1 // SPDX-License-Identifier: GPL-2.0
3 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
5 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/signal.h>
19 #include <linux/extable.h>
20 #include <linux/init.h>
21 #include <linux/perf_event.h>
22 #include <linux/interrupt.h>
23 #include <linux/kprobes.h>
24 #include <linux/kdebug.h>
25 #include <linux/percpu.h>
26 #include <linux/context_tracking.h>
27 #include <linux/uaccess.h>
30 #include <asm/openprom.h>
31 #include <asm/oplib.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/setup.h>
38 int show_unhandled_signals
= 1;
40 static void __kprobes
unhandled_fault(unsigned long address
,
41 struct task_struct
*tsk
,
44 if ((unsigned long) address
< PAGE_SIZE
) {
45 printk(KERN_ALERT
"Unable to handle kernel NULL "
46 "pointer dereference\n");
48 printk(KERN_ALERT
"Unable to handle kernel paging request "
49 "at virtual address %016lx\n", (unsigned long)address
);
51 printk(KERN_ALERT
"tsk->{mm,active_mm}->context = %016lx\n",
53 CTX_HWBITS(tsk
->mm
->context
) :
54 CTX_HWBITS(tsk
->active_mm
->context
)));
55 printk(KERN_ALERT
"tsk->{mm,active_mm}->pgd = %016lx\n",
56 (tsk
->mm
? (unsigned long) tsk
->mm
->pgd
:
57 (unsigned long) tsk
->active_mm
->pgd
));
58 die_if_kernel("Oops", regs
);
61 static void __kprobes
bad_kernel_pc(struct pt_regs
*regs
, unsigned long vaddr
)
63 printk(KERN_CRIT
"OOPS: Bogus kernel PC [%016lx] in fault handler\n",
65 printk(KERN_CRIT
"OOPS: RPC [%016lx]\n", regs
->u_regs
[15]);
66 printk("OOPS: RPC <%pS>\n", (void *) regs
->u_regs
[15]);
67 printk(KERN_CRIT
"OOPS: Fault was to vaddr[%lx]\n", vaddr
);
69 unhandled_fault(regs
->tpc
, current
, regs
);
73 * We now make sure that mmap_lock is held in all paths that call
74 * this. Additionally, to prevent kswapd from ripping ptes from
75 * under us, raise interrupts around the time that we look at the
76 * pte, kswapd will have to wait to get his smp ipi response from
77 * us. vmtruncate likewise. This saves us having to get pte lock.
79 static unsigned int get_user_insn(unsigned long tpc
)
81 pgd_t
*pgdp
= pgd_offset(current
->mm
, tpc
);
89 if (pgd_none(*pgdp
) || unlikely(pgd_bad(*pgdp
)))
91 p4dp
= p4d_offset(pgdp
, tpc
);
92 if (p4d_none(*p4dp
) || unlikely(p4d_bad(*p4dp
)))
94 pudp
= pud_offset(p4dp
, tpc
);
95 if (pud_none(*pudp
) || unlikely(pud_bad(*pudp
)))
98 /* This disables preemption for us as well. */
101 pmdp
= pmd_offset(pudp
, tpc
);
102 if (pmd_none(*pmdp
) || unlikely(pmd_bad(*pmdp
)))
105 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
106 if (is_hugetlb_pmd(*pmdp
)) {
107 pa
= pmd_pfn(*pmdp
) << PAGE_SHIFT
;
108 pa
+= tpc
& ~HPAGE_MASK
;
110 /* Use phys bypass so we don't pollute dtlb/dcache. */
111 __asm__
__volatile__("lduwa [%1] %2, %0"
113 : "r" (pa
), "i" (ASI_PHYS_USE_EC
));
117 ptep
= pte_offset_map(pmdp
, tpc
);
119 if (pte_present(pte
)) {
120 pa
= (pte_pfn(pte
) << PAGE_SHIFT
);
121 pa
+= (tpc
& ~PAGE_MASK
);
123 /* Use phys bypass so we don't pollute dtlb/dcache. */
124 __asm__
__volatile__("lduwa [%1] %2, %0"
126 : "r" (pa
), "i" (ASI_PHYS_USE_EC
));
137 show_signal_msg(struct pt_regs
*regs
, int sig
, int code
,
138 unsigned long address
, struct task_struct
*tsk
)
140 if (!unhandled_signal(tsk
, sig
))
143 if (!printk_ratelimit())
146 printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x",
147 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
148 tsk
->comm
, task_pid_nr(tsk
), address
,
149 (void *)regs
->tpc
, (void *)regs
->u_regs
[UREG_I7
],
150 (void *)regs
->u_regs
[UREG_FP
], code
);
152 print_vma_addr(KERN_CONT
" in ", regs
->tpc
);
154 printk(KERN_CONT
"\n");
157 static void do_fault_siginfo(int code
, int sig
, struct pt_regs
*regs
,
158 unsigned long fault_addr
, unsigned int insn
,
163 if (fault_code
& FAULT_CODE_ITLB
) {
166 /* If we were able to probe the faulting instruction, use it
167 * to compute a precise fault address. Otherwise use the fault
168 * time provided address which may only have page granularity.
171 addr
= compute_effective_address(regs
, insn
, 0);
176 if (unlikely(show_unhandled_signals
))
177 show_signal_msg(regs
, sig
, code
, addr
, current
);
179 force_sig_fault(sig
, code
, (void __user
*) addr
, 0);
182 static unsigned int get_fault_insn(struct pt_regs
*regs
, unsigned int insn
)
185 if (!regs
->tpc
|| (regs
->tpc
& 0x3))
187 if (regs
->tstate
& TSTATE_PRIV
) {
188 insn
= *(unsigned int *) regs
->tpc
;
190 insn
= get_user_insn(regs
->tpc
);
196 static void __kprobes
do_kernel_fault(struct pt_regs
*regs
, int si_code
,
197 int fault_code
, unsigned int insn
,
198 unsigned long address
)
200 unsigned char asi
= ASI_P
;
202 if ((!insn
) && (regs
->tstate
& TSTATE_PRIV
))
205 /* If user insn could be read (thus insn is zero), that
206 * is fine. We will just gun down the process with a signal
210 if (!(fault_code
& (FAULT_CODE_WRITE
|FAULT_CODE_ITLB
)) &&
211 (insn
& 0xc0800000) == 0xc0800000) {
213 asi
= (regs
->tstate
>> 24);
216 if ((asi
& 0xf2) == 0x82) {
217 if (insn
& 0x1000000) {
218 handle_ldf_stq(insn
, regs
);
220 /* This was a non-faulting load. Just clear the
221 * destination register(s) and continue with the next
224 handle_ld_nf(insn
, regs
);
230 /* Is this in ex_table? */
231 if (regs
->tstate
& TSTATE_PRIV
) {
232 const struct exception_table_entry
*entry
;
234 entry
= search_exception_tables(regs
->tpc
);
236 regs
->tpc
= entry
->fixup
;
237 regs
->tnpc
= regs
->tpc
+ 4;
241 /* The si_code was set to make clear whether
242 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
244 do_fault_siginfo(si_code
, SIGSEGV
, regs
, address
, insn
, fault_code
);
249 unhandled_fault (address
, current
, regs
);
252 static void noinline __kprobes
bogus_32bit_fault_tpc(struct pt_regs
*regs
)
257 printk(KERN_ERR
"FAULT[%s:%d]: 32-bit process reports "
258 "64-bit TPC [%lx]\n",
259 current
->comm
, current
->pid
,
264 asmlinkage
void __kprobes
do_sparc64_fault(struct pt_regs
*regs
)
266 enum ctx_state prev_state
= exception_enter();
267 struct mm_struct
*mm
= current
->mm
;
268 struct vm_area_struct
*vma
;
269 unsigned int insn
= 0;
270 int si_code
, fault_code
;
272 unsigned long address
, mm_rss
;
273 unsigned int flags
= FAULT_FLAG_DEFAULT
;
275 fault_code
= get_thread_fault_code();
277 if (kprobe_page_fault(regs
, 0))
280 si_code
= SEGV_MAPERR
;
281 address
= current_thread_info()->fault_address
;
283 if ((fault_code
& FAULT_CODE_ITLB
) &&
284 (fault_code
& FAULT_CODE_DTLB
))
287 if (test_thread_flag(TIF_32BIT
)) {
288 if (!(regs
->tstate
& TSTATE_PRIV
)) {
289 if (unlikely((regs
->tpc
>> 32) != 0)) {
290 bogus_32bit_fault_tpc(regs
);
294 if (unlikely((address
>> 32) != 0))
298 if (regs
->tstate
& TSTATE_PRIV
) {
299 unsigned long tpc
= regs
->tpc
;
301 /* Sanity check the PC. */
302 if ((tpc
>= KERNBASE
&& tpc
< (unsigned long) __init_end
) ||
303 (tpc
>= MODULES_VADDR
&& tpc
< MODULES_END
)) {
304 /* Valid, no problems... */
306 bad_kernel_pc(regs
, address
);
310 flags
|= FAULT_FLAG_USER
;
313 * If we're in an interrupt or have no user
314 * context, we must not take the fault..
316 if (faulthandler_disabled() || !mm
)
319 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
321 if (!mmap_read_trylock(mm
)) {
322 if ((regs
->tstate
& TSTATE_PRIV
) &&
323 !search_exception_tables(regs
->tpc
)) {
324 insn
= get_fault_insn(regs
, insn
);
325 goto handle_kernel_fault
;
332 if (fault_code
& FAULT_CODE_BAD_RA
)
335 vma
= find_vma(mm
, address
);
339 /* Pure DTLB misses do not tell us whether the fault causing
340 * load/store/atomic was a write or not, it only says that there
341 * was no match. So in such a case we (carefully) read the
342 * instruction to try and figure this out. It's an optimization
343 * so it's ok if we can't do this.
345 * Special hack, window spill/fill knows the exact fault type.
348 (FAULT_CODE_DTLB
| FAULT_CODE_WRITE
| FAULT_CODE_WINFIXUP
)) == FAULT_CODE_DTLB
) &&
349 (vma
->vm_flags
& VM_WRITE
) != 0) {
350 insn
= get_fault_insn(regs
, 0);
353 /* All loads, stores and atomics have bits 30 and 31 both set
354 * in the instruction. Bit 21 is set in all stores, but we
355 * have to avoid prefetches which also have bit 21 set.
357 if ((insn
& 0xc0200000) == 0xc0200000 &&
358 (insn
& 0x01780000) != 0x01680000) {
359 /* Don't bother updating thread struct value,
360 * because update_mmu_cache only cares which tlb
361 * the access came from.
363 fault_code
|= FAULT_CODE_WRITE
;
368 if (vma
->vm_start
<= address
)
370 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
372 if (!(fault_code
& FAULT_CODE_WRITE
)) {
373 /* Non-faulting loads shouldn't expand stack. */
374 insn
= get_fault_insn(regs
, insn
);
375 if ((insn
& 0xc0800000) == 0xc0800000) {
379 asi
= (regs
->tstate
>> 24);
382 if ((asi
& 0xf2) == 0x82)
386 if (expand_stack(vma
, address
))
389 * Ok, we have a good vm_area for this memory access, so
393 si_code
= SEGV_ACCERR
;
395 /* If we took a ITLB miss on a non-executable page, catch
398 if ((fault_code
& FAULT_CODE_ITLB
) && !(vma
->vm_flags
& VM_EXEC
)) {
399 WARN(address
!= regs
->tpc
,
400 "address (%lx) != regs->tpc (%lx)\n", address
, regs
->tpc
);
401 WARN_ON(regs
->tstate
& TSTATE_PRIV
);
405 if (fault_code
& FAULT_CODE_WRITE
) {
406 if (!(vma
->vm_flags
& VM_WRITE
))
409 /* Spitfire has an icache which does not snoop
410 * processor stores. Later processors do...
412 if (tlb_type
== spitfire
&&
413 (vma
->vm_flags
& VM_EXEC
) != 0 &&
414 vma
->vm_file
!= NULL
)
415 set_thread_fault_code(fault_code
|
416 FAULT_CODE_BLKCOMMIT
);
418 flags
|= FAULT_FLAG_WRITE
;
420 /* Allow reads even for write-only mappings */
421 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
)))
425 fault
= handle_mm_fault(vma
, address
, flags
, regs
);
427 if (fault_signal_pending(fault
, regs
))
430 if (unlikely(fault
& VM_FAULT_ERROR
)) {
431 if (fault
& VM_FAULT_OOM
)
433 else if (fault
& VM_FAULT_SIGSEGV
)
435 else if (fault
& VM_FAULT_SIGBUS
)
440 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
441 if (fault
& VM_FAULT_RETRY
) {
442 flags
|= FAULT_FLAG_TRIED
;
444 /* No need to mmap_read_unlock(mm) as we would
445 * have already released it in __lock_page_or_retry
452 mmap_read_unlock(mm
);
454 mm_rss
= get_mm_rss(mm
);
455 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
456 mm_rss
-= (mm
->context
.thp_pte_count
* (HPAGE_SIZE
/ PAGE_SIZE
));
458 if (unlikely(mm_rss
>
459 mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_rss_limit
))
460 tsb_grow(mm
, MM_TSB_BASE
, mm_rss
);
461 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
462 mm_rss
= mm
->context
.hugetlb_pte_count
+ mm
->context
.thp_pte_count
;
463 mm_rss
*= REAL_HPAGE_PER_HPAGE
;
464 if (unlikely(mm_rss
>
465 mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_rss_limit
)) {
466 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
)
467 tsb_grow(mm
, MM_TSB_HUGE
, mm_rss
);
474 exception_exit(prev_state
);
478 * Something tried to access memory that isn't in our memory map..
479 * Fix it, but check if it's kernel or user first..
482 insn
= get_fault_insn(regs
, insn
);
483 mmap_read_unlock(mm
);
486 do_kernel_fault(regs
, si_code
, fault_code
, insn
, address
);
490 * We ran out of memory, or some other thing happened to us that made
491 * us unable to handle the page fault gracefully.
494 insn
= get_fault_insn(regs
, insn
);
495 mmap_read_unlock(mm
);
496 if (!(regs
->tstate
& TSTATE_PRIV
)) {
497 pagefault_out_of_memory();
500 goto handle_kernel_fault
;
503 insn
= get_fault_insn(regs
, 0);
504 goto handle_kernel_fault
;
507 insn
= get_fault_insn(regs
, insn
);
508 mmap_read_unlock(mm
);
511 * Send a sigbus, regardless of whether we were in kernel
514 do_fault_siginfo(BUS_ADRERR
, SIGBUS
, regs
, address
, insn
, fault_code
);
516 /* Kernel mode? Handle exceptions or die */
517 if (regs
->tstate
& TSTATE_PRIV
)
518 goto handle_kernel_fault
;