WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / platforms / pseries / ras.c
blob149cec2212e6aad4954a173500648249acf956f7
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
4 */
6 #include <linux/sched.h>
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/of.h>
10 #include <linux/fs.h>
11 #include <linux/reboot.h>
12 #include <linux/irq_work.h>
14 #include <asm/machdep.h>
15 #include <asm/rtas.h>
16 #include <asm/firmware.h>
17 #include <asm/mce.h>
19 #include "pseries.h"
21 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
22 static DEFINE_SPINLOCK(ras_log_buf_lock);
24 static int ras_check_exception_token;
26 static void mce_process_errlog_event(struct irq_work *work);
27 static struct irq_work mce_errlog_process_work = {
28 .func = mce_process_errlog_event,
31 #define EPOW_SENSOR_TOKEN 9
32 #define EPOW_SENSOR_INDEX 0
34 /* EPOW events counter variable */
35 static int num_epow_events;
37 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
38 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
39 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
41 /* RTAS pseries MCE errorlog section. */
42 struct pseries_mc_errorlog {
43 __be32 fru_id;
44 __be32 proc_id;
45 u8 error_type;
47 * sub_err_type (1 byte). Bit fields depends on error_type
49 * MSB0
50 * |
51 * V
52 * 01234567
53 * XXXXXXXX
55 * For error_type == MC_ERROR_TYPE_UE
56 * XXXXXXXX
57 * X 1: Permanent or Transient UE.
58 * X 1: Effective address provided.
59 * X 1: Logical address provided.
60 * XX 2: Reserved.
61 * XXX 3: Type of UE error.
63 * For error_type != MC_ERROR_TYPE_UE
64 * XXXXXXXX
65 * X 1: Effective address provided.
66 * XXXXX 5: Reserved.
67 * XX 2: Type of SLB/ERAT/TLB error.
69 u8 sub_err_type;
70 u8 reserved_1[6];
71 __be64 effective_address;
72 __be64 logical_address;
73 } __packed;
75 /* RTAS pseries MCE error types */
76 #define MC_ERROR_TYPE_UE 0x00
77 #define MC_ERROR_TYPE_SLB 0x01
78 #define MC_ERROR_TYPE_ERAT 0x02
79 #define MC_ERROR_TYPE_UNKNOWN 0x03
80 #define MC_ERROR_TYPE_TLB 0x04
81 #define MC_ERROR_TYPE_D_CACHE 0x05
82 #define MC_ERROR_TYPE_I_CACHE 0x07
84 /* RTAS pseries MCE error sub types */
85 #define MC_ERROR_UE_INDETERMINATE 0
86 #define MC_ERROR_UE_IFETCH 1
87 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2
88 #define MC_ERROR_UE_LOAD_STORE 3
89 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4
91 #define UE_EFFECTIVE_ADDR_PROVIDED 0x40
92 #define UE_LOGICAL_ADDR_PROVIDED 0x20
94 #define MC_ERROR_SLB_PARITY 0
95 #define MC_ERROR_SLB_MULTIHIT 1
96 #define MC_ERROR_SLB_INDETERMINATE 2
98 #define MC_ERROR_ERAT_PARITY 1
99 #define MC_ERROR_ERAT_MULTIHIT 2
100 #define MC_ERROR_ERAT_INDETERMINATE 3
102 #define MC_ERROR_TLB_PARITY 1
103 #define MC_ERROR_TLB_MULTIHIT 2
104 #define MC_ERROR_TLB_INDETERMINATE 3
106 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
108 switch (mlog->error_type) {
109 case MC_ERROR_TYPE_UE:
110 return (mlog->sub_err_type & 0x07);
111 case MC_ERROR_TYPE_SLB:
112 case MC_ERROR_TYPE_ERAT:
113 case MC_ERROR_TYPE_TLB:
114 return (mlog->sub_err_type & 0x03);
115 default:
116 return 0;
121 * Enable the hotplug interrupt late because processing them may touch other
122 * devices or systems (e.g. hugepages) that have not been initialized at the
123 * subsys stage.
125 int __init init_ras_hotplug_IRQ(void)
127 struct device_node *np;
129 /* Hotplug Events */
130 np = of_find_node_by_path("/event-sources/hot-plug-events");
131 if (np != NULL) {
132 if (dlpar_workqueue_init() == 0)
133 request_event_sources_irqs(np, ras_hotplug_interrupt,
134 "RAS_HOTPLUG");
135 of_node_put(np);
138 return 0;
140 machine_late_initcall(pseries, init_ras_hotplug_IRQ);
143 * Initialize handlers for the set of interrupts caused by hardware errors
144 * and power system events.
146 static int __init init_ras_IRQ(void)
148 struct device_node *np;
150 ras_check_exception_token = rtas_token("check-exception");
152 /* Internal Errors */
153 np = of_find_node_by_path("/event-sources/internal-errors");
154 if (np != NULL) {
155 request_event_sources_irqs(np, ras_error_interrupt,
156 "RAS_ERROR");
157 of_node_put(np);
160 /* EPOW Events */
161 np = of_find_node_by_path("/event-sources/epow-events");
162 if (np != NULL) {
163 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
164 of_node_put(np);
167 return 0;
169 machine_subsys_initcall(pseries, init_ras_IRQ);
171 #define EPOW_SHUTDOWN_NORMAL 1
172 #define EPOW_SHUTDOWN_ON_UPS 2
173 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3
174 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4
176 static void handle_system_shutdown(char event_modifier)
178 switch (event_modifier) {
179 case EPOW_SHUTDOWN_NORMAL:
180 pr_emerg("Power off requested\n");
181 orderly_poweroff(true);
182 break;
184 case EPOW_SHUTDOWN_ON_UPS:
185 pr_emerg("Loss of system power detected. System is running on"
186 " UPS/battery. Check RTAS error log for details\n");
187 break;
189 case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
190 pr_emerg("Loss of system critical functions detected. Check"
191 " RTAS error log for details\n");
192 orderly_poweroff(true);
193 break;
195 case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
196 pr_emerg("High ambient temperature detected. Check RTAS"
197 " error log for details\n");
198 orderly_poweroff(true);
199 break;
201 default:
202 pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
203 event_modifier);
207 struct epow_errorlog {
208 unsigned char sensor_value;
209 unsigned char event_modifier;
210 unsigned char extended_modifier;
211 unsigned char reserved;
212 unsigned char platform_reason;
215 #define EPOW_RESET 0
216 #define EPOW_WARN_COOLING 1
217 #define EPOW_WARN_POWER 2
218 #define EPOW_SYSTEM_SHUTDOWN 3
219 #define EPOW_SYSTEM_HALT 4
220 #define EPOW_MAIN_ENCLOSURE 5
221 #define EPOW_POWER_OFF 7
223 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
225 struct pseries_errorlog *pseries_log;
226 struct epow_errorlog *epow_log;
227 char action_code;
228 char modifier;
230 pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
231 if (pseries_log == NULL)
232 return;
234 epow_log = (struct epow_errorlog *)pseries_log->data;
235 action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */
236 modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */
238 switch (action_code) {
239 case EPOW_RESET:
240 if (num_epow_events) {
241 pr_info("Non critical power/cooling issue cleared\n");
242 num_epow_events--;
244 break;
246 case EPOW_WARN_COOLING:
247 pr_info("Non-critical cooling issue detected. Check RTAS error"
248 " log for details\n");
249 break;
251 case EPOW_WARN_POWER:
252 pr_info("Non-critical power issue detected. Check RTAS error"
253 " log for details\n");
254 break;
256 case EPOW_SYSTEM_SHUTDOWN:
257 handle_system_shutdown(modifier);
258 break;
260 case EPOW_SYSTEM_HALT:
261 pr_emerg("Critical power/cooling issue detected. Check RTAS"
262 " error log for details. Powering off.\n");
263 orderly_poweroff(true);
264 break;
266 case EPOW_MAIN_ENCLOSURE:
267 case EPOW_POWER_OFF:
268 pr_emerg("System about to lose power. Check RTAS error log "
269 " for details. Powering off immediately.\n");
270 emergency_sync();
271 kernel_power_off();
272 break;
274 default:
275 pr_err("Unknown power/cooling event (action code = %d)\n",
276 action_code);
279 /* Increment epow events counter variable */
280 if (action_code != EPOW_RESET)
281 num_epow_events++;
284 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
286 struct pseries_errorlog *pseries_log;
287 struct pseries_hp_errorlog *hp_elog;
289 spin_lock(&ras_log_buf_lock);
291 rtas_call(ras_check_exception_token, 6, 1, NULL,
292 RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
293 RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
294 rtas_get_error_log_max());
296 pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
297 PSERIES_ELOG_SECT_ID_HOTPLUG);
298 hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
301 * Since PCI hotplug is not currently supported on pseries, put PCI
302 * hotplug events on the ras_log_buf to be handled by rtas_errd.
304 if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
305 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
306 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
307 queue_hotplug_event(hp_elog);
308 else
309 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
311 spin_unlock(&ras_log_buf_lock);
312 return IRQ_HANDLED;
315 /* Handle environmental and power warning (EPOW) interrupts. */
316 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
318 int status;
319 int state;
320 int critical;
322 status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
323 &state);
325 if (state > 3)
326 critical = 1; /* Time Critical */
327 else
328 critical = 0;
330 spin_lock(&ras_log_buf_lock);
332 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
333 RTAS_VECTOR_EXTERNAL_INTERRUPT,
334 virq_to_hw(irq),
335 RTAS_EPOW_WARNING,
336 critical, __pa(&ras_log_buf),
337 rtas_get_error_log_max());
339 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
341 rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
343 spin_unlock(&ras_log_buf_lock);
344 return IRQ_HANDLED;
348 * Handle hardware error interrupts.
350 * RTAS check-exception is called to collect data on the exception. If
351 * the error is deemed recoverable, we log a warning and return.
352 * For nonrecoverable errors, an error is logged and we stop all processing
353 * as quickly as possible in order to prevent propagation of the failure.
355 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
357 struct rtas_error_log *rtas_elog;
358 int status;
359 int fatal;
361 spin_lock(&ras_log_buf_lock);
363 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
364 RTAS_VECTOR_EXTERNAL_INTERRUPT,
365 virq_to_hw(irq),
366 RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
367 __pa(&ras_log_buf),
368 rtas_get_error_log_max());
370 rtas_elog = (struct rtas_error_log *)ras_log_buf;
372 if (status == 0 &&
373 rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
374 fatal = 1;
375 else
376 fatal = 0;
378 /* format and print the extended information */
379 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
381 if (fatal) {
382 pr_emerg("Fatal hardware error detected. Check RTAS error"
383 " log for details. Powering off immediately\n");
384 emergency_sync();
385 kernel_power_off();
386 } else {
387 pr_err("Recoverable hardware error detected\n");
390 spin_unlock(&ras_log_buf_lock);
391 return IRQ_HANDLED;
395 * Some versions of FWNMI place the buffer inside the 4kB page starting at
396 * 0x7000. Other versions place it inside the rtas buffer. We check both.
397 * Minimum size of the buffer is 16 bytes.
399 #define VALID_FWNMI_BUFFER(A) \
400 ((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
401 (((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
403 static inline struct rtas_error_log *fwnmi_get_errlog(void)
405 return (struct rtas_error_log *)local_paca->mce_data_buf;
408 static __be64 *fwnmi_get_savep(struct pt_regs *regs)
410 unsigned long savep_ra;
412 /* Mask top two bits */
413 savep_ra = regs->gpr[3] & ~(0x3UL << 62);
414 if (!VALID_FWNMI_BUFFER(savep_ra)) {
415 printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
416 return NULL;
419 return __va(savep_ra);
423 * Get the error information for errors coming through the
424 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
425 * the actual r3 if possible, and a ptr to the error log entry
426 * will be returned if found.
428 * Use one buffer mce_data_buf per cpu to store RTAS error.
430 * The mce_data_buf does not have any locks or protection around it,
431 * if a second machine check comes in, or a system reset is done
432 * before we have logged the error, then we will get corruption in the
433 * error log. This is preferable over holding off on calling
434 * ibm,nmi-interlock which would result in us checkstopping if a
435 * second machine check did come in.
437 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
439 struct rtas_error_log *h;
440 __be64 *savep;
442 savep = fwnmi_get_savep(regs);
443 if (!savep)
444 return NULL;
446 regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
448 h = (struct rtas_error_log *)&savep[1];
449 /* Use the per cpu buffer from paca to store rtas error log */
450 memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
451 if (!rtas_error_extended(h)) {
452 memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
453 } else {
454 int len, error_log_length;
456 error_log_length = 8 + rtas_error_extended_log_length(h);
457 len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
458 memcpy(local_paca->mce_data_buf, h, len);
461 return (struct rtas_error_log *)local_paca->mce_data_buf;
464 /* Call this when done with the data returned by FWNMI_get_errinfo.
465 * It will release the saved data area for other CPUs in the
466 * partition to receive FWNMI errors.
468 static void fwnmi_release_errinfo(void)
470 struct rtas_args rtas_args;
471 int ret;
474 * On pseries, the machine check stack is limited to under 4GB, so
475 * args can be on-stack.
477 rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
478 ret = be32_to_cpu(rtas_args.rets[0]);
479 if (ret != 0)
480 printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
483 int pSeries_system_reset_exception(struct pt_regs *regs)
485 #ifdef __LITTLE_ENDIAN__
487 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
488 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
489 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
490 * so clear it. It will be missing MSR_RI so we won't try to recover.
492 if ((be64_to_cpu(regs->msr) &
493 (MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
494 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
495 regs->nip = be64_to_cpu((__be64)regs->nip);
496 regs->msr = 0;
498 #endif
500 if (fwnmi_active) {
501 __be64 *savep;
504 * Firmware (PowerVM and KVM) saves r3 to a save area like
505 * machine check, which is not exactly what PAPR (2.9)
506 * suggests but there is no way to detect otherwise, so this
507 * is the interface now.
509 * System resets do not save any error log or require an
510 * "ibm,nmi-interlock" rtas call to release.
513 savep = fwnmi_get_savep(regs);
514 if (savep)
515 regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
518 if (smp_handle_nmi_ipi(regs))
519 return 1;
521 return 0; /* need to perform reset */
524 static int mce_handle_err_realmode(int disposition, u8 error_type)
526 #ifdef CONFIG_PPC_BOOK3S_64
527 if (disposition == RTAS_DISP_NOT_RECOVERED) {
528 switch (error_type) {
529 case MC_ERROR_TYPE_ERAT:
530 flush_erat();
531 disposition = RTAS_DISP_FULLY_RECOVERED;
532 break;
533 case MC_ERROR_TYPE_SLB:
535 * Store the old slb content in paca before flushing.
536 * Print this when we go to virtual mode.
537 * There are chances that we may hit MCE again if there
538 * is a parity error on the SLB entry we trying to read
539 * for saving. Hence limit the slb saving to single
540 * level of recursion.
542 if (local_paca->in_mce == 1)
543 slb_save_contents(local_paca->mce_faulty_slbs);
544 flush_and_reload_slb();
545 disposition = RTAS_DISP_FULLY_RECOVERED;
546 break;
547 default:
548 break;
550 } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
551 /* Platform corrected itself but could be degraded */
552 pr_err("MCE: limited recovery, system may be degraded\n");
553 disposition = RTAS_DISP_FULLY_RECOVERED;
555 #endif
556 return disposition;
559 static int mce_handle_err_virtmode(struct pt_regs *regs,
560 struct rtas_error_log *errp,
561 struct pseries_mc_errorlog *mce_log,
562 int disposition)
564 struct mce_error_info mce_err = { 0 };
565 int initiator = rtas_error_initiator(errp);
566 int severity = rtas_error_severity(errp);
567 unsigned long eaddr = 0, paddr = 0;
568 u8 error_type, err_sub_type;
570 if (!mce_log)
571 goto out;
573 error_type = mce_log->error_type;
574 err_sub_type = rtas_mc_error_sub_type(mce_log);
576 if (initiator == RTAS_INITIATOR_UNKNOWN)
577 mce_err.initiator = MCE_INITIATOR_UNKNOWN;
578 else if (initiator == RTAS_INITIATOR_CPU)
579 mce_err.initiator = MCE_INITIATOR_CPU;
580 else if (initiator == RTAS_INITIATOR_PCI)
581 mce_err.initiator = MCE_INITIATOR_PCI;
582 else if (initiator == RTAS_INITIATOR_ISA)
583 mce_err.initiator = MCE_INITIATOR_ISA;
584 else if (initiator == RTAS_INITIATOR_MEMORY)
585 mce_err.initiator = MCE_INITIATOR_MEMORY;
586 else if (initiator == RTAS_INITIATOR_POWERMGM)
587 mce_err.initiator = MCE_INITIATOR_POWERMGM;
588 else
589 mce_err.initiator = MCE_INITIATOR_UNKNOWN;
591 if (severity == RTAS_SEVERITY_NO_ERROR)
592 mce_err.severity = MCE_SEV_NO_ERROR;
593 else if (severity == RTAS_SEVERITY_EVENT)
594 mce_err.severity = MCE_SEV_WARNING;
595 else if (severity == RTAS_SEVERITY_WARNING)
596 mce_err.severity = MCE_SEV_WARNING;
597 else if (severity == RTAS_SEVERITY_ERROR_SYNC)
598 mce_err.severity = MCE_SEV_SEVERE;
599 else if (severity == RTAS_SEVERITY_ERROR)
600 mce_err.severity = MCE_SEV_SEVERE;
601 else if (severity == RTAS_SEVERITY_FATAL)
602 mce_err.severity = MCE_SEV_FATAL;
603 else
604 mce_err.severity = MCE_SEV_FATAL;
606 if (severity <= RTAS_SEVERITY_ERROR_SYNC)
607 mce_err.sync_error = true;
608 else
609 mce_err.sync_error = false;
611 mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
612 mce_err.error_class = MCE_ECLASS_UNKNOWN;
614 switch (error_type) {
615 case MC_ERROR_TYPE_UE:
616 mce_err.error_type = MCE_ERROR_TYPE_UE;
617 mce_common_process_ue(regs, &mce_err);
618 if (mce_err.ignore_event)
619 disposition = RTAS_DISP_FULLY_RECOVERED;
620 switch (err_sub_type) {
621 case MC_ERROR_UE_IFETCH:
622 mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
623 break;
624 case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
625 mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
626 break;
627 case MC_ERROR_UE_LOAD_STORE:
628 mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
629 break;
630 case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
631 mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
632 break;
633 case MC_ERROR_UE_INDETERMINATE:
634 default:
635 mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
636 break;
638 if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
639 eaddr = be64_to_cpu(mce_log->effective_address);
641 if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
642 paddr = be64_to_cpu(mce_log->logical_address);
643 } else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
644 unsigned long pfn;
646 pfn = addr_to_pfn(regs, eaddr);
647 if (pfn != ULONG_MAX)
648 paddr = pfn << PAGE_SHIFT;
651 break;
652 case MC_ERROR_TYPE_SLB:
653 mce_err.error_type = MCE_ERROR_TYPE_SLB;
654 switch (err_sub_type) {
655 case MC_ERROR_SLB_PARITY:
656 mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
657 break;
658 case MC_ERROR_SLB_MULTIHIT:
659 mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
660 break;
661 case MC_ERROR_SLB_INDETERMINATE:
662 default:
663 mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
664 break;
666 if (mce_log->sub_err_type & 0x80)
667 eaddr = be64_to_cpu(mce_log->effective_address);
668 break;
669 case MC_ERROR_TYPE_ERAT:
670 mce_err.error_type = MCE_ERROR_TYPE_ERAT;
671 switch (err_sub_type) {
672 case MC_ERROR_ERAT_PARITY:
673 mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
674 break;
675 case MC_ERROR_ERAT_MULTIHIT:
676 mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
677 break;
678 case MC_ERROR_ERAT_INDETERMINATE:
679 default:
680 mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
681 break;
683 if (mce_log->sub_err_type & 0x80)
684 eaddr = be64_to_cpu(mce_log->effective_address);
685 break;
686 case MC_ERROR_TYPE_TLB:
687 mce_err.error_type = MCE_ERROR_TYPE_TLB;
688 switch (err_sub_type) {
689 case MC_ERROR_TLB_PARITY:
690 mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
691 break;
692 case MC_ERROR_TLB_MULTIHIT:
693 mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
694 break;
695 case MC_ERROR_TLB_INDETERMINATE:
696 default:
697 mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
698 break;
700 if (mce_log->sub_err_type & 0x80)
701 eaddr = be64_to_cpu(mce_log->effective_address);
702 break;
703 case MC_ERROR_TYPE_D_CACHE:
704 mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
705 break;
706 case MC_ERROR_TYPE_I_CACHE:
707 mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
708 break;
709 case MC_ERROR_TYPE_UNKNOWN:
710 default:
711 mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
712 break;
714 out:
715 save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
716 &mce_err, regs->nip, eaddr, paddr);
717 return disposition;
720 static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
722 struct pseries_errorlog *pseries_log;
723 struct pseries_mc_errorlog *mce_log = NULL;
724 int disposition = rtas_error_disposition(errp);
725 u8 error_type;
727 if (!rtas_error_extended(errp))
728 goto out;
730 pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
731 if (!pseries_log)
732 goto out;
734 mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
735 error_type = mce_log->error_type;
737 disposition = mce_handle_err_realmode(disposition, error_type);
740 * Enable translation as we will be accessing per-cpu variables
741 * in save_mce_event() which may fall outside RMO region, also
742 * leave it enabled because subsequently we will be queuing work
743 * to workqueues where again per-cpu variables accessed, besides
744 * fwnmi_release_errinfo() crashes when called in realmode on
745 * pseries.
746 * Note: All the realmode handling like flushing SLB entries for
747 * SLB multihit is done by now.
749 out:
750 mtmsr(mfmsr() | MSR_IR | MSR_DR);
751 disposition = mce_handle_err_virtmode(regs, errp, mce_log,
752 disposition);
753 return disposition;
757 * Process MCE rtas errlog event.
759 static void mce_process_errlog_event(struct irq_work *work)
761 struct rtas_error_log *err;
763 err = fwnmi_get_errlog();
764 log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
768 * See if we can recover from a machine check exception.
769 * This is only called on power4 (or above) and only via
770 * the Firmware Non-Maskable Interrupts (fwnmi) handler
771 * which provides the error analysis for us.
773 * Return 1 if corrected (or delivered a signal).
774 * Return 0 if there is nothing we can do.
776 static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
778 int recovered = 0;
780 if (!(regs->msr & MSR_RI)) {
781 /* If MSR_RI isn't set, we cannot recover */
782 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
783 recovered = 0;
784 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
785 /* Platform corrected itself */
786 recovered = 1;
787 } else if (evt->severity == MCE_SEV_FATAL) {
788 /* Fatal machine check */
789 pr_err("Machine check interrupt is fatal\n");
790 recovered = 0;
793 if (!recovered && evt->sync_error) {
795 * Try to kill processes if we get a synchronous machine check
796 * (e.g., one caused by execution of this instruction). This
797 * will devolve into a panic if we try to kill init or are in
798 * an interrupt etc.
800 * TODO: Queue up this address for hwpoisioning later.
801 * TODO: This is not quite right for d-side machine
802 * checks ->nip is not necessarily the important
803 * address.
805 if ((user_mode(regs))) {
806 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
807 recovered = 1;
808 } else if (die_will_crash()) {
810 * die() would kill the kernel, so better to go via
811 * the platform reboot code that will log the
812 * machine check.
814 recovered = 0;
815 } else {
816 die("Machine check", regs, SIGBUS);
817 recovered = 1;
821 return recovered;
825 * Handle a machine check.
827 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
828 * should be present. If so the handler which called us tells us if the
829 * error was recovered (never true if RI=0).
831 * On hardware prior to Power 4 these exceptions were asynchronous which
832 * means we can't tell exactly where it occurred and so we can't recover.
834 int pSeries_machine_check_exception(struct pt_regs *regs)
836 struct machine_check_event evt;
838 if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
839 return 0;
841 /* Print things out */
842 if (evt.version != MCE_V1) {
843 pr_err("Machine Check Exception, Unknown event version %d !\n",
844 evt.version);
845 return 0;
847 machine_check_print_event_info(&evt, user_mode(regs), false);
849 if (recover_mce(regs, &evt))
850 return 1;
852 return 0;
855 long pseries_machine_check_realmode(struct pt_regs *regs)
857 struct rtas_error_log *errp;
858 int disposition;
860 if (fwnmi_active) {
861 errp = fwnmi_get_errinfo(regs);
863 * Call to fwnmi_release_errinfo() in real mode causes kernel
864 * to panic. Hence we will call it as soon as we go into
865 * virtual mode.
867 disposition = mce_handle_error(regs, errp);
868 fwnmi_release_errinfo();
870 /* Queue irq work to log this rtas event later. */
871 irq_work_queue(&mce_errlog_process_work);
873 if (disposition == RTAS_DISP_FULLY_RECOVERED)
874 return 1;
877 return 0;