returns with IRQ_HANDLED if
236 * fifo_in_progress is set. Means these new faults will be
237 * handled by the current thread. Otherwise set fifo_in_progress
238 * and return IRQ_WAKE_THREAD to wake up thread.
240 while (true) {
241 spin_lock_irqsave(&vinst->fault_lock, flags);
243 * Advance the fault fifo pointer to next CRB.
244 * Use CRB_SIZE rather than sizeof(*crb) since the latter is
245 * aligned to CRB_ALIGN (256) but the CRB written to by VAS is
246 * only CRB_SIZE in len.
248 fifo = vinst->fault_fifo + (vinst->fault_crbs * CRB_SIZE);
249 entry = fifo;
251 if ((entry->stamp.nx.pswid == cpu_to_be32(FIFO_INVALID_ENTRY))
252 || (entry->ccw & cpu_to_be32(CCW0_INVALID))) {
253 vinst->fifo_in_progress = 0;
254 spin_unlock_irqrestore(&vinst->fault_lock, flags);
255 return IRQ_HANDLED;
258 spin_unlock_irqrestore(&vinst->fault_lock, flags);
259 vinst->fault_crbs++;
260 if (vinst->fault_crbs == (vinst->fault_fifo_size / CRB_SIZE))
261 vinst->fault_crbs = 0;
263 memcpy(crb, fifo, CRB_SIZE);
264 entry->stamp.nx.pswid = cpu_to_be32(FIFO_INVALID_ENTRY);
265 entry->ccw |= cpu_to_be32(CCW0_INVALID);
267 * Return credit for the fault window.
269 vas_return_credit(vinst->fault_win, false);
271 pr_devel("VAS[%d] fault_fifo %p, fifo %p, fault_crbs %d\n",
272 vinst->vas_id, vinst->fault_fifo, fifo,
273 vinst->fault_crbs);
275 dump_crb(crb);
276 window = vas_pswid_to_window(vinst,
277 be32_to_cpu(crb->stamp.nx.pswid));
279 if (IS_ERR(window)) {
281 * We got an interrupt about a specific send
282 * window but we can't find that window and we can't
283 * even clean it up (return credit on user space
284 * window).
285 * But we should not get here.
286 * TODO: Disable IRQ.
288 dump_fifo(vinst, (void *)entry);
289 pr_err("VAS[%d] fault_fifo %p, fifo %p, pswid 0x%x, fault_crbs %d bad CRB?\n",
290 vinst->vas_id, vinst->fault_fifo, fifo,
291 be32_to_cpu(crb->stamp.nx.pswid),
292 vinst->fault_crbs);
294 WARN_ON_ONCE(1);
295 } else {
296 update_csb(window, crb);
298 * Return credit for send window after processing
299 * fault CRB.
301 vas_return_credit(window, true);
306 irqreturn_t vas_fault_handler(int irq, void *dev_id)
308 struct vas_instance *vinst = dev_id;
309 irqreturn_t ret = IRQ_WAKE_THREAD;
310 unsigned long flags;
313 * NX can generate an interrupt for multiple faults. So the
314 * fault handler thread process all CRBs until finds invalid
315 * entry. In case if NX sees continuous faults, it is possible
316 * that the thread function entered with the first interrupt
317 * can execute and process all valid CRBs.
318 * So wake up thread only if the fault thread is not in progress.
320 spin_lock_irqsave(&vinst->fault_lock, flags);
322 if (vinst->fifo_in_progress)
323 ret = IRQ_HANDLED;
324 else
325 vinst->fifo_in_progress = 1;
327 spin_unlock_irqrestore(&vinst->fault_lock, flags);
329 return ret;
333 * Fault window is opened per VAS instance. NX pastes fault CRB in fault
334 * FIFO upon page faults.
336 int vas_setup_fault_window(struct vas_instance *vinst)
338 struct vas_rx_win_attr attr;
340 vinst->fault_fifo_size = VAS_FAULT_WIN_FIFO_SIZE;
341 vinst->fault_fifo = kzalloc(vinst->fault_fifo_size, GFP_KERNEL);
342 if (!vinst->fault_fifo) {
343 pr_err("Unable to alloc %d bytes for fault_fifo\n",
344 vinst->fault_fifo_size);
345 return -ENOMEM;
349 * Invalidate all CRB entries. NX pastes valid entry for each fault.
351 memset(vinst->fault_fifo, FIFO_INVALID_ENTRY, vinst->fault_fifo_size);
352 vas_init_rx_win_attr(&attr, VAS_COP_TYPE_FAULT);
354 attr.rx_fifo_size = vinst->fault_fifo_size;
355 attr.rx_fifo = vinst->fault_fifo;
358 * Max creds is based on number of CRBs can fit in the FIFO.
359 * (fault_fifo_size/CRB_SIZE). If 8MB FIFO is used, max creds
360 * will be 0xffff since the receive creds field is 16bits wide.
362 attr.wcreds_max = vinst->fault_fifo_size / CRB_SIZE;
363 attr.lnotify_lpid = 0;
364 attr.lnotify_pid = mfspr(SPRN_PID);
365 attr.lnotify_tid = mfspr(SPRN_PID);
367 vinst->fault_win = vas_rx_win_open(vinst->vas_id, VAS_COP_TYPE_FAULT,
368 &attr);
370 if (IS_ERR(vinst->fault_win)) {
371 pr_err("VAS: Error %ld opening FaultWin\n",
372 PTR_ERR(vinst->fault_win));
373 kfree(vinst->fault_fifo);
374 return PTR_ERR(vinst->fault_win);
377 pr_devel("VAS: Created FaultWin %d, LPID/PID/TID [%d/%d/%d]\n",
378 vinst->fault_win->winid, attr.lnotify_lpid,
379 attr.lnotify_pid, attr.lnotify_tid);
381 return 0;