WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / platforms / ps3 / mm.c
blobd094321964fb035ce74f8ebbf87b95c092c284c8
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PS3 address space management.
5 * Copyright (C) 2006 Sony Computer Entertainment Inc.
6 * Copyright 2006 Sony Corp.
7 */
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/memblock.h>
12 #include <linux/slab.h>
14 #include <asm/cell-regs.h>
15 #include <asm/firmware.h>
16 #include <asm/prom.h>
17 #include <asm/udbg.h>
18 #include <asm/lv1call.h>
19 #include <asm/setup.h>
21 #include "platform.h"
23 #if defined(DEBUG)
24 #define DBG udbg_printf
25 #else
26 #define DBG pr_devel
27 #endif
29 enum {
30 #if defined(CONFIG_PS3_DYNAMIC_DMA)
31 USE_DYNAMIC_DMA = 1,
32 #else
33 USE_DYNAMIC_DMA = 0,
34 #endif
37 enum {
38 PAGE_SHIFT_4K = 12U,
39 PAGE_SHIFT_64K = 16U,
40 PAGE_SHIFT_16M = 24U,
43 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
45 return (a << 56) | (b << 48);
48 enum {
49 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
50 ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
53 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
55 enum {
56 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
57 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
60 /*============================================================================*/
61 /* virtual address space routines */
62 /*============================================================================*/
64 /**
65 * struct mem_region - memory region structure
66 * @base: base address
67 * @size: size in bytes
68 * @offset: difference between base and rm.size
69 * @destroy: flag if region should be destroyed upon shutdown
72 struct mem_region {
73 u64 base;
74 u64 size;
75 unsigned long offset;
76 int destroy;
79 /**
80 * struct map - address space state variables holder
81 * @total: total memory available as reported by HV
82 * @vas_id - HV virtual address space id
83 * @htab_size: htab size in bytes
85 * The HV virtual address space (vas) allows for hotplug memory regions.
86 * Memory regions can be created and destroyed in the vas at runtime.
87 * @rm: real mode (bootmem) region
88 * @r1: highmem region(s)
90 * ps3 addresses
91 * virt_addr: a cpu 'translated' effective address
92 * phys_addr: an address in what Linux thinks is the physical address space
93 * lpar_addr: an address in the HV virtual address space
94 * bus_addr: an io controller 'translated' address on a device bus
97 struct map {
98 u64 total;
99 u64 vas_id;
100 u64 htab_size;
101 struct mem_region rm;
102 struct mem_region r1;
105 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
106 static void __maybe_unused _debug_dump_map(const struct map *m,
107 const char *func, int line)
109 DBG("%s:%d: map.total = %llxh\n", func, line, m->total);
110 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size);
111 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id);
112 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
113 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base);
114 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
115 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size);
118 static struct map map;
121 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
122 * @phys_addr: linux physical address
125 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
127 BUG_ON(is_kernel_addr(phys_addr));
128 return (phys_addr < map.rm.size || phys_addr >= map.total)
129 ? phys_addr : phys_addr + map.r1.offset;
132 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
135 * ps3_mm_vas_create - create the virtual address space
138 void __init ps3_mm_vas_create(unsigned long* htab_size)
140 int result;
141 u64 start_address;
142 u64 size;
143 u64 access_right;
144 u64 max_page_size;
145 u64 flags;
147 result = lv1_query_logical_partition_address_region_info(0,
148 &start_address, &size, &access_right, &max_page_size,
149 &flags);
151 if (result) {
152 DBG("%s:%d: lv1_query_logical_partition_address_region_info "
153 "failed: %s\n", __func__, __LINE__,
154 ps3_result(result));
155 goto fail;
158 if (max_page_size < PAGE_SHIFT_16M) {
159 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
160 max_page_size);
161 goto fail;
164 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
165 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
167 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
168 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
169 &map.vas_id, &map.htab_size);
171 if (result) {
172 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
173 __func__, __LINE__, ps3_result(result));
174 goto fail;
177 result = lv1_select_virtual_address_space(map.vas_id);
179 if (result) {
180 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
181 __func__, __LINE__, ps3_result(result));
182 goto fail;
185 *htab_size = map.htab_size;
187 debug_dump_map(&map);
189 return;
191 fail:
192 panic("ps3_mm_vas_create failed");
196 * ps3_mm_vas_destroy -
199 void ps3_mm_vas_destroy(void)
201 int result;
203 if (map.vas_id) {
204 result = lv1_select_virtual_address_space(0);
205 result += lv1_destruct_virtual_address_space(map.vas_id);
207 if (result) {
208 lv1_panic(0);
211 map.vas_id = 0;
215 static int ps3_mm_get_repository_highmem(struct mem_region *r)
217 int result;
219 /* Assume a single highmem region. */
221 result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
223 if (result)
224 goto zero_region;
226 if (!r->base || !r->size) {
227 result = -1;
228 goto zero_region;
231 r->offset = r->base - map.rm.size;
233 DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
234 __func__, __LINE__, r->base, r->size);
236 return 0;
238 zero_region:
239 DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
241 r->size = r->base = r->offset = 0;
242 return result;
245 static int ps3_mm_set_repository_highmem(const struct mem_region *r)
247 /* Assume a single highmem region. */
249 return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
250 ps3_repository_write_highmem_info(0, 0, 0);
254 * ps3_mm_region_create - create a memory region in the vas
255 * @r: pointer to a struct mem_region to accept initialized values
256 * @size: requested region size
258 * This implementation creates the region with the vas large page size.
259 * @size is rounded down to a multiple of the vas large page size.
262 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
264 int result;
265 u64 muid;
267 r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
269 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size);
270 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size);
271 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
272 size - r->size, (size - r->size) / 1024 / 1024);
274 if (r->size == 0) {
275 DBG("%s:%d: size == 0\n", __func__, __LINE__);
276 result = -1;
277 goto zero_region;
280 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
281 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
283 if (result || r->base < map.rm.size) {
284 DBG("%s:%d: lv1_allocate_memory failed: %s\n",
285 __func__, __LINE__, ps3_result(result));
286 goto zero_region;
289 r->destroy = 1;
290 r->offset = r->base - map.rm.size;
291 return result;
293 zero_region:
294 r->size = r->base = r->offset = 0;
295 return result;
299 * ps3_mm_region_destroy - destroy a memory region
300 * @r: pointer to struct mem_region
303 static void ps3_mm_region_destroy(struct mem_region *r)
305 int result;
307 if (!r->destroy) {
308 return;
311 if (r->base) {
312 result = lv1_release_memory(r->base);
314 if (result) {
315 lv1_panic(0);
318 r->size = r->base = r->offset = 0;
319 map.total = map.rm.size;
322 ps3_mm_set_repository_highmem(NULL);
325 /*============================================================================*/
326 /* dma routines */
327 /*============================================================================*/
330 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
331 * @r: pointer to dma region structure
332 * @lpar_addr: HV lpar address
335 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
336 unsigned long lpar_addr)
338 if (lpar_addr >= map.rm.size)
339 lpar_addr -= map.r1.offset;
340 BUG_ON(lpar_addr < r->offset);
341 BUG_ON(lpar_addr >= r->offset + r->len);
342 return r->bus_addr + lpar_addr - r->offset;
345 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
346 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
347 const char *func, int line)
349 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id,
350 r->dev->dev_id);
351 DBG("%s:%d: page_size %u\n", func, line, r->page_size);
352 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr);
353 DBG("%s:%d: len %lxh\n", func, line, r->len);
354 DBG("%s:%d: offset %lxh\n", func, line, r->offset);
358 * dma_chunk - A chunk of dma pages mapped by the io controller.
359 * @region - The dma region that owns this chunk.
360 * @lpar_addr: Starting lpar address of the area to map.
361 * @bus_addr: Starting ioc bus address of the area to map.
362 * @len: Length in bytes of the area to map.
363 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
364 * list of all chuncks owned by the region.
366 * This implementation uses a very simple dma page manager
367 * based on the dma_chunk structure. This scheme assumes
368 * that all drivers use very well behaved dma ops.
371 struct dma_chunk {
372 struct ps3_dma_region *region;
373 unsigned long lpar_addr;
374 unsigned long bus_addr;
375 unsigned long len;
376 struct list_head link;
377 unsigned int usage_count;
380 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
381 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
382 int line)
384 DBG("%s:%d: r.dev %llu:%llu\n", func, line,
385 c->region->dev->bus_id, c->region->dev->dev_id);
386 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr);
387 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size);
388 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len);
389 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset);
390 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr);
391 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr);
392 DBG("%s:%d: c.len %lxh\n", func, line, c->len);
395 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
396 unsigned long bus_addr, unsigned long len)
398 struct dma_chunk *c;
399 unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size);
400 unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus,
401 1 << r->page_size);
403 list_for_each_entry(c, &r->chunk_list.head, link) {
404 /* intersection */
405 if (aligned_bus >= c->bus_addr &&
406 aligned_bus + aligned_len <= c->bus_addr + c->len)
407 return c;
409 /* below */
410 if (aligned_bus + aligned_len <= c->bus_addr)
411 continue;
413 /* above */
414 if (aligned_bus >= c->bus_addr + c->len)
415 continue;
417 /* we don't handle the multi-chunk case for now */
418 dma_dump_chunk(c);
419 BUG();
421 return NULL;
424 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
425 unsigned long lpar_addr, unsigned long len)
427 struct dma_chunk *c;
428 unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size);
429 unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar,
430 1 << r->page_size);
432 list_for_each_entry(c, &r->chunk_list.head, link) {
433 /* intersection */
434 if (c->lpar_addr <= aligned_lpar &&
435 aligned_lpar < c->lpar_addr + c->len) {
436 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
437 return c;
438 else {
439 dma_dump_chunk(c);
440 BUG();
443 /* below */
444 if (aligned_lpar + aligned_len <= c->lpar_addr) {
445 continue;
447 /* above */
448 if (c->lpar_addr + c->len <= aligned_lpar) {
449 continue;
452 return NULL;
455 static int dma_sb_free_chunk(struct dma_chunk *c)
457 int result = 0;
459 if (c->bus_addr) {
460 result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
461 c->region->dev->dev_id, c->bus_addr, c->len);
462 BUG_ON(result);
465 kfree(c);
466 return result;
469 static int dma_ioc0_free_chunk(struct dma_chunk *c)
471 int result = 0;
472 int iopage;
473 unsigned long offset;
474 struct ps3_dma_region *r = c->region;
476 DBG("%s:start\n", __func__);
477 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
478 offset = (1 << r->page_size) * iopage;
479 /* put INVALID entry */
480 result = lv1_put_iopte(0,
481 c->bus_addr + offset,
482 c->lpar_addr + offset,
483 r->ioid,
485 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
486 c->bus_addr + offset,
487 c->lpar_addr + offset,
488 r->ioid);
490 if (result) {
491 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
492 __LINE__, ps3_result(result));
495 kfree(c);
496 DBG("%s:end\n", __func__);
497 return result;
501 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
502 * @r: Pointer to a struct ps3_dma_region.
503 * @phys_addr: Starting physical address of the area to map.
504 * @len: Length in bytes of the area to map.
505 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
507 * This is the lowest level dma mapping routine, and is the one that will
508 * make the HV call to add the pages into the io controller address space.
511 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
512 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
514 int result;
515 struct dma_chunk *c;
517 c = kzalloc(sizeof(*c), GFP_ATOMIC);
518 if (!c) {
519 result = -ENOMEM;
520 goto fail_alloc;
523 c->region = r;
524 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
525 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
526 c->len = len;
528 BUG_ON(iopte_flag != 0xf800000000000000UL);
529 result = lv1_map_device_dma_region(c->region->dev->bus_id,
530 c->region->dev->dev_id, c->lpar_addr,
531 c->bus_addr, c->len, iopte_flag);
532 if (result) {
533 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
534 __func__, __LINE__, ps3_result(result));
535 goto fail_map;
538 list_add(&c->link, &r->chunk_list.head);
540 *c_out = c;
541 return 0;
543 fail_map:
544 kfree(c);
545 fail_alloc:
546 *c_out = NULL;
547 DBG(" <- %s:%d\n", __func__, __LINE__);
548 return result;
551 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
552 unsigned long len, struct dma_chunk **c_out,
553 u64 iopte_flag)
555 int result;
556 struct dma_chunk *c, *last;
557 int iopage, pages;
558 unsigned long offset;
560 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
561 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
562 c = kzalloc(sizeof(*c), GFP_ATOMIC);
563 if (!c) {
564 result = -ENOMEM;
565 goto fail_alloc;
568 c->region = r;
569 c->len = len;
570 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
571 /* allocate IO address */
572 if (list_empty(&r->chunk_list.head)) {
573 /* first one */
574 c->bus_addr = r->bus_addr;
575 } else {
576 /* derive from last bus addr*/
577 last = list_entry(r->chunk_list.head.next,
578 struct dma_chunk, link);
579 c->bus_addr = last->bus_addr + last->len;
580 DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
581 last->bus_addr, last->len);
584 /* FIXME: check whether length exceeds region size */
586 /* build ioptes for the area */
587 pages = len >> r->page_size;
588 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
589 r->page_size, r->len, pages, iopte_flag);
590 for (iopage = 0; iopage < pages; iopage++) {
591 offset = (1 << r->page_size) * iopage;
592 result = lv1_put_iopte(0,
593 c->bus_addr + offset,
594 c->lpar_addr + offset,
595 r->ioid,
596 iopte_flag);
597 if (result) {
598 pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
599 __func__, __LINE__, ps3_result(result));
600 goto fail_map;
602 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
603 iopage, c->bus_addr + offset, c->lpar_addr + offset,
604 r->ioid);
607 /* be sure that last allocated one is inserted at head */
608 list_add(&c->link, &r->chunk_list.head);
610 *c_out = c;
611 DBG("%s: end\n", __func__);
612 return 0;
614 fail_map:
615 for (iopage--; 0 <= iopage; iopage--) {
616 lv1_put_iopte(0,
617 c->bus_addr + offset,
618 c->lpar_addr + offset,
619 r->ioid,
622 kfree(c);
623 fail_alloc:
624 *c_out = NULL;
625 return result;
629 * dma_sb_region_create - Create a device dma region.
630 * @r: Pointer to a struct ps3_dma_region.
632 * This is the lowest level dma region create routine, and is the one that
633 * will make the HV call to create the region.
636 static int dma_sb_region_create(struct ps3_dma_region *r)
638 int result;
639 u64 bus_addr;
641 DBG(" -> %s:%d:\n", __func__, __LINE__);
643 BUG_ON(!r);
645 if (!r->dev->bus_id) {
646 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
647 r->dev->bus_id, r->dev->dev_id);
648 return 0;
651 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
652 __LINE__, r->len, r->page_size, r->offset);
654 BUG_ON(!r->len);
655 BUG_ON(!r->page_size);
656 BUG_ON(!r->region_ops);
658 INIT_LIST_HEAD(&r->chunk_list.head);
659 spin_lock_init(&r->chunk_list.lock);
661 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
662 roundup_pow_of_two(r->len), r->page_size, r->region_type,
663 &bus_addr);
664 r->bus_addr = bus_addr;
666 if (result) {
667 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
668 __func__, __LINE__, ps3_result(result));
669 r->len = r->bus_addr = 0;
672 return result;
675 static int dma_ioc0_region_create(struct ps3_dma_region *r)
677 int result;
678 u64 bus_addr;
680 INIT_LIST_HEAD(&r->chunk_list.head);
681 spin_lock_init(&r->chunk_list.lock);
683 result = lv1_allocate_io_segment(0,
684 r->len,
685 r->page_size,
686 &bus_addr);
687 r->bus_addr = bus_addr;
688 if (result) {
689 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
690 __func__, __LINE__, ps3_result(result));
691 r->len = r->bus_addr = 0;
693 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
694 r->len, r->page_size, r->bus_addr);
695 return result;
699 * dma_region_free - Free a device dma region.
700 * @r: Pointer to a struct ps3_dma_region.
702 * This is the lowest level dma region free routine, and is the one that
703 * will make the HV call to free the region.
706 static int dma_sb_region_free(struct ps3_dma_region *r)
708 int result;
709 struct dma_chunk *c;
710 struct dma_chunk *tmp;
712 BUG_ON(!r);
714 if (!r->dev->bus_id) {
715 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
716 r->dev->bus_id, r->dev->dev_id);
717 return 0;
720 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
721 list_del(&c->link);
722 dma_sb_free_chunk(c);
725 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
726 r->bus_addr);
728 if (result)
729 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
730 __func__, __LINE__, ps3_result(result));
732 r->bus_addr = 0;
734 return result;
737 static int dma_ioc0_region_free(struct ps3_dma_region *r)
739 int result;
740 struct dma_chunk *c, *n;
742 DBG("%s: start\n", __func__);
743 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
744 list_del(&c->link);
745 dma_ioc0_free_chunk(c);
748 result = lv1_release_io_segment(0, r->bus_addr);
750 if (result)
751 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
752 __func__, __LINE__, ps3_result(result));
754 r->bus_addr = 0;
755 DBG("%s: end\n", __func__);
757 return result;
761 * dma_sb_map_area - Map an area of memory into a device dma region.
762 * @r: Pointer to a struct ps3_dma_region.
763 * @virt_addr: Starting virtual address of the area to map.
764 * @len: Length in bytes of the area to map.
765 * @bus_addr: A pointer to return the starting ioc bus address of the area to
766 * map.
768 * This is the common dma mapping routine.
771 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
772 unsigned long len, dma_addr_t *bus_addr,
773 u64 iopte_flag)
775 int result;
776 unsigned long flags;
777 struct dma_chunk *c;
778 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
779 : virt_addr;
780 unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
781 unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
782 1 << r->page_size);
783 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
785 if (!USE_DYNAMIC_DMA) {
786 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
787 DBG(" -> %s:%d\n", __func__, __LINE__);
788 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
789 virt_addr);
790 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
791 phys_addr);
792 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
793 lpar_addr);
794 DBG("%s:%d len %lxh\n", __func__, __LINE__, len);
795 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__,
796 *bus_addr, len);
799 spin_lock_irqsave(&r->chunk_list.lock, flags);
800 c = dma_find_chunk(r, *bus_addr, len);
802 if (c) {
803 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
804 dma_dump_chunk(c);
805 c->usage_count++;
806 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
807 return 0;
810 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
812 if (result) {
813 *bus_addr = 0;
814 DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
815 __func__, __LINE__, result);
816 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
817 return result;
820 c->usage_count = 1;
822 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
823 return result;
826 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
827 unsigned long len, dma_addr_t *bus_addr,
828 u64 iopte_flag)
830 int result;
831 unsigned long flags;
832 struct dma_chunk *c;
833 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
834 : virt_addr;
835 unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
836 unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
837 1 << r->page_size);
839 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
840 virt_addr, len);
841 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
842 phys_addr, aligned_phys, aligned_len);
844 spin_lock_irqsave(&r->chunk_list.lock, flags);
845 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
847 if (c) {
848 /* FIXME */
849 BUG();
850 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
851 c->usage_count++;
852 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
853 return 0;
856 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
857 iopte_flag);
859 if (result) {
860 *bus_addr = 0;
861 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
862 __func__, __LINE__, result);
863 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
864 return result;
866 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
867 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
868 virt_addr, phys_addr, aligned_phys, *bus_addr);
869 c->usage_count = 1;
871 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
872 return result;
876 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
877 * @r: Pointer to a struct ps3_dma_region.
878 * @bus_addr: The starting ioc bus address of the area to unmap.
879 * @len: Length in bytes of the area to unmap.
881 * This is the common dma unmap routine.
884 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
885 unsigned long len)
887 unsigned long flags;
888 struct dma_chunk *c;
890 spin_lock_irqsave(&r->chunk_list.lock, flags);
891 c = dma_find_chunk(r, bus_addr, len);
893 if (!c) {
894 unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
895 1 << r->page_size);
896 unsigned long aligned_len = ALIGN(len + bus_addr
897 - aligned_bus, 1 << r->page_size);
898 DBG("%s:%d: not found: bus_addr %llxh\n",
899 __func__, __LINE__, bus_addr);
900 DBG("%s:%d: not found: len %lxh\n",
901 __func__, __LINE__, len);
902 DBG("%s:%d: not found: aligned_bus %lxh\n",
903 __func__, __LINE__, aligned_bus);
904 DBG("%s:%d: not found: aligned_len %lxh\n",
905 __func__, __LINE__, aligned_len);
906 BUG();
909 c->usage_count--;
911 if (!c->usage_count) {
912 list_del(&c->link);
913 dma_sb_free_chunk(c);
916 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
917 return 0;
920 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
921 dma_addr_t bus_addr, unsigned long len)
923 unsigned long flags;
924 struct dma_chunk *c;
926 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
927 spin_lock_irqsave(&r->chunk_list.lock, flags);
928 c = dma_find_chunk(r, bus_addr, len);
930 if (!c) {
931 unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
932 1 << r->page_size);
933 unsigned long aligned_len = ALIGN(len + bus_addr
934 - aligned_bus,
935 1 << r->page_size);
936 DBG("%s:%d: not found: bus_addr %llxh\n",
937 __func__, __LINE__, bus_addr);
938 DBG("%s:%d: not found: len %lxh\n",
939 __func__, __LINE__, len);
940 DBG("%s:%d: not found: aligned_bus %lxh\n",
941 __func__, __LINE__, aligned_bus);
942 DBG("%s:%d: not found: aligned_len %lxh\n",
943 __func__, __LINE__, aligned_len);
944 BUG();
947 c->usage_count--;
949 if (!c->usage_count) {
950 list_del(&c->link);
951 dma_ioc0_free_chunk(c);
954 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
955 DBG("%s: end\n", __func__);
956 return 0;
960 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
961 * @r: Pointer to a struct ps3_dma_region.
963 * This routine creates an HV dma region for the device and maps all available
964 * ram into the io controller bus address space.
967 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
969 int result;
970 unsigned long virt_addr, len;
971 dma_addr_t tmp;
973 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */
974 /* force 16M dma pages for linear mapping */
975 if (r->page_size != PS3_DMA_16M) {
976 pr_info("%s:%d: forcing 16M pages for linear map\n",
977 __func__, __LINE__);
978 r->page_size = PS3_DMA_16M;
979 r->len = ALIGN(r->len, 1 << r->page_size);
983 result = dma_sb_region_create(r);
984 BUG_ON(result);
986 if (r->offset < map.rm.size) {
987 /* Map (part of) 1st RAM chunk */
988 virt_addr = map.rm.base + r->offset;
989 len = map.rm.size - r->offset;
990 if (len > r->len)
991 len = r->len;
992 result = dma_sb_map_area(r, virt_addr, len, &tmp,
993 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
994 CBE_IOPTE_M);
995 BUG_ON(result);
998 if (r->offset + r->len > map.rm.size) {
999 /* Map (part of) 2nd RAM chunk */
1000 virt_addr = map.rm.size;
1001 len = r->len;
1002 if (r->offset >= map.rm.size)
1003 virt_addr += r->offset - map.rm.size;
1004 else
1005 len -= map.rm.size - r->offset;
1006 result = dma_sb_map_area(r, virt_addr, len, &tmp,
1007 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1008 CBE_IOPTE_M);
1009 BUG_ON(result);
1012 return result;
1016 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1017 * @r: Pointer to a struct ps3_dma_region.
1019 * This routine will unmap all mapped areas and free the HV dma region.
1022 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1024 int result;
1025 dma_addr_t bus_addr;
1026 unsigned long len, lpar_addr;
1028 if (r->offset < map.rm.size) {
1029 /* Unmap (part of) 1st RAM chunk */
1030 lpar_addr = map.rm.base + r->offset;
1031 len = map.rm.size - r->offset;
1032 if (len > r->len)
1033 len = r->len;
1034 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1035 result = dma_sb_unmap_area(r, bus_addr, len);
1036 BUG_ON(result);
1039 if (r->offset + r->len > map.rm.size) {
1040 /* Unmap (part of) 2nd RAM chunk */
1041 lpar_addr = map.r1.base;
1042 len = r->len;
1043 if (r->offset >= map.rm.size)
1044 lpar_addr += r->offset - map.rm.size;
1045 else
1046 len -= map.rm.size - r->offset;
1047 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1048 result = dma_sb_unmap_area(r, bus_addr, len);
1049 BUG_ON(result);
1052 result = dma_sb_region_free(r);
1053 BUG_ON(result);
1055 return result;
1059 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1060 * @r: Pointer to a struct ps3_dma_region.
1061 * @virt_addr: Starting virtual address of the area to map.
1062 * @len: Length in bytes of the area to map.
1063 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1064 * map.
1066 * This routine just returns the corresponding bus address. Actual mapping
1067 * occurs in dma_region_create_linear().
1070 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1071 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1072 u64 iopte_flag)
1074 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1075 : virt_addr;
1076 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1077 return 0;
1081 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1082 * @r: Pointer to a struct ps3_dma_region.
1083 * @bus_addr: The starting ioc bus address of the area to unmap.
1084 * @len: Length in bytes of the area to unmap.
1086 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear().
1089 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1090 dma_addr_t bus_addr, unsigned long len)
1092 return 0;
1095 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = {
1096 .create = dma_sb_region_create,
1097 .free = dma_sb_region_free,
1098 .map = dma_sb_map_area,
1099 .unmap = dma_sb_unmap_area
1102 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1103 .create = dma_sb_region_create_linear,
1104 .free = dma_sb_region_free_linear,
1105 .map = dma_sb_map_area_linear,
1106 .unmap = dma_sb_unmap_area_linear
1109 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1110 .create = dma_ioc0_region_create,
1111 .free = dma_ioc0_region_free,
1112 .map = dma_ioc0_map_area,
1113 .unmap = dma_ioc0_unmap_area
1116 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1117 struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1118 enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1120 unsigned long lpar_addr;
1122 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1124 r->dev = dev;
1125 r->page_size = page_size;
1126 r->region_type = region_type;
1127 r->offset = lpar_addr;
1128 if (r->offset >= map.rm.size)
1129 r->offset -= map.r1.offset;
1130 r->len = len ? len : ALIGN(map.total, 1 << r->page_size);
1132 switch (dev->dev_type) {
1133 case PS3_DEVICE_TYPE_SB:
1134 r->region_ops = (USE_DYNAMIC_DMA)
1135 ? &ps3_dma_sb_region_ops
1136 : &ps3_dma_sb_region_linear_ops;
1137 break;
1138 case PS3_DEVICE_TYPE_IOC0:
1139 r->region_ops = &ps3_dma_ioc0_region_ops;
1140 break;
1141 default:
1142 BUG();
1143 return -EINVAL;
1145 return 0;
1147 EXPORT_SYMBOL(ps3_dma_region_init);
1149 int ps3_dma_region_create(struct ps3_dma_region *r)
1151 BUG_ON(!r);
1152 BUG_ON(!r->region_ops);
1153 BUG_ON(!r->region_ops->create);
1154 return r->region_ops->create(r);
1156 EXPORT_SYMBOL(ps3_dma_region_create);
1158 int ps3_dma_region_free(struct ps3_dma_region *r)
1160 BUG_ON(!r);
1161 BUG_ON(!r->region_ops);
1162 BUG_ON(!r->region_ops->free);
1163 return r->region_ops->free(r);
1165 EXPORT_SYMBOL(ps3_dma_region_free);
1167 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1168 unsigned long len, dma_addr_t *bus_addr,
1169 u64 iopte_flag)
1171 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1174 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1175 unsigned long len)
1177 return r->region_ops->unmap(r, bus_addr, len);
1180 /*============================================================================*/
1181 /* system startup routines */
1182 /*============================================================================*/
1185 * ps3_mm_init - initialize the address space state variables
1188 void __init ps3_mm_init(void)
1190 int result;
1192 DBG(" -> %s:%d\n", __func__, __LINE__);
1194 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1195 &map.total);
1197 if (result)
1198 panic("ps3_repository_read_mm_info() failed");
1200 map.rm.offset = map.rm.base;
1201 map.vas_id = map.htab_size = 0;
1203 /* this implementation assumes map.rm.base is zero */
1205 BUG_ON(map.rm.base);
1206 BUG_ON(!map.rm.size);
1208 /* Check if we got the highmem region from an earlier boot step */
1210 if (ps3_mm_get_repository_highmem(&map.r1)) {
1211 result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1213 if (!result)
1214 ps3_mm_set_repository_highmem(&map.r1);
1217 /* correct map.total for the real total amount of memory we use */
1218 map.total = map.rm.size + map.r1.size;
1220 if (!map.r1.size) {
1221 DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1222 } else {
1223 DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1224 __func__, __LINE__, map.rm.size,
1225 map.total - map.rm.size);
1226 memblock_add(map.rm.size, map.total - map.rm.size);
1229 DBG(" <- %s:%d\n", __func__, __LINE__);
1233 * ps3_mm_shutdown - final cleanup of address space
1236 void ps3_mm_shutdown(void)
1238 ps3_mm_region_destroy(&map.r1);