1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * The file intends to implement the platform dependent EEH operations on pseries.
4 * Actually, the pseries platform is built based on RTAS heavily. That means the
5 * pseries platform dependent EEH operations will be built on RTAS calls. The functions
6 * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
10 * Copyright IBM Corporation 2001, 2005, 2006
11 * Copyright Dave Engebretsen & Todd Inglett 2001
12 * Copyright Linas Vepstas 2005, 2006
15 #include <linux/atomic.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
21 #include <linux/pci.h>
22 #include <linux/proc_fs.h>
23 #include <linux/rbtree.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/spinlock.h>
27 #include <linux/crash_dump.h>
30 #include <asm/eeh_event.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
37 static int ibm_set_eeh_option
;
38 static int ibm_set_slot_reset
;
39 static int ibm_read_slot_reset_state
;
40 static int ibm_read_slot_reset_state2
;
41 static int ibm_slot_error_detail
;
42 static int ibm_get_config_addr_info
;
43 static int ibm_get_config_addr_info2
;
44 static int ibm_configure_pe
;
46 void pseries_pcibios_bus_add_device(struct pci_dev
*pdev
)
48 struct pci_dn
*pdn
= pci_get_pdn(pdev
);
50 if (eeh_has_flag(EEH_FORCE_DISABLED
))
53 dev_dbg(&pdev
->dev
, "EEH: Setting up device\n");
55 if (pdev
->is_virtfn
) {
56 pdn
->device_id
= pdev
->device
;
57 pdn
->vendor_id
= pdev
->vendor
;
58 pdn
->class_code
= pdev
->class;
60 * Last allow unfreeze return code used for retrieval
61 * by user space in eeh-sysfs to show the last command
62 * completion from platform.
64 pdn
->last_allow_rc
= 0;
67 pseries_eeh_init_edev(pdn
);
69 if (pdev
->is_virtfn
) {
71 * FIXME: This really should be handled by choosing the right
72 * parent PE in in pseries_eeh_init_edev().
74 struct eeh_pe
*physfn_pe
= pci_dev_to_eeh_dev(pdev
->physfn
)->pe
;
75 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
77 edev
->pe_config_addr
= (pdn
->busno
<< 16) | (pdn
->devfn
<< 8);
78 eeh_pe_tree_remove(edev
); /* Remove as it is adding to bus pe */
79 eeh_pe_tree_insert(edev
, physfn_pe
); /* Add as VF PE type */
82 eeh_probe_device(pdev
);
87 * pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device
88 * @pdn: pci_dn of the input device
90 * The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo,
91 * pe_config_addr) as a handle to a given PE. This function finds the
92 * pe_config_addr based on the device's config addr.
94 * Keep in mind that the pe_config_addr *might* be numerically identical to the
95 * device's config addr, but the two are conceptually distinct.
97 * Returns the pe_config_addr, or a negative error code.
99 static int pseries_eeh_get_pe_config_addr(struct pci_dn
*pdn
)
101 int config_addr
= rtas_config_addr(pdn
->busno
, pdn
->devfn
, 0);
102 struct pci_controller
*phb
= pdn
->phb
;
105 if (ibm_get_config_addr_info2
!= RTAS_UNKNOWN_SERVICE
) {
107 * First of all, use function 1 to determine if this device is
108 * part of a PE or not. ret[0] being zero indicates it's not.
110 ret
= rtas_call(ibm_get_config_addr_info2
, 4, 2, rets
,
111 config_addr
, BUID_HI(phb
->buid
),
112 BUID_LO(phb
->buid
), 1);
113 if (ret
|| (rets
[0] == 0))
116 /* Retrieve the associated PE config address with function 0 */
117 ret
= rtas_call(ibm_get_config_addr_info2
, 4, 2, rets
,
118 config_addr
, BUID_HI(phb
->buid
),
119 BUID_LO(phb
->buid
), 0);
121 pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
122 __func__
, phb
->global_number
, config_addr
);
129 if (ibm_get_config_addr_info
!= RTAS_UNKNOWN_SERVICE
) {
130 ret
= rtas_call(ibm_get_config_addr_info
, 4, 2, rets
,
131 config_addr
, BUID_HI(phb
->buid
),
132 BUID_LO(phb
->buid
), 0);
134 pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
135 __func__
, phb
->global_number
, config_addr
);
143 * PAPR does describe a process for finding the pe_config_addr that was
144 * used before the ibm,get-config-addr-info calls were added. However,
145 * I haven't found *any* systems that don't have that RTAS call
146 * implemented. If you happen to find one that needs the old DT based
147 * process, patches are welcome!
153 * pseries_eeh_phb_reset - Reset the specified PHB
154 * @phb: PCI controller
155 * @config_adddr: the associated config address
156 * @option: reset option
158 * Reset the specified PHB/PE
160 static int pseries_eeh_phb_reset(struct pci_controller
*phb
, int config_addr
, int option
)
164 /* Reset PE through RTAS call */
165 ret
= rtas_call(ibm_set_slot_reset
, 4, 1, NULL
,
166 config_addr
, BUID_HI(phb
->buid
),
167 BUID_LO(phb
->buid
), option
);
169 /* If fundamental-reset not supported, try hot-reset */
170 if (option
== EEH_RESET_FUNDAMENTAL
&& ret
== -8) {
171 option
= EEH_RESET_HOT
;
172 ret
= rtas_call(ibm_set_slot_reset
, 4, 1, NULL
,
173 config_addr
, BUID_HI(phb
->buid
),
174 BUID_LO(phb
->buid
), option
);
177 /* We need reset hold or settlement delay */
178 if (option
== EEH_RESET_FUNDAMENTAL
|| option
== EEH_RESET_HOT
)
179 msleep(EEH_PE_RST_HOLD_TIME
);
181 msleep(EEH_PE_RST_SETTLE_TIME
);
187 * pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE
188 * @phb: PCI controller
189 * @config_adddr: the associated config address
191 * The function will be called to reconfigure the bridges included
192 * in the specified PE so that the mulfunctional PE would be recovered
195 static int pseries_eeh_phb_configure_bridge(struct pci_controller
*phb
, int config_addr
)
198 /* Waiting 0.2s maximum before skipping configuration */
201 while (max_wait
> 0) {
202 ret
= rtas_call(ibm_configure_pe
, 3, 1, NULL
,
203 config_addr
, BUID_HI(phb
->buid
),
212 * If RTAS returns a delay value that's above 100ms, cut it
213 * down to 100ms in case firmware made a mistake. For more
214 * on how these delay values work see rtas_busy_delay_time
216 if (ret
> RTAS_EXTENDED_DELAY_MIN
+2 &&
217 ret
<= RTAS_EXTENDED_DELAY_MAX
)
218 ret
= RTAS_EXTENDED_DELAY_MIN
+2;
220 max_wait
-= rtas_busy_delay_time(ret
);
225 rtas_busy_delay(ret
);
228 pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
229 __func__
, phb
->global_number
, config_addr
, ret
);
230 /* PAPR defines -3 as "Parameter Error" for this function: */
238 * Buffer for reporting slot-error-detail rtas calls. Its here
239 * in BSS, and not dynamically alloced, so that it ends up in
240 * RMO where RTAS can access it.
242 static unsigned char slot_errbuf
[RTAS_ERROR_LOG_MAX
];
243 static DEFINE_SPINLOCK(slot_errbuf_lock
);
244 static int eeh_error_buf_size
;
246 static int pseries_eeh_cap_start(struct pci_dn
*pdn
)
253 rtas_read_config(pdn
, PCI_STATUS
, 2, &status
);
254 if (!(status
& PCI_STATUS_CAP_LIST
))
257 return PCI_CAPABILITY_LIST
;
261 static int pseries_eeh_find_cap(struct pci_dn
*pdn
, int cap
)
263 int pos
= pseries_eeh_cap_start(pdn
);
264 int cnt
= 48; /* Maximal number of capabilities */
271 rtas_read_config(pdn
, pos
, 1, &pos
);
275 rtas_read_config(pdn
, pos
+ PCI_CAP_LIST_ID
, 1, &id
);
280 pos
+= PCI_CAP_LIST_NEXT
;
286 static int pseries_eeh_find_ecap(struct pci_dn
*pdn
, int cap
)
288 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
291 int ttl
= (4096 - 256) / 8;
293 if (!edev
|| !edev
->pcie_cap
)
295 if (rtas_read_config(pdn
, pos
, 4, &header
) != PCIBIOS_SUCCESSFUL
)
301 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
)
304 pos
= PCI_EXT_CAP_NEXT(header
);
308 if (rtas_read_config(pdn
, pos
, 4, &header
) != PCIBIOS_SUCCESSFUL
)
316 * pseries_eeh_pe_get_parent - Retrieve the parent PE
319 * The whole PEs existing in the system are organized as hierarchy
320 * tree. The function is used to retrieve the parent PE according
321 * to the parent EEH device.
323 static struct eeh_pe
*pseries_eeh_pe_get_parent(struct eeh_dev
*edev
)
325 struct eeh_dev
*parent
;
326 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
329 * It might have the case for the indirect parent
330 * EEH device already having associated PE, but
331 * the direct parent EEH device doesn't have yet.
334 pdn
= pci_get_pdn(edev
->physfn
);
336 pdn
= pdn
? pdn
->parent
: NULL
;
338 /* We're poking out of PCI territory */
339 parent
= pdn_to_eeh_dev(pdn
);
353 * pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn
355 * @pdn: PCI device node
357 * When we discover a new PCI device via the device-tree we create a
358 * corresponding pci_dn and we allocate, but don't initialise, an eeh_dev.
359 * This function takes care of the initialisation and inserts the eeh_dev
360 * into the correct eeh_pe. If no eeh_pe exists we'll allocate one.
362 void pseries_eeh_init_edev(struct pci_dn
*pdn
)
364 struct eeh_pe pe
, *parent
;
365 struct eeh_dev
*edev
;
369 if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE
)))
373 * Find the eeh_dev for this pdn. The storage for the eeh_dev was
374 * allocated at the same time as the pci_dn.
376 * XXX: We should probably re-visit that.
378 edev
= pdn_to_eeh_dev(pdn
);
383 * If ->pe is set then we've already probed this device. We hit
384 * this path when a pci_dev is removed and rescanned while recovering
385 * a PE (i.e. for devices where the driver doesn't support error
391 /* Check class/vendor/device IDs */
392 if (!pdn
->vendor_id
|| !pdn
->device_id
|| !pdn
->class_code
)
395 /* Skip for PCI-ISA bridge */
396 if ((pdn
->class_code
>> 8) == PCI_CLASS_BRIDGE_ISA
)
399 eeh_edev_dbg(edev
, "Probing device\n");
402 * Update class code and mode of eeh device. We need
403 * correctly reflects that current device is root port
404 * or PCIe switch downstream port.
406 edev
->pcix_cap
= pseries_eeh_find_cap(pdn
, PCI_CAP_ID_PCIX
);
407 edev
->pcie_cap
= pseries_eeh_find_cap(pdn
, PCI_CAP_ID_EXP
);
408 edev
->aer_cap
= pseries_eeh_find_ecap(pdn
, PCI_EXT_CAP_ID_ERR
);
409 edev
->mode
&= 0xFFFFFF00;
410 if ((pdn
->class_code
>> 8) == PCI_CLASS_BRIDGE_PCI
) {
411 edev
->mode
|= EEH_DEV_BRIDGE
;
412 if (edev
->pcie_cap
) {
413 rtas_read_config(pdn
, edev
->pcie_cap
+ PCI_EXP_FLAGS
,
415 pcie_flags
= (pcie_flags
& PCI_EXP_FLAGS_TYPE
) >> 4;
416 if (pcie_flags
== PCI_EXP_TYPE_ROOT_PORT
)
417 edev
->mode
|= EEH_DEV_ROOT_PORT
;
418 else if (pcie_flags
== PCI_EXP_TYPE_DOWNSTREAM
)
419 edev
->mode
|= EEH_DEV_DS_PORT
;
423 /* first up, find the pe_config_addr for the PE containing the device */
424 ret
= pseries_eeh_get_pe_config_addr(pdn
);
426 eeh_edev_dbg(edev
, "Unable to find pe_config_addr\n");
430 /* Try enable EEH on the fake PE */
431 memset(&pe
, 0, sizeof(struct eeh_pe
));
435 eeh_edev_dbg(edev
, "Enabling EEH on device\n");
436 ret
= eeh_ops
->set_option(&pe
, EEH_OPT_ENABLE
);
438 eeh_edev_dbg(edev
, "EEH failed to enable on device (code %d)\n", ret
);
442 edev
->pe_config_addr
= pe
.addr
;
444 eeh_add_flag(EEH_ENABLED
);
446 parent
= pseries_eeh_pe_get_parent(edev
);
447 eeh_pe_tree_insert(edev
, parent
);
449 eeh_edev_dbg(edev
, "EEH enabled for device");
454 eeh_edev_dbg(edev
, "EEH is unsupported on device (code = %d)\n", ret
);
457 static struct eeh_dev
*pseries_eeh_probe(struct pci_dev
*pdev
)
459 struct eeh_dev
*edev
;
462 pdn
= pci_get_pdn_by_devfn(pdev
->bus
, pdev
->devfn
);
467 * If the system supports EEH on this device then the eeh_dev was
468 * configured and inserted into a PE in pseries_eeh_init_edev()
470 edev
= pdn_to_eeh_dev(pdn
);
471 if (!edev
|| !edev
->pe
)
478 * pseries_eeh_init_edev_recursive - Enable EEH for the indicated device
479 * @pdn: PCI device node
481 * This routine must be used to perform EEH initialization for the
482 * indicated PCI device that was added after system boot (e.g.
485 void pseries_eeh_init_edev_recursive(struct pci_dn
*pdn
)
492 list_for_each_entry(n
, &pdn
->child_list
, list
)
493 pseries_eeh_init_edev_recursive(n
);
495 pseries_eeh_init_edev(pdn
);
497 EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive
);
500 * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
502 * @option: operation to be issued
504 * The function is used to control the EEH functionality globally.
505 * Currently, following options are support according to PAPR:
506 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
508 static int pseries_eeh_set_option(struct eeh_pe
*pe
, int option
)
513 * When we're enabling or disabling EEH functioality on
514 * the particular PE, the PE config address is possibly
515 * unavailable. Therefore, we have to figure it out from
519 case EEH_OPT_DISABLE
:
521 case EEH_OPT_THAW_MMIO
:
522 case EEH_OPT_THAW_DMA
:
524 case EEH_OPT_FREEZE_PE
:
528 pr_err("%s: Invalid option %d\n", __func__
, option
);
532 ret
= rtas_call(ibm_set_eeh_option
, 4, 1, NULL
,
533 pe
->addr
, BUID_HI(pe
->phb
->buid
),
534 BUID_LO(pe
->phb
->buid
), option
);
540 * pseries_eeh_get_state - Retrieve PE state
542 * @delay: suggested time to wait if state is unavailable
544 * Retrieve the state of the specified PE. On RTAS compliant
545 * pseries platform, there already has one dedicated RTAS function
546 * for the purpose. It's notable that the associated PE config address
547 * might be ready when calling the function. Therefore, endeavour to
548 * use the PE config address if possible. Further more, there're 2
549 * RTAS calls for the purpose, we need to try the new one and back
550 * to the old one if the new one couldn't work properly.
552 static int pseries_eeh_get_state(struct eeh_pe
*pe
, int *delay
)
558 if (ibm_read_slot_reset_state2
!= RTAS_UNKNOWN_SERVICE
) {
559 ret
= rtas_call(ibm_read_slot_reset_state2
, 3, 4, rets
,
560 pe
->addr
, BUID_HI(pe
->phb
->buid
),
561 BUID_LO(pe
->phb
->buid
));
562 } else if (ibm_read_slot_reset_state
!= RTAS_UNKNOWN_SERVICE
) {
563 /* Fake PE unavailable info */
565 ret
= rtas_call(ibm_read_slot_reset_state
, 3, 3, rets
,
566 pe
->addr
, BUID_HI(pe
->phb
->buid
),
567 BUID_LO(pe
->phb
->buid
));
569 return EEH_STATE_NOT_SUPPORT
;
575 /* Parse the result out */
577 return EEH_STATE_NOT_SUPPORT
;
581 result
= EEH_STATE_MMIO_ACTIVE
|
582 EEH_STATE_DMA_ACTIVE
;
585 result
= EEH_STATE_RESET_ACTIVE
|
586 EEH_STATE_MMIO_ACTIVE
|
587 EEH_STATE_DMA_ACTIVE
;
593 result
= EEH_STATE_MMIO_ENABLED
;
599 result
= EEH_STATE_UNAVAILABLE
;
601 result
= EEH_STATE_NOT_SUPPORT
;
605 result
= EEH_STATE_NOT_SUPPORT
;
612 * pseries_eeh_reset - Reset the specified PE
614 * @option: reset option
616 * Reset the specified PE
618 static int pseries_eeh_reset(struct eeh_pe
*pe
, int option
)
620 return pseries_eeh_phb_reset(pe
->phb
, pe
->addr
, option
);
624 * pseries_eeh_get_log - Retrieve error log
626 * @severity: temporary or permanent error log
627 * @drv_log: driver log to be combined with retrieved error log
628 * @len: length of driver log
630 * Retrieve the temporary or permanent error from the PE.
631 * Actually, the error will be retrieved through the dedicated
634 static int pseries_eeh_get_log(struct eeh_pe
*pe
, int severity
, char *drv_log
, unsigned long len
)
639 spin_lock_irqsave(&slot_errbuf_lock
, flags
);
640 memset(slot_errbuf
, 0, eeh_error_buf_size
);
642 ret
= rtas_call(ibm_slot_error_detail
, 8, 1, NULL
, pe
->addr
,
643 BUID_HI(pe
->phb
->buid
), BUID_LO(pe
->phb
->buid
),
644 virt_to_phys(drv_log
), len
,
645 virt_to_phys(slot_errbuf
), eeh_error_buf_size
,
648 log_error(slot_errbuf
, ERR_TYPE_RTAS_LOG
, 0);
649 spin_unlock_irqrestore(&slot_errbuf_lock
, flags
);
655 * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
659 static int pseries_eeh_configure_bridge(struct eeh_pe
*pe
)
661 return pseries_eeh_phb_configure_bridge(pe
->phb
, pe
->addr
);
665 * pseries_eeh_read_config - Read PCI config space
666 * @edev: EEH device handle
667 * @where: PCI config space offset
668 * @size: size to read
671 * Read config space from the speicifed device
673 static int pseries_eeh_read_config(struct eeh_dev
*edev
, int where
, int size
, u32
*val
)
675 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
677 return rtas_read_config(pdn
, where
, size
, val
);
681 * pseries_eeh_write_config - Write PCI config space
682 * @edev: EEH device handle
683 * @where: PCI config space offset
684 * @size: size to write
685 * @val: value to be written
687 * Write config space to the specified device
689 static int pseries_eeh_write_config(struct eeh_dev
*edev
, int where
, int size
, u32 val
)
691 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
693 return rtas_write_config(pdn
, where
, size
, val
);
696 #ifdef CONFIG_PCI_IOV
697 int pseries_send_allow_unfreeze(struct pci_dn
*pdn
,
698 u16
*vf_pe_array
, int cur_vfs
)
701 int ibm_allow_unfreeze
= rtas_token("ibm,open-sriov-allow-unfreeze");
702 unsigned long buid
, addr
;
704 addr
= rtas_config_addr(pdn
->busno
, pdn
->devfn
, 0);
705 buid
= pdn
->phb
->buid
;
706 spin_lock(&rtas_data_buf_lock
);
707 memcpy(rtas_data_buf
, vf_pe_array
, RTAS_DATA_BUF_SIZE
);
708 rc
= rtas_call(ibm_allow_unfreeze
, 5, 1, NULL
,
712 rtas_data_buf
, cur_vfs
* sizeof(u16
));
713 spin_unlock(&rtas_data_buf_lock
);
715 pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
717 pdn
->phb
->global_number
, addr
, rc
);
721 static int pseries_call_allow_unfreeze(struct eeh_dev
*edev
)
723 int cur_vfs
= 0, rc
= 0, vf_index
, bus
, devfn
, vf_pe_num
;
724 struct pci_dn
*pdn
, *tmp
, *parent
, *physfn_pdn
;
727 vf_pe_array
= kzalloc(RTAS_DATA_BUF_SIZE
, GFP_KERNEL
);
730 if (pci_num_vf(edev
->physfn
? edev
->physfn
: edev
->pdev
)) {
731 if (edev
->pdev
->is_physfn
) {
732 cur_vfs
= pci_num_vf(edev
->pdev
);
733 pdn
= eeh_dev_to_pdn(edev
);
734 parent
= pdn
->parent
;
735 for (vf_index
= 0; vf_index
< cur_vfs
; vf_index
++)
736 vf_pe_array
[vf_index
] =
737 cpu_to_be16(pdn
->pe_num_map
[vf_index
]);
738 rc
= pseries_send_allow_unfreeze(pdn
, vf_pe_array
,
740 pdn
->last_allow_rc
= rc
;
741 for (vf_index
= 0; vf_index
< cur_vfs
; vf_index
++) {
742 list_for_each_entry_safe(pdn
, tmp
,
745 bus
= pci_iov_virtfn_bus(edev
->pdev
,
747 devfn
= pci_iov_virtfn_devfn(edev
->pdev
,
749 if (pdn
->busno
!= bus
||
752 pdn
->last_allow_rc
= rc
;
756 pdn
= pci_get_pdn(edev
->pdev
);
757 physfn_pdn
= pci_get_pdn(edev
->physfn
);
759 vf_pe_num
= physfn_pdn
->pe_num_map
[edev
->vf_index
];
760 vf_pe_array
[0] = cpu_to_be16(vf_pe_num
);
761 rc
= pseries_send_allow_unfreeze(physfn_pdn
,
763 pdn
->last_allow_rc
= rc
;
771 static int pseries_notify_resume(struct eeh_dev
*edev
)
776 if (rtas_token("ibm,open-sriov-allow-unfreeze") == RTAS_UNKNOWN_SERVICE
)
779 if (edev
->pdev
->is_physfn
|| edev
->pdev
->is_virtfn
)
780 return pseries_call_allow_unfreeze(edev
);
786 static struct eeh_ops pseries_eeh_ops
= {
788 .probe
= pseries_eeh_probe
,
789 .set_option
= pseries_eeh_set_option
,
790 .get_state
= pseries_eeh_get_state
,
791 .reset
= pseries_eeh_reset
,
792 .get_log
= pseries_eeh_get_log
,
793 .configure_bridge
= pseries_eeh_configure_bridge
,
795 .read_config
= pseries_eeh_read_config
,
796 .write_config
= pseries_eeh_write_config
,
798 .restore_config
= NULL
, /* NB: configure_bridge() does this */
799 #ifdef CONFIG_PCI_IOV
800 .notify_resume
= pseries_notify_resume
805 * eeh_pseries_init - Register platform dependent EEH operations
807 * EEH initialization on pseries platform. This function should be
808 * called before any EEH related functions.
810 static int __init
eeh_pseries_init(void)
812 struct pci_controller
*phb
;
814 int ret
, config_addr
;
816 /* figure out EEH RTAS function call tokens */
817 ibm_set_eeh_option
= rtas_token("ibm,set-eeh-option");
818 ibm_set_slot_reset
= rtas_token("ibm,set-slot-reset");
819 ibm_read_slot_reset_state2
= rtas_token("ibm,read-slot-reset-state2");
820 ibm_read_slot_reset_state
= rtas_token("ibm,read-slot-reset-state");
821 ibm_slot_error_detail
= rtas_token("ibm,slot-error-detail");
822 ibm_get_config_addr_info2
= rtas_token("ibm,get-config-addr-info2");
823 ibm_get_config_addr_info
= rtas_token("ibm,get-config-addr-info");
824 ibm_configure_pe
= rtas_token("ibm,configure-pe");
827 * ibm,configure-pe and ibm,configure-bridge have the same semantics,
828 * however ibm,configure-pe can be faster. If we can't find
829 * ibm,configure-pe then fall back to using ibm,configure-bridge.
831 if (ibm_configure_pe
== RTAS_UNKNOWN_SERVICE
)
832 ibm_configure_pe
= rtas_token("ibm,configure-bridge");
835 * Necessary sanity check. We needn't check "get-config-addr-info"
836 * and its variant since the old firmware probably support address
837 * of domain/bus/slot/function for EEH RTAS operations.
839 if (ibm_set_eeh_option
== RTAS_UNKNOWN_SERVICE
||
840 ibm_set_slot_reset
== RTAS_UNKNOWN_SERVICE
||
841 (ibm_read_slot_reset_state2
== RTAS_UNKNOWN_SERVICE
&&
842 ibm_read_slot_reset_state
== RTAS_UNKNOWN_SERVICE
) ||
843 ibm_slot_error_detail
== RTAS_UNKNOWN_SERVICE
||
844 ibm_configure_pe
== RTAS_UNKNOWN_SERVICE
) {
845 pr_info("EEH functionality not supported\n");
849 /* Initialize error log lock and size */
850 spin_lock_init(&slot_errbuf_lock
);
851 eeh_error_buf_size
= rtas_token("rtas-error-log-max");
852 if (eeh_error_buf_size
== RTAS_UNKNOWN_SERVICE
) {
853 pr_info("%s: unknown EEH error log size\n",
855 eeh_error_buf_size
= 1024;
856 } else if (eeh_error_buf_size
> RTAS_ERROR_LOG_MAX
) {
857 pr_info("%s: EEH error log size %d exceeds the maximal %d\n",
858 __func__
, eeh_error_buf_size
, RTAS_ERROR_LOG_MAX
);
859 eeh_error_buf_size
= RTAS_ERROR_LOG_MAX
;
862 /* Set EEH probe mode */
863 eeh_add_flag(EEH_PROBE_MODE_DEVTREE
| EEH_ENABLE_IO_FOR_LOG
);
865 /* Set EEH machine dependent code */
866 ppc_md
.pcibios_bus_add_device
= pseries_pcibios_bus_add_device
;
868 if (is_kdump_kernel() || reset_devices
) {
869 pr_info("Issue PHB reset ...\n");
870 list_for_each_entry(phb
, &hose_list
, list_node
) {
871 pdn
= list_first_entry(&PCI_DN(phb
->dn
)->child_list
, struct pci_dn
, list
);
872 config_addr
= pseries_eeh_get_pe_config_addr(pdn
);
874 /* invalid PE config addr */
878 pseries_eeh_phb_reset(phb
, config_addr
, EEH_RESET_FUNDAMENTAL
);
879 pseries_eeh_phb_reset(phb
, config_addr
, EEH_RESET_DEACTIVATE
);
880 pseries_eeh_phb_configure_bridge(phb
, config_addr
);
884 ret
= eeh_init(&pseries_eeh_ops
);
886 pr_info("EEH: pSeries platform initialized\n");
888 pr_info("EEH: pSeries platform initialization failure (%d)\n",
892 machine_arch_initcall(pseries
, eeh_pseries_init
);