1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel probes (kprobes) for SuperH
5 * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
6 * Copyright (C) 2006 Lineo Solutions, Inc.
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/ptrace.h>
11 #include <linux/preempt.h>
12 #include <linux/kdebug.h>
13 #include <linux/slab.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
17 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
18 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
20 static DEFINE_PER_CPU(struct kprobe
, saved_current_opcode
);
21 static DEFINE_PER_CPU(struct kprobe
, saved_next_opcode
);
22 static DEFINE_PER_CPU(struct kprobe
, saved_next_opcode2
);
24 #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b)
25 #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b)
26 #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000)
27 #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023)
28 #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000)
29 #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003)
31 #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00)
32 #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00)
34 #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00)
35 #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900)
37 #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b)
38 #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b)
40 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
42 kprobe_opcode_t opcode
= *(kprobe_opcode_t
*) (p
->addr
);
44 if (OPCODE_RTE(opcode
))
45 return -EFAULT
; /* Bad breakpoint */
52 void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
54 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
58 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
60 *p
->addr
= BREAKPOINT_INSTRUCTION
;
61 flush_icache_range((unsigned long)p
->addr
,
62 (unsigned long)p
->addr
+ sizeof(kprobe_opcode_t
));
65 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
68 flush_icache_range((unsigned long)p
->addr
,
69 (unsigned long)p
->addr
+ sizeof(kprobe_opcode_t
));
72 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
74 if (*p
->addr
== BREAKPOINT_INSTRUCTION
)
81 * If an illegal slot instruction exception occurs for an address
82 * containing a kprobe, remove the probe.
84 * Returns 0 if the exception was handled successfully, 1 otherwise.
86 int __kprobes
kprobe_handle_illslot(unsigned long pc
)
88 struct kprobe
*p
= get_kprobe((kprobe_opcode_t
*) pc
+ 1);
91 printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
92 (unsigned int)pc
+ 2);
100 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
102 struct kprobe
*saved
= this_cpu_ptr(&saved_next_opcode
);
105 arch_disarm_kprobe(p
);
106 arch_disarm_kprobe(saved
);
111 saved
= this_cpu_ptr(&saved_next_opcode2
);
113 arch_disarm_kprobe(saved
);
121 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
123 kcb
->prev_kprobe
.kp
= kprobe_running();
124 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
127 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
129 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
130 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
133 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
134 struct kprobe_ctlblk
*kcb
)
136 __this_cpu_write(current_kprobe
, p
);
140 * Singlestep is implemented by disabling the current kprobe and setting one
141 * on the next instruction, following branches. Two probes are set if the
142 * branch is conditional.
144 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
146 __this_cpu_write(saved_current_opcode
.addr
, (kprobe_opcode_t
*)regs
->pc
);
149 struct kprobe
*op1
, *op2
;
151 arch_disarm_kprobe(p
);
153 op1
= this_cpu_ptr(&saved_next_opcode
);
154 op2
= this_cpu_ptr(&saved_next_opcode2
);
156 if (OPCODE_JSR(p
->opcode
) || OPCODE_JMP(p
->opcode
)) {
157 unsigned int reg_nr
= ((p
->opcode
>> 8) & 0x000F);
158 op1
->addr
= (kprobe_opcode_t
*) regs
->regs
[reg_nr
];
159 } else if (OPCODE_BRA(p
->opcode
) || OPCODE_BSR(p
->opcode
)) {
160 unsigned long disp
= (p
->opcode
& 0x0FFF);
162 (kprobe_opcode_t
*) (regs
->pc
+ 4 + disp
* 2);
164 } else if (OPCODE_BRAF(p
->opcode
) || OPCODE_BSRF(p
->opcode
)) {
165 unsigned int reg_nr
= ((p
->opcode
>> 8) & 0x000F);
167 (kprobe_opcode_t
*) (regs
->pc
+ 4 +
170 } else if (OPCODE_RTS(p
->opcode
)) {
171 op1
->addr
= (kprobe_opcode_t
*) regs
->pr
;
173 } else if (OPCODE_BF(p
->opcode
) || OPCODE_BT(p
->opcode
)) {
174 unsigned long disp
= (p
->opcode
& 0x00FF);
176 op1
->addr
= p
->addr
+ 1;
179 (kprobe_opcode_t
*) (regs
->pc
+ 4 + disp
* 2);
180 op2
->opcode
= *(op2
->addr
);
181 arch_arm_kprobe(op2
);
183 } else if (OPCODE_BF_S(p
->opcode
) || OPCODE_BT_S(p
->opcode
)) {
184 unsigned long disp
= (p
->opcode
& 0x00FF);
186 op1
->addr
= p
->addr
+ 2;
189 (kprobe_opcode_t
*) (regs
->pc
+ 4 + disp
* 2);
190 op2
->opcode
= *(op2
->addr
);
191 arch_arm_kprobe(op2
);
194 op1
->addr
= p
->addr
+ 1;
197 op1
->opcode
= *(op1
->addr
);
198 arch_arm_kprobe(op1
);
202 /* Called with kretprobe_lock held */
203 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
204 struct pt_regs
*regs
)
206 ri
->ret_addr
= (kprobe_opcode_t
*) regs
->pr
;
209 /* Replace the return addr with trampoline addr */
210 regs
->pr
= (unsigned long)kretprobe_trampoline
;
213 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
217 kprobe_opcode_t
*addr
= NULL
;
218 struct kprobe_ctlblk
*kcb
;
221 * We don't want to be preempted for the entire
222 * duration of kprobe processing
225 kcb
= get_kprobe_ctlblk();
227 addr
= (kprobe_opcode_t
*) (regs
->pc
);
229 /* Check we're not actually recursing */
230 if (kprobe_running()) {
231 p
= get_kprobe(addr
);
233 if (kcb
->kprobe_status
== KPROBE_HIT_SS
&&
234 *p
->ainsn
.insn
== BREAKPOINT_INSTRUCTION
) {
237 /* We have reentered the kprobe_handler(), since
238 * another probe was hit while within the handler.
239 * We here save the original kprobes variables and
240 * just single step on the instruction of the new probe
241 * without calling any user handlers.
243 save_previous_kprobe(kcb
);
244 set_current_kprobe(p
, regs
, kcb
);
245 kprobes_inc_nmissed_count(p
);
246 prepare_singlestep(p
, regs
);
247 kcb
->kprobe_status
= KPROBE_REENTER
;
253 p
= get_kprobe(addr
);
255 /* Not one of ours: let kernel handle it */
256 if (*(kprobe_opcode_t
*)addr
!= BREAKPOINT_INSTRUCTION
) {
258 * The breakpoint instruction was removed right
259 * after we hit it. Another cpu has removed
260 * either a probepoint or a debugger breakpoint
261 * at this address. In either case, no further
262 * handling of this interrupt is appropriate.
270 set_current_kprobe(p
, regs
, kcb
);
271 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
273 if (p
->pre_handler
&& p
->pre_handler(p
, regs
)) {
274 /* handler has already set things up, so skip ss setup */
275 reset_current_kprobe();
276 preempt_enable_no_resched();
280 prepare_singlestep(p
, regs
);
281 kcb
->kprobe_status
= KPROBE_HIT_SS
;
285 preempt_enable_no_resched();
290 * For function-return probes, init_kprobes() establishes a probepoint
291 * here. When a retprobed function returns, this probe is hit and
292 * trampoline_probe_handler() runs, calling the kretprobe's handler.
294 static void __used
kretprobe_trampoline_holder(void)
296 asm volatile (".globl kretprobe_trampoline\n"
297 "kretprobe_trampoline:\n\t"
302 * Called when we hit the probe point at kretprobe_trampoline
304 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
306 regs
->pc
= __kretprobe_trampoline_handler(regs
, &kretprobe_trampoline
, NULL
);
311 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
313 struct kprobe
*cur
= kprobe_running();
314 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
315 kprobe_opcode_t
*addr
= NULL
;
316 struct kprobe
*p
= NULL
;
321 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
322 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
323 cur
->post_handler(cur
, regs
, 0);
326 p
= this_cpu_ptr(&saved_next_opcode
);
328 arch_disarm_kprobe(p
);
332 addr
= __this_cpu_read(saved_current_opcode
.addr
);
333 __this_cpu_write(saved_current_opcode
.addr
, NULL
);
335 p
= get_kprobe(addr
);
338 p
= this_cpu_ptr(&saved_next_opcode2
);
340 arch_disarm_kprobe(p
);
346 /* Restore back the original saved kprobes variables and continue. */
347 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
348 restore_previous_kprobe(kcb
);
352 reset_current_kprobe();
355 preempt_enable_no_resched();
360 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
362 struct kprobe
*cur
= kprobe_running();
363 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
364 const struct exception_table_entry
*entry
;
366 switch (kcb
->kprobe_status
) {
370 * We are here because the instruction being single
371 * stepped caused a page fault. We reset the current
372 * kprobe, point the pc back to the probe address
373 * and allow the page fault handler to continue as a
376 regs
->pc
= (unsigned long)cur
->addr
;
377 if (kcb
->kprobe_status
== KPROBE_REENTER
)
378 restore_previous_kprobe(kcb
);
380 reset_current_kprobe();
381 preempt_enable_no_resched();
383 case KPROBE_HIT_ACTIVE
:
384 case KPROBE_HIT_SSDONE
:
386 * We increment the nmissed count for accounting,
387 * we can also use npre/npostfault count for accounting
388 * these specific fault cases.
390 kprobes_inc_nmissed_count(cur
);
393 * We come here because instructions in the pre/post
394 * handler caused the page_fault, this could happen
395 * if handler tries to access user space by
396 * copy_from_user(), get_user() etc. Let the
397 * user-specified handler try to fix it first.
399 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
403 * In case the user-specified fault handler returned
404 * zero, try to fix up.
406 if ((entry
= search_exception_tables(regs
->pc
)) != NULL
) {
407 regs
->pc
= entry
->fixup
;
412 * fixup_exception() could not handle it,
413 * Let do_page_fault() fix it.
424 * Wrapper routine to for handling exceptions.
426 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
427 unsigned long val
, void *data
)
429 struct kprobe
*p
= NULL
;
430 struct die_args
*args
= (struct die_args
*)data
;
431 int ret
= NOTIFY_DONE
;
432 kprobe_opcode_t
*addr
= NULL
;
433 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
435 addr
= (kprobe_opcode_t
*) (args
->regs
->pc
);
436 if (val
== DIE_TRAP
&&
437 args
->trapnr
== (BREAKPOINT_INSTRUCTION
& 0xff)) {
438 if (!kprobe_running()) {
439 if (kprobe_handler(args
->regs
)) {
442 /* Not a kprobe trap */
446 p
= get_kprobe(addr
);
447 if ((kcb
->kprobe_status
== KPROBE_HIT_SS
) ||
448 (kcb
->kprobe_status
== KPROBE_REENTER
)) {
449 if (post_kprobe_handler(args
->regs
))
452 if (kprobe_handler(args
->regs
))
461 static struct kprobe trampoline_p
= {
462 .addr
= (kprobe_opcode_t
*)&kretprobe_trampoline
,
463 .pre_handler
= trampoline_probe_handler
466 int __init
arch_init_kprobes(void)
468 return register_kprobe(&trampoline_p
);