WIP FPC-III support
[linux/fpc-iii.git] / arch / s390 / boot / kaslr.c
blob0dd48fbdbaa48499e18c8a304f70fddaae568fc5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corp. 2019
4 */
5 #include <linux/pgtable.h>
6 #include <asm/mem_detect.h>
7 #include <asm/cpacf.h>
8 #include <asm/timex.h>
9 #include <asm/sclp.h>
10 #include <asm/kasan.h>
11 #include "compressed/decompressor.h"
12 #include "boot.h"
14 #define PRNG_MODE_TDES 1
15 #define PRNG_MODE_SHA512 2
16 #define PRNG_MODE_TRNG 3
18 struct prno_parm {
19 u32 res;
20 u32 reseed_counter;
21 u64 stream_bytes;
22 u8 V[112];
23 u8 C[112];
26 struct prng_parm {
27 u8 parm_block[32];
28 u32 reseed_counter;
29 u64 byte_counter;
32 static int check_prng(void)
34 if (!cpacf_query_func(CPACF_KMC, CPACF_KMC_PRNG)) {
35 sclp_early_printk("KASLR disabled: CPU has no PRNG\n");
36 return 0;
38 if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_TRNG))
39 return PRNG_MODE_TRNG;
40 if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_SHA512_DRNG_GEN))
41 return PRNG_MODE_SHA512;
42 else
43 return PRNG_MODE_TDES;
46 static int get_random(unsigned long limit, unsigned long *value)
48 struct prng_parm prng = {
49 /* initial parameter block for tdes mode, copied from libica */
50 .parm_block = {
51 0x0F, 0x2B, 0x8E, 0x63, 0x8C, 0x8E, 0xD2, 0x52,
52 0x64, 0xB7, 0xA0, 0x7B, 0x75, 0x28, 0xB8, 0xF4,
53 0x75, 0x5F, 0xD2, 0xA6, 0x8D, 0x97, 0x11, 0xFF,
54 0x49, 0xD8, 0x23, 0xF3, 0x7E, 0x21, 0xEC, 0xA0
57 unsigned long seed, random;
58 struct prno_parm prno;
59 __u64 entropy[4];
60 int mode, i;
62 mode = check_prng();
63 seed = get_tod_clock_fast();
64 switch (mode) {
65 case PRNG_MODE_TRNG:
66 cpacf_trng(NULL, 0, (u8 *) &random, sizeof(random));
67 break;
68 case PRNG_MODE_SHA512:
69 cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED, &prno, NULL, 0,
70 (u8 *) &seed, sizeof(seed));
71 cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN, &prno, (u8 *) &random,
72 sizeof(random), NULL, 0);
73 break;
74 case PRNG_MODE_TDES:
75 /* add entropy */
76 *(unsigned long *) prng.parm_block ^= seed;
77 for (i = 0; i < 16; i++) {
78 cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block,
79 (u8 *) entropy, (u8 *) entropy,
80 sizeof(entropy));
81 memcpy(prng.parm_block, entropy, sizeof(entropy));
83 random = seed;
84 cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block, (u8 *) &random,
85 (u8 *) &random, sizeof(random));
86 break;
87 default:
88 return -1;
90 *value = random % limit;
91 return 0;
95 * To randomize kernel base address we have to consider several facts:
96 * 1. physical online memory might not be continuous and have holes. mem_detect
97 * info contains list of online memory ranges we should consider.
98 * 2. we have several memory regions which are occupied and we should not
99 * overlap and destroy them. Currently safe_addr tells us the border below
100 * which all those occupied regions are. We are safe to use anything above
101 * safe_addr.
102 * 3. the upper limit might apply as well, even if memory above that limit is
103 * online. Currently those limitations are:
104 * 3.1. Limit set by "mem=" kernel command line option
105 * 3.2. memory reserved at the end for kasan initialization.
106 * 4. kernel base address must be aligned to THREAD_SIZE (kernel stack size).
107 * Which is required for CONFIG_CHECK_STACK. Currently THREAD_SIZE is 4 pages
108 * (16 pages when the kernel is built with kasan enabled)
109 * Assumptions:
110 * 1. kernel size (including .bss size) and upper memory limit are page aligned.
111 * 2. mem_detect memory region start is THREAD_SIZE aligned / end is PAGE_SIZE
112 * aligned (in practice memory configurations granularity on z/VM and LPAR
113 * is 1mb).
115 * To guarantee uniform distribution of kernel base address among all suitable
116 * addresses we generate random value just once. For that we need to build a
117 * continuous range in which every value would be suitable. We can build this
118 * range by simply counting all suitable addresses (let's call them positions)
119 * which would be valid as kernel base address. To count positions we iterate
120 * over online memory ranges. For each range which is big enough for the
121 * kernel image we count all suitable addresses we can put the kernel image at
122 * that is
123 * (end - start - kernel_size) / THREAD_SIZE + 1
124 * Two functions count_valid_kernel_positions and position_to_address help
125 * to count positions in memory range given and then convert position back
126 * to address.
128 static unsigned long count_valid_kernel_positions(unsigned long kernel_size,
129 unsigned long _min,
130 unsigned long _max)
132 unsigned long start, end, pos = 0;
133 int i;
135 for_each_mem_detect_block(i, &start, &end) {
136 if (_min >= end)
137 continue;
138 if (start >= _max)
139 break;
140 start = max(_min, start);
141 end = min(_max, end);
142 if (end - start < kernel_size)
143 continue;
144 pos += (end - start - kernel_size) / THREAD_SIZE + 1;
147 return pos;
150 static unsigned long position_to_address(unsigned long pos, unsigned long kernel_size,
151 unsigned long _min, unsigned long _max)
153 unsigned long start, end;
154 int i;
156 for_each_mem_detect_block(i, &start, &end) {
157 if (_min >= end)
158 continue;
159 if (start >= _max)
160 break;
161 start = max(_min, start);
162 end = min(_max, end);
163 if (end - start < kernel_size)
164 continue;
165 if ((end - start - kernel_size) / THREAD_SIZE + 1 >= pos)
166 return start + (pos - 1) * THREAD_SIZE;
167 pos -= (end - start - kernel_size) / THREAD_SIZE + 1;
170 return 0;
173 unsigned long get_random_base(unsigned long safe_addr)
175 unsigned long memory_limit = get_mem_detect_end();
176 unsigned long base_pos, max_pos, kernel_size;
177 unsigned long kasan_needs;
178 int i;
180 memory_limit = min(memory_limit, ident_map_size);
183 * Avoid putting kernel in the end of physical memory
184 * which kasan will use for shadow memory and early pgtable
185 * mapping allocations.
187 memory_limit -= kasan_estimate_memory_needs(memory_limit);
189 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && INITRD_START && INITRD_SIZE) {
190 if (safe_addr < INITRD_START + INITRD_SIZE)
191 safe_addr = INITRD_START + INITRD_SIZE;
193 safe_addr = ALIGN(safe_addr, THREAD_SIZE);
195 kernel_size = vmlinux.image_size + vmlinux.bss_size;
196 if (safe_addr + kernel_size > memory_limit)
197 return 0;
199 max_pos = count_valid_kernel_positions(kernel_size, safe_addr, memory_limit);
200 if (!max_pos) {
201 sclp_early_printk("KASLR disabled: not enough memory\n");
202 return 0;
205 /* we need a value in the range [1, base_pos] inclusive */
206 if (get_random(max_pos, &base_pos))
207 return 0;
208 return position_to_address(base_pos + 1, kernel_size, safe_addr, memory_limit);