1 // SPDX-License-Identifier: GPL-2.0
3 * arch/sparc64/mm/init.c
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
33 #include <asm/pgalloc.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
37 #include <linux/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
41 #include <asm/starfire.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
46 #include <asm/hypervisor.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/setup.h>
55 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
56 static unsigned long page_cache4v_flag
;
58 /* A bitmap, two bits for every 256MB of physical memory. These two
59 * bits determine what page size we use for kernel linear
60 * translations. They form an index into kern_linear_pte_xor[]. The
61 * value in the indexed slot is XOR'd with the TLB miss virtual
62 * address to form the resulting TTE. The mapping is:
69 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
70 * support 2GB pages, and hopefully future cpus will support the 16GB
71 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
72 * if these larger page sizes are not supported by the cpu.
74 * It would be nice to determine this from the machine description
75 * 'cpu' properties, but we need to have this table setup before the
76 * MDESC is initialized.
79 #ifndef CONFIG_DEBUG_PAGEALLOC
80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
81 * Space is allocated for this right after the trap table in
82 * arch/sparc64/kernel/head.S
84 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
86 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
88 static unsigned long cpu_pgsz_mask
;
90 #define MAX_BANKS 1024
92 static struct linux_prom64_registers pavail
[MAX_BANKS
];
93 static int pavail_ents
;
95 u64 numa_latency
[MAX_NUMNODES
][MAX_NUMNODES
];
97 static int cmp_p64(const void *a
, const void *b
)
99 const struct linux_prom64_registers
*x
= a
, *y
= b
;
101 if (x
->phys_addr
> y
->phys_addr
)
103 if (x
->phys_addr
< y
->phys_addr
)
108 static void __init
read_obp_memory(const char *property
,
109 struct linux_prom64_registers
*regs
,
112 phandle node
= prom_finddevice("/memory");
113 int prop_size
= prom_getproplen(node
, property
);
116 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
117 if (ents
> MAX_BANKS
) {
118 prom_printf("The machine has more %s property entries than "
119 "this kernel can support (%d).\n",
120 property
, MAX_BANKS
);
124 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
126 prom_printf("Couldn't get %s property from /memory.\n",
131 /* Sanitize what we got from the firmware, by page aligning
134 for (i
= 0; i
< ents
; i
++) {
135 unsigned long base
, size
;
137 base
= regs
[i
].phys_addr
;
138 size
= regs
[i
].reg_size
;
141 if (base
& ~PAGE_MASK
) {
142 unsigned long new_base
= PAGE_ALIGN(base
);
144 size
-= new_base
- base
;
145 if ((long) size
< 0L)
150 /* If it is empty, simply get rid of it.
151 * This simplifies the logic of the other
152 * functions that process these arrays.
154 memmove(®s
[i
], ®s
[i
+ 1],
155 (ents
- i
- 1) * sizeof(regs
[0]));
160 regs
[i
].phys_addr
= base
;
161 regs
[i
].reg_size
= size
;
166 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly
;
172 unsigned long kern_size __read_mostly
;
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64
;
176 extern unsigned int sparc_ramdisk_image
;
177 extern unsigned int sparc_ramdisk_size
;
179 struct page
*mem_map_zero __read_mostly
;
180 EXPORT_SYMBOL(mem_map_zero
);
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
184 unsigned long sparc64_kern_pri_context __read_mostly
;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
186 unsigned long sparc64_kern_sec_context __read_mostly
;
188 int num_kernel_image_mappings
;
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
193 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
197 inline void flush_dcache_page_impl(struct page
*page
)
199 BUG_ON(tlb_type
== hypervisor
);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes
);
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page
),
206 ((tlb_type
== spitfire
) &&
207 page_mapping_file(page
) != NULL
));
209 if (page_mapping_file(page
) != NULL
&&
210 tlb_type
== spitfire
)
211 __flush_icache_page(__pa(page_address(page
)));
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
225 unsigned long mask
= this_cpu
;
226 unsigned long non_cpu_bits
;
228 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
229 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
231 __asm__
__volatile__("1:\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
240 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
244 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
246 unsigned long mask
= (1UL << PG_dcache_dirty
);
248 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
262 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
263 "i" (PG_dcache_cpu_mask
),
264 "i" (PG_dcache_cpu_shift
)
268 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
270 unsigned long tsb_addr
= (unsigned long) ent
;
272 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
273 tsb_addr
= __pa(tsb_addr
);
275 __tsb_insert(tsb_addr
, tag
, pte
);
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
280 static void flush_dcache(unsigned long pfn
)
284 page
= pfn_to_page(pfn
);
286 unsigned long pg_flags
;
288 pg_flags
= page
->flags
;
289 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
290 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
292 int this_cpu
= get_cpu();
294 /* This is just to optimize away some function calls
298 flush_dcache_page_impl(page
);
300 smp_flush_dcache_page_impl(page
, cpu
);
302 clear_dcache_dirty_cpu(page
, cpu
);
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
311 unsigned long tsb_hash_shift
, unsigned long address
,
314 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
320 tsb
+= ((address
>> tsb_hash_shift
) &
321 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
322 tag
= (address
>> 22UL);
323 tsb_insert(tsb
, tag
, tte
);
326 #ifdef CONFIG_HUGETLB_PAGE
327 static int __init
hugetlbpage_init(void)
329 hugetlb_add_hstate(HPAGE_64K_SHIFT
- PAGE_SHIFT
);
330 hugetlb_add_hstate(HPAGE_SHIFT
- PAGE_SHIFT
);
331 hugetlb_add_hstate(HPAGE_256MB_SHIFT
- PAGE_SHIFT
);
332 hugetlb_add_hstate(HPAGE_2GB_SHIFT
- PAGE_SHIFT
);
337 arch_initcall(hugetlbpage_init
);
339 static void __init
pud_huge_patch(void)
341 struct pud_huge_patch_entry
*p
;
344 p
= &__pud_huge_patch
;
346 *(unsigned int *)addr
= p
->insn
;
348 __asm__
__volatile__("flush %0" : : "r" (addr
));
351 bool __init
arch_hugetlb_valid_size(unsigned long size
)
353 unsigned int hugepage_shift
= ilog2(size
);
354 unsigned short hv_pgsz_idx
;
355 unsigned int hv_pgsz_mask
;
357 switch (hugepage_shift
) {
358 case HPAGE_16GB_SHIFT
:
359 hv_pgsz_mask
= HV_PGSZ_MASK_16GB
;
360 hv_pgsz_idx
= HV_PGSZ_IDX_16GB
;
363 case HPAGE_2GB_SHIFT
:
364 hv_pgsz_mask
= HV_PGSZ_MASK_2GB
;
365 hv_pgsz_idx
= HV_PGSZ_IDX_2GB
;
367 case HPAGE_256MB_SHIFT
:
368 hv_pgsz_mask
= HV_PGSZ_MASK_256MB
;
369 hv_pgsz_idx
= HV_PGSZ_IDX_256MB
;
372 hv_pgsz_mask
= HV_PGSZ_MASK_4MB
;
373 hv_pgsz_idx
= HV_PGSZ_IDX_4MB
;
375 case HPAGE_64K_SHIFT
:
376 hv_pgsz_mask
= HV_PGSZ_MASK_64K
;
377 hv_pgsz_idx
= HV_PGSZ_IDX_64K
;
383 if ((hv_pgsz_mask
& cpu_pgsz_mask
) == 0U)
388 #endif /* CONFIG_HUGETLB_PAGE */
390 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
392 struct mm_struct
*mm
;
397 if (tlb_type
!= hypervisor
) {
398 unsigned long pfn
= pte_pfn(pte
);
406 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
407 if (!pte_accessible(mm
, pte
))
410 spin_lock_irqsave(&mm
->context
.lock
, flags
);
413 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
414 if (mm
->context
.hugetlb_pte_count
|| mm
->context
.thp_pte_count
) {
415 unsigned long hugepage_size
= PAGE_SIZE
;
417 if (is_vm_hugetlb_page(vma
))
418 hugepage_size
= huge_page_size(hstate_vma(vma
));
420 if (hugepage_size
>= PUD_SIZE
) {
421 unsigned long mask
= 0x1ffc00000UL
;
423 /* Transfer bits [32:22] from address to resolve
426 pte_val(pte
) &= ~mask
;
427 pte_val(pte
) |= (address
& mask
);
428 } else if (hugepage_size
>= PMD_SIZE
) {
429 /* We are fabricating 8MB pages using 4MB
432 pte_val(pte
) |= (address
& (1UL << REAL_HPAGE_SHIFT
));
435 if (hugepage_size
>= PMD_SIZE
) {
436 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
,
437 REAL_HPAGE_SHIFT
, address
, pte_val(pte
));
443 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
444 address
, pte_val(pte
));
446 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
449 void flush_dcache_page(struct page
*page
)
451 struct address_space
*mapping
;
454 if (tlb_type
== hypervisor
)
457 /* Do not bother with the expensive D-cache flush if it
458 * is merely the zero page. The 'bigcore' testcase in GDB
459 * causes this case to run millions of times.
461 if (page
== ZERO_PAGE(0))
464 this_cpu
= get_cpu();
466 mapping
= page_mapping_file(page
);
467 if (mapping
&& !mapping_mapped(mapping
)) {
468 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
470 int dirty_cpu
= dcache_dirty_cpu(page
);
472 if (dirty_cpu
== this_cpu
)
474 smp_flush_dcache_page_impl(page
, dirty_cpu
);
476 set_dcache_dirty(page
, this_cpu
);
478 /* We could delay the flush for the !page_mapping
479 * case too. But that case is for exec env/arg
480 * pages and those are %99 certainly going to get
481 * faulted into the tlb (and thus flushed) anyways.
483 flush_dcache_page_impl(page
);
489 EXPORT_SYMBOL(flush_dcache_page
);
491 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
493 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
494 if (tlb_type
== spitfire
) {
497 /* This code only runs on Spitfire cpus so this is
498 * why we can assume _PAGE_PADDR_4U.
500 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
501 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
503 if (kaddr
>= PAGE_OFFSET
)
504 paddr
= kaddr
& mask
;
506 pte_t
*ptep
= virt_to_kpte(kaddr
);
508 paddr
= pte_val(*ptep
) & mask
;
510 __flush_icache_page(paddr
);
514 EXPORT_SYMBOL(flush_icache_range
);
516 void mmu_info(struct seq_file
*m
)
518 static const char *pgsz_strings
[] = {
519 "8K", "64K", "512K", "4MB", "32MB",
520 "256MB", "2GB", "16GB",
524 if (tlb_type
== cheetah
)
525 seq_printf(m
, "MMU Type\t: Cheetah\n");
526 else if (tlb_type
== cheetah_plus
)
527 seq_printf(m
, "MMU Type\t: Cheetah+\n");
528 else if (tlb_type
== spitfire
)
529 seq_printf(m
, "MMU Type\t: Spitfire\n");
530 else if (tlb_type
== hypervisor
)
531 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
533 seq_printf(m
, "MMU Type\t: ???\n");
535 seq_printf(m
, "MMU PGSZs\t: ");
537 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
538 if (cpu_pgsz_mask
& (1UL << i
)) {
539 seq_printf(m
, "%s%s",
540 printed
? "," : "", pgsz_strings
[i
]);
546 #ifdef CONFIG_DEBUG_DCFLUSH
547 seq_printf(m
, "DCPageFlushes\t: %d\n",
548 atomic_read(&dcpage_flushes
));
550 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
551 atomic_read(&dcpage_flushes_xcall
));
552 #endif /* CONFIG_SMP */
553 #endif /* CONFIG_DEBUG_DCFLUSH */
556 struct linux_prom_translation prom_trans
[512] __read_mostly
;
557 unsigned int prom_trans_ents __read_mostly
;
559 unsigned long kern_locked_tte_data
;
561 /* The obp translations are saved based on 8k pagesize, since obp can
562 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
563 * HI_OBP_ADDRESS range are handled in ktlb.S.
565 static inline int in_obp_range(unsigned long vaddr
)
567 return (vaddr
>= LOW_OBP_ADDRESS
&&
568 vaddr
< HI_OBP_ADDRESS
);
571 static int cmp_ptrans(const void *a
, const void *b
)
573 const struct linux_prom_translation
*x
= a
, *y
= b
;
575 if (x
->virt
> y
->virt
)
577 if (x
->virt
< y
->virt
)
582 /* Read OBP translations property into 'prom_trans[]'. */
583 static void __init
read_obp_translations(void)
585 int n
, node
, ents
, first
, last
, i
;
587 node
= prom_finddevice("/virtual-memory");
588 n
= prom_getproplen(node
, "translations");
589 if (unlikely(n
== 0 || n
== -1)) {
590 prom_printf("prom_mappings: Couldn't get size.\n");
593 if (unlikely(n
> sizeof(prom_trans
))) {
594 prom_printf("prom_mappings: Size %d is too big.\n", n
);
598 if ((n
= prom_getproperty(node
, "translations",
599 (char *)&prom_trans
[0],
600 sizeof(prom_trans
))) == -1) {
601 prom_printf("prom_mappings: Couldn't get property.\n");
605 n
= n
/ sizeof(struct linux_prom_translation
);
609 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
612 /* Now kick out all the non-OBP entries. */
613 for (i
= 0; i
< ents
; i
++) {
614 if (in_obp_range(prom_trans
[i
].virt
))
618 for (; i
< ents
; i
++) {
619 if (!in_obp_range(prom_trans
[i
].virt
))
624 for (i
= 0; i
< (last
- first
); i
++) {
625 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
626 struct linux_prom_translation
*dest
= &prom_trans
[i
];
630 for (; i
< ents
; i
++) {
631 struct linux_prom_translation
*dest
= &prom_trans
[i
];
632 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
635 prom_trans_ents
= last
- first
;
637 if (tlb_type
== spitfire
) {
638 /* Clear diag TTE bits. */
639 for (i
= 0; i
< prom_trans_ents
; i
++)
640 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
643 /* Force execute bit on. */
644 for (i
= 0; i
< prom_trans_ents
; i
++)
645 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
646 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
649 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
653 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
656 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
657 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
662 static unsigned long kern_large_tte(unsigned long paddr
);
664 static void __init
remap_kernel(void)
666 unsigned long phys_page
, tte_vaddr
, tte_data
;
667 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
669 tte_vaddr
= (unsigned long) KERNBASE
;
670 phys_page
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
671 tte_data
= kern_large_tte(phys_page
);
673 kern_locked_tte_data
= tte_data
;
675 /* Now lock us into the TLBs via Hypervisor or OBP. */
676 if (tlb_type
== hypervisor
) {
677 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
678 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
679 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
680 tte_vaddr
+= 0x400000;
681 tte_data
+= 0x400000;
684 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
685 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
686 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
687 tte_vaddr
+= 0x400000;
688 tte_data
+= 0x400000;
690 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
692 if (tlb_type
== cheetah_plus
) {
693 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
694 CTX_CHEETAH_PLUS_NUC
);
695 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
696 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
701 static void __init
inherit_prom_mappings(void)
703 /* Now fixup OBP's idea about where we really are mapped. */
704 printk("Remapping the kernel... ");
709 void prom_world(int enter
)
714 __asm__
__volatile__("flushw");
717 void __flush_dcache_range(unsigned long start
, unsigned long end
)
721 if (tlb_type
== spitfire
) {
724 for (va
= start
; va
< end
; va
+= 32) {
725 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
729 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
732 for (va
= start
; va
< end
; va
+= 32)
733 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
737 "i" (ASI_DCACHE_INVALIDATE
));
740 EXPORT_SYMBOL(__flush_dcache_range
);
742 /* get_new_mmu_context() uses "cache + 1". */
743 DEFINE_SPINLOCK(ctx_alloc_lock
);
744 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
;
745 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
746 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
747 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
748 DEFINE_PER_CPU(struct mm_struct
*, per_cpu_secondary_mm
) = {0};
750 static void mmu_context_wrap(void)
752 unsigned long old_ver
= tlb_context_cache
& CTX_VERSION_MASK
;
753 unsigned long new_ver
, new_ctx
, old_ctx
;
754 struct mm_struct
*mm
;
757 bitmap_zero(mmu_context_bmap
, 1 << CTX_NR_BITS
);
759 /* Reserve kernel context */
760 set_bit(0, mmu_context_bmap
);
762 new_ver
= (tlb_context_cache
& CTX_VERSION_MASK
) + CTX_FIRST_VERSION
;
763 if (unlikely(new_ver
== 0))
764 new_ver
= CTX_FIRST_VERSION
;
765 tlb_context_cache
= new_ver
;
768 * Make sure that any new mm that are added into per_cpu_secondary_mm,
769 * are going to go through get_new_mmu_context() path.
774 * Updated versions to current on those CPUs that had valid secondary
777 for_each_online_cpu(cpu
) {
779 * If a new mm is stored after we took this mm from the array,
780 * it will go into get_new_mmu_context() path, because we
781 * already bumped the version in tlb_context_cache.
783 mm
= per_cpu(per_cpu_secondary_mm
, cpu
);
785 if (unlikely(!mm
|| mm
== &init_mm
))
788 old_ctx
= mm
->context
.sparc64_ctx_val
;
789 if (likely((old_ctx
& CTX_VERSION_MASK
) == old_ver
)) {
790 new_ctx
= (old_ctx
& ~CTX_VERSION_MASK
) | new_ver
;
791 set_bit(new_ctx
& CTX_NR_MASK
, mmu_context_bmap
);
792 mm
->context
.sparc64_ctx_val
= new_ctx
;
797 /* Caller does TLB context flushing on local CPU if necessary.
798 * The caller also ensures that CTX_VALID(mm->context) is false.
800 * We must be careful about boundary cases so that we never
801 * let the user have CTX 0 (nucleus) or we ever use a CTX
802 * version of zero (and thus NO_CONTEXT would not be caught
803 * by version mis-match tests in mmu_context.h).
805 * Always invoked with interrupts disabled.
807 void get_new_mmu_context(struct mm_struct
*mm
)
809 unsigned long ctx
, new_ctx
;
810 unsigned long orig_pgsz_bits
;
812 spin_lock(&ctx_alloc_lock
);
814 /* wrap might have happened, test again if our context became valid */
815 if (unlikely(CTX_VALID(mm
->context
)))
817 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
818 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
819 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
820 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
821 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
822 if (new_ctx
>= ctx
) {
827 if (mm
->context
.sparc64_ctx_val
)
828 cpumask_clear(mm_cpumask(mm
));
829 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
830 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
831 tlb_context_cache
= new_ctx
;
832 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
834 spin_unlock(&ctx_alloc_lock
);
837 static int numa_enabled
= 1;
838 static int numa_debug
;
840 static int __init
early_numa(char *p
)
845 if (strstr(p
, "off"))
848 if (strstr(p
, "debug"))
853 early_param("numa", early_numa
);
855 #define numadbg(f, a...) \
856 do { if (numa_debug) \
857 printk(KERN_INFO f, ## a); \
860 static void __init
find_ramdisk(unsigned long phys_base
)
862 #ifdef CONFIG_BLK_DEV_INITRD
863 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
864 unsigned long ramdisk_image
;
866 /* Older versions of the bootloader only supported a
867 * 32-bit physical address for the ramdisk image
868 * location, stored at sparc_ramdisk_image. Newer
869 * SILO versions set sparc_ramdisk_image to zero and
870 * provide a full 64-bit physical address at
871 * sparc_ramdisk_image64.
873 ramdisk_image
= sparc_ramdisk_image
;
875 ramdisk_image
= sparc_ramdisk_image64
;
877 /* Another bootloader quirk. The bootloader normalizes
878 * the physical address to KERNBASE, so we have to
879 * factor that back out and add in the lowest valid
880 * physical page address to get the true physical address.
882 ramdisk_image
-= KERNBASE
;
883 ramdisk_image
+= phys_base
;
885 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
886 ramdisk_image
, sparc_ramdisk_size
);
888 initrd_start
= ramdisk_image
;
889 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
891 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
893 initrd_start
+= PAGE_OFFSET
;
894 initrd_end
+= PAGE_OFFSET
;
899 struct node_mem_mask
{
903 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
904 static int num_node_masks
;
906 #ifdef CONFIG_NEED_MULTIPLE_NODES
908 struct mdesc_mlgroup
{
915 static struct mdesc_mlgroup
*mlgroups
;
916 static int num_mlgroups
;
918 int numa_cpu_lookup_table
[NR_CPUS
];
919 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
921 struct mdesc_mblock
{
924 u64 offset
; /* RA-to-PA */
926 static struct mdesc_mblock
*mblocks
;
927 static int num_mblocks
;
929 static struct mdesc_mblock
* __init
addr_to_mblock(unsigned long addr
)
931 struct mdesc_mblock
*m
= NULL
;
934 for (i
= 0; i
< num_mblocks
; i
++) {
937 if (addr
>= m
->base
&&
938 addr
< (m
->base
+ m
->size
)) {
946 static u64 __init
memblock_nid_range_sun4u(u64 start
, u64 end
, int *nid
)
948 int prev_nid
, new_nid
;
950 prev_nid
= NUMA_NO_NODE
;
951 for ( ; start
< end
; start
+= PAGE_SIZE
) {
952 for (new_nid
= 0; new_nid
< num_node_masks
; new_nid
++) {
953 struct node_mem_mask
*p
= &node_masks
[new_nid
];
955 if ((start
& p
->mask
) == p
->match
) {
956 if (prev_nid
== NUMA_NO_NODE
)
962 if (new_nid
== num_node_masks
) {
964 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
969 if (prev_nid
!= new_nid
)
974 return start
> end
? end
: start
;
977 static u64 __init
memblock_nid_range(u64 start
, u64 end
, int *nid
)
979 u64 ret_end
, pa_start
, m_mask
, m_match
, m_end
;
980 struct mdesc_mblock
*mblock
;
983 if (tlb_type
!= hypervisor
)
984 return memblock_nid_range_sun4u(start
, end
, nid
);
986 mblock
= addr_to_mblock(start
);
988 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
996 pa_start
= start
+ mblock
->offset
;
1000 for (_nid
= 0; _nid
< num_node_masks
; _nid
++) {
1001 struct node_mem_mask
*const m
= &node_masks
[_nid
];
1003 if ((pa_start
& m
->mask
) == m
->match
) {
1010 if (num_node_masks
== _nid
) {
1011 /* We could not find NUMA group, so default to 0, but lets
1012 * search for latency group, so we could calculate the correct
1013 * end address that we return
1017 for (i
= 0; i
< num_mlgroups
; i
++) {
1018 struct mdesc_mlgroup
*const m
= &mlgroups
[i
];
1020 if ((pa_start
& m
->mask
) == m
->match
) {
1027 if (i
== num_mlgroups
) {
1028 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1037 * Each latency group has match and mask, and each memory block has an
1038 * offset. An address belongs to a latency group if its address matches
1039 * the following formula: ((addr + offset) & mask) == match
1040 * It is, however, slow to check every single page if it matches a
1041 * particular latency group. As optimization we calculate end value by
1042 * using bit arithmetics.
1044 m_end
= m_match
+ (1ul << __ffs(m_mask
)) - mblock
->offset
;
1045 m_end
+= pa_start
& ~((1ul << fls64(m_mask
)) - 1);
1046 ret_end
= m_end
> end
? end
: m_end
;
1054 /* This must be invoked after performing all of the necessary
1055 * memblock_set_node() calls for 'nid'. We need to be able to get
1056 * correct data from get_pfn_range_for_nid().
1058 static void __init
allocate_node_data(int nid
)
1060 struct pglist_data
*p
;
1061 unsigned long start_pfn
, end_pfn
;
1062 #ifdef CONFIG_NEED_MULTIPLE_NODES
1064 NODE_DATA(nid
) = memblock_alloc_node(sizeof(struct pglist_data
),
1065 SMP_CACHE_BYTES
, nid
);
1066 if (!NODE_DATA(nid
)) {
1067 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
1071 NODE_DATA(nid
)->node_id
= nid
;
1076 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1077 p
->node_start_pfn
= start_pfn
;
1078 p
->node_spanned_pages
= end_pfn
- start_pfn
;
1081 static void init_node_masks_nonnuma(void)
1083 #ifdef CONFIG_NEED_MULTIPLE_NODES
1087 numadbg("Initializing tables for non-numa.\n");
1089 node_masks
[0].mask
= 0;
1090 node_masks
[0].match
= 0;
1093 #ifdef CONFIG_NEED_MULTIPLE_NODES
1094 for (i
= 0; i
< NR_CPUS
; i
++)
1095 numa_cpu_lookup_table
[i
] = 0;
1097 cpumask_setall(&numa_cpumask_lookup_table
[0]);
1101 #ifdef CONFIG_NEED_MULTIPLE_NODES
1102 struct pglist_data
*node_data
[MAX_NUMNODES
];
1104 EXPORT_SYMBOL(numa_cpu_lookup_table
);
1105 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
1106 EXPORT_SYMBOL(node_data
);
1108 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
1113 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
1114 u64 target
= mdesc_arc_target(md
, arc
);
1117 val
= mdesc_get_property(md
, target
,
1118 "cfg-handle", NULL
);
1119 if (val
&& *val
== cfg_handle
)
1125 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
1128 u64 arc
, candidate
, best_latency
= ~(u64
)0;
1130 candidate
= MDESC_NODE_NULL
;
1131 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1132 u64 target
= mdesc_arc_target(md
, arc
);
1133 const char *name
= mdesc_node_name(md
, target
);
1136 if (strcmp(name
, "pio-latency-group"))
1139 val
= mdesc_get_property(md
, target
, "latency", NULL
);
1143 if (*val
< best_latency
) {
1145 best_latency
= *val
;
1149 if (candidate
== MDESC_NODE_NULL
)
1152 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
1155 int of_node_to_nid(struct device_node
*dp
)
1157 const struct linux_prom64_registers
*regs
;
1158 struct mdesc_handle
*md
;
1163 /* This is the right thing to do on currently supported
1164 * SUN4U NUMA platforms as well, as the PCI controller does
1165 * not sit behind any particular memory controller.
1170 regs
= of_get_property(dp
, "reg", NULL
);
1174 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
1180 mdesc_for_each_node_by_name(md
, grp
, "group") {
1181 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1193 static void __init
add_node_ranges(void)
1195 phys_addr_t start
, end
;
1196 unsigned long prev_max
;
1200 prev_max
= memblock
.memory
.max
;
1202 for_each_mem_range(i
, &start
, &end
) {
1203 while (start
< end
) {
1204 unsigned long this_end
;
1207 this_end
= memblock_nid_range(start
, end
, &nid
);
1209 numadbg("Setting memblock NUMA node nid[%d] "
1210 "start[%llx] end[%lx]\n",
1211 nid
, start
, this_end
);
1213 memblock_set_node(start
, this_end
- start
,
1214 &memblock
.memory
, nid
);
1215 if (memblock
.memory
.max
!= prev_max
)
1216 goto memblock_resized
;
1222 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1224 unsigned long paddr
;
1228 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1233 paddr
= memblock_phys_alloc(count
* sizeof(struct mdesc_mlgroup
),
1238 mlgroups
= __va(paddr
);
1239 num_mlgroups
= count
;
1242 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1243 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1248 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1250 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1252 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1255 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1256 "match[%llx] mask[%llx]\n",
1257 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1263 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1265 unsigned long paddr
;
1269 mdesc_for_each_node_by_name(md
, node
, "mblock")
1274 paddr
= memblock_phys_alloc(count
* sizeof(struct mdesc_mblock
),
1279 mblocks
= __va(paddr
);
1280 num_mblocks
= count
;
1283 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1284 struct mdesc_mblock
*m
= &mblocks
[count
++];
1287 val
= mdesc_get_property(md
, node
, "base", NULL
);
1289 val
= mdesc_get_property(md
, node
, "size", NULL
);
1291 val
= mdesc_get_property(md
, node
,
1292 "address-congruence-offset", NULL
);
1294 /* The address-congruence-offset property is optional.
1295 * Explicity zero it be identifty this.
1302 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1303 count
- 1, m
->base
, m
->size
, m
->offset
);
1309 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1310 u64 grp
, cpumask_t
*mask
)
1314 cpumask_clear(mask
);
1316 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1317 u64 target
= mdesc_arc_target(md
, arc
);
1318 const char *name
= mdesc_node_name(md
, target
);
1321 if (strcmp(name
, "cpu"))
1323 id
= mdesc_get_property(md
, target
, "id", NULL
);
1324 if (*id
< nr_cpu_ids
)
1325 cpumask_set_cpu(*id
, mask
);
1329 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1333 for (i
= 0; i
< num_mlgroups
; i
++) {
1334 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1335 if (m
->node
== node
)
1341 int __node_distance(int from
, int to
)
1343 if ((from
>= MAX_NUMNODES
) || (to
>= MAX_NUMNODES
)) {
1344 pr_warn("Returning default NUMA distance value for %d->%d\n",
1346 return (from
== to
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1348 return numa_latency
[from
][to
];
1350 EXPORT_SYMBOL(__node_distance
);
1352 static int __init
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup
*grp
)
1356 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1357 struct node_mem_mask
*n
= &node_masks
[i
];
1359 if ((grp
->mask
== n
->mask
) && (grp
->match
== n
->match
))
1365 static void __init
find_numa_latencies_for_group(struct mdesc_handle
*md
,
1370 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1372 u64 target
= mdesc_arc_target(md
, arc
);
1373 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1377 tnode
= find_best_numa_node_for_mlgroup(m
);
1378 if (tnode
== MAX_NUMNODES
)
1380 numa_latency
[index
][tnode
] = m
->latency
;
1384 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1387 struct mdesc_mlgroup
*candidate
= NULL
;
1388 u64 arc
, best_latency
= ~(u64
)0;
1389 struct node_mem_mask
*n
;
1391 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1392 u64 target
= mdesc_arc_target(md
, arc
);
1393 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1396 if (m
->latency
< best_latency
) {
1398 best_latency
= m
->latency
;
1404 if (num_node_masks
!= index
) {
1405 printk(KERN_ERR
"Inconsistent NUMA state, "
1406 "index[%d] != num_node_masks[%d]\n",
1407 index
, num_node_masks
);
1411 n
= &node_masks
[num_node_masks
++];
1413 n
->mask
= candidate
->mask
;
1414 n
->match
= candidate
->match
;
1416 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1417 index
, n
->mask
, n
->match
, candidate
->latency
);
1422 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1428 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1430 for_each_cpu(cpu
, &mask
)
1431 numa_cpu_lookup_table
[cpu
] = index
;
1432 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1435 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1436 for_each_cpu(cpu
, &mask
)
1441 return numa_attach_mlgroup(md
, grp
, index
);
1444 static int __init
numa_parse_mdesc(void)
1446 struct mdesc_handle
*md
= mdesc_grab();
1447 int i
, j
, err
, count
;
1450 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1451 if (node
== MDESC_NODE_NULL
) {
1456 err
= grab_mblocks(md
);
1460 err
= grab_mlgroups(md
);
1465 mdesc_for_each_node_by_name(md
, node
, "group") {
1466 err
= numa_parse_mdesc_group(md
, node
, count
);
1473 mdesc_for_each_node_by_name(md
, node
, "group") {
1474 find_numa_latencies_for_group(md
, node
, count
);
1478 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1479 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1480 u64 self_latency
= numa_latency
[i
][i
];
1482 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
1483 numa_latency
[i
][j
] =
1484 (numa_latency
[i
][j
] * LOCAL_DISTANCE
) /
1491 for (i
= 0; i
< num_node_masks
; i
++) {
1492 allocate_node_data(i
);
1502 static int __init
numa_parse_jbus(void)
1504 unsigned long cpu
, index
;
1506 /* NUMA node id is encoded in bits 36 and higher, and there is
1507 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1510 for_each_present_cpu(cpu
) {
1511 numa_cpu_lookup_table
[cpu
] = index
;
1512 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1513 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1514 node_masks
[index
].match
= cpu
<< 36UL;
1518 num_node_masks
= index
;
1522 for (index
= 0; index
< num_node_masks
; index
++) {
1523 allocate_node_data(index
);
1524 node_set_online(index
);
1530 static int __init
numa_parse_sun4u(void)
1532 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1535 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1536 if ((ver
>> 32UL) == __JALAPENO_ID
||
1537 (ver
>> 32UL) == __SERRANO_ID
)
1538 return numa_parse_jbus();
1543 static int __init
bootmem_init_numa(void)
1548 numadbg("bootmem_init_numa()\n");
1550 /* Some sane defaults for numa latency values */
1551 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1552 for (j
= 0; j
< MAX_NUMNODES
; j
++)
1553 numa_latency
[i
][j
] = (i
== j
) ?
1554 LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1558 if (tlb_type
== hypervisor
)
1559 err
= numa_parse_mdesc();
1561 err
= numa_parse_sun4u();
1568 static int bootmem_init_numa(void)
1575 static void __init
bootmem_init_nonnuma(void)
1577 unsigned long top_of_ram
= memblock_end_of_DRAM();
1578 unsigned long total_ram
= memblock_phys_mem_size();
1580 numadbg("bootmem_init_nonnuma()\n");
1582 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1583 top_of_ram
, total_ram
);
1584 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1585 (top_of_ram
- total_ram
) >> 20);
1587 init_node_masks_nonnuma();
1588 memblock_set_node(0, PHYS_ADDR_MAX
, &memblock
.memory
, 0);
1589 allocate_node_data(0);
1593 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1595 unsigned long end_pfn
;
1597 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1598 max_pfn
= max_low_pfn
= end_pfn
;
1599 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1601 if (bootmem_init_numa() < 0)
1602 bootmem_init_nonnuma();
1604 /* Dump memblock with node info. */
1605 memblock_dump_all();
1607 /* XXX cpu notifier XXX */
1614 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1615 static int pall_ents __initdata
;
1617 static unsigned long max_phys_bits
= 40;
1619 bool kern_addr_valid(unsigned long addr
)
1627 if ((long)addr
< 0L) {
1628 unsigned long pa
= __pa(addr
);
1630 if ((pa
>> max_phys_bits
) != 0UL)
1633 return pfn_valid(pa
>> PAGE_SHIFT
);
1636 if (addr
>= (unsigned long) KERNBASE
&&
1637 addr
< (unsigned long)&_end
)
1640 pgd
= pgd_offset_k(addr
);
1644 p4d
= p4d_offset(pgd
, addr
);
1648 pud
= pud_offset(p4d
, addr
);
1652 if (pud_large(*pud
))
1653 return pfn_valid(pud_pfn(*pud
));
1655 pmd
= pmd_offset(pud
, addr
);
1659 if (pmd_large(*pmd
))
1660 return pfn_valid(pmd_pfn(*pmd
));
1662 pte
= pte_offset_kernel(pmd
, addr
);
1666 return pfn_valid(pte_pfn(*pte
));
1668 EXPORT_SYMBOL(kern_addr_valid
);
1670 static unsigned long __ref
kernel_map_hugepud(unsigned long vstart
,
1674 const unsigned long mask16gb
= (1UL << 34) - 1UL;
1675 u64 pte_val
= vstart
;
1677 /* Each PUD is 8GB */
1678 if ((vstart
& mask16gb
) ||
1679 (vend
- vstart
<= mask16gb
)) {
1680 pte_val
^= kern_linear_pte_xor
[2];
1681 pud_val(*pud
) = pte_val
| _PAGE_PUD_HUGE
;
1683 return vstart
+ PUD_SIZE
;
1686 pte_val
^= kern_linear_pte_xor
[3];
1687 pte_val
|= _PAGE_PUD_HUGE
;
1689 vend
= vstart
+ mask16gb
+ 1UL;
1690 while (vstart
< vend
) {
1691 pud_val(*pud
) = pte_val
;
1693 pte_val
+= PUD_SIZE
;
1700 static bool kernel_can_map_hugepud(unsigned long vstart
, unsigned long vend
,
1703 if (guard
&& !(vstart
& ~PUD_MASK
) && (vend
- vstart
) >= PUD_SIZE
)
1709 static unsigned long __ref
kernel_map_hugepmd(unsigned long vstart
,
1713 const unsigned long mask256mb
= (1UL << 28) - 1UL;
1714 const unsigned long mask2gb
= (1UL << 31) - 1UL;
1715 u64 pte_val
= vstart
;
1717 /* Each PMD is 8MB */
1718 if ((vstart
& mask256mb
) ||
1719 (vend
- vstart
<= mask256mb
)) {
1720 pte_val
^= kern_linear_pte_xor
[0];
1721 pmd_val(*pmd
) = pte_val
| _PAGE_PMD_HUGE
;
1723 return vstart
+ PMD_SIZE
;
1726 if ((vstart
& mask2gb
) ||
1727 (vend
- vstart
<= mask2gb
)) {
1728 pte_val
^= kern_linear_pte_xor
[1];
1729 pte_val
|= _PAGE_PMD_HUGE
;
1730 vend
= vstart
+ mask256mb
+ 1UL;
1732 pte_val
^= kern_linear_pte_xor
[2];
1733 pte_val
|= _PAGE_PMD_HUGE
;
1734 vend
= vstart
+ mask2gb
+ 1UL;
1737 while (vstart
< vend
) {
1738 pmd_val(*pmd
) = pte_val
;
1740 pte_val
+= PMD_SIZE
;
1748 static bool kernel_can_map_hugepmd(unsigned long vstart
, unsigned long vend
,
1751 if (guard
&& !(vstart
& ~PMD_MASK
) && (vend
- vstart
) >= PMD_SIZE
)
1757 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1758 unsigned long pend
, pgprot_t prot
,
1761 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1762 unsigned long vend
= PAGE_OFFSET
+ pend
;
1763 unsigned long alloc_bytes
= 0UL;
1765 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1766 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1771 while (vstart
< vend
) {
1772 unsigned long this_end
, paddr
= __pa(vstart
);
1773 pgd_t
*pgd
= pgd_offset_k(vstart
);
1779 if (pgd_none(*pgd
)) {
1782 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1786 alloc_bytes
+= PAGE_SIZE
;
1787 pgd_populate(&init_mm
, pgd
, new);
1790 p4d
= p4d_offset(pgd
, vstart
);
1791 if (p4d_none(*p4d
)) {
1794 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1798 alloc_bytes
+= PAGE_SIZE
;
1799 p4d_populate(&init_mm
, p4d
, new);
1802 pud
= pud_offset(p4d
, vstart
);
1803 if (pud_none(*pud
)) {
1806 if (kernel_can_map_hugepud(vstart
, vend
, use_huge
)) {
1807 vstart
= kernel_map_hugepud(vstart
, vend
, pud
);
1810 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1814 alloc_bytes
+= PAGE_SIZE
;
1815 pud_populate(&init_mm
, pud
, new);
1818 pmd
= pmd_offset(pud
, vstart
);
1819 if (pmd_none(*pmd
)) {
1822 if (kernel_can_map_hugepmd(vstart
, vend
, use_huge
)) {
1823 vstart
= kernel_map_hugepmd(vstart
, vend
, pmd
);
1826 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1830 alloc_bytes
+= PAGE_SIZE
;
1831 pmd_populate_kernel(&init_mm
, pmd
, new);
1834 pte
= pte_offset_kernel(pmd
, vstart
);
1835 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1836 if (this_end
> vend
)
1839 while (vstart
< this_end
) {
1840 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1842 vstart
+= PAGE_SIZE
;
1851 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1852 __func__
, PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1856 static void __init
flush_all_kernel_tsbs(void)
1860 for (i
= 0; i
< KERNEL_TSB_NENTRIES
; i
++) {
1861 struct tsb
*ent
= &swapper_tsb
[i
];
1863 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1865 #ifndef CONFIG_DEBUG_PAGEALLOC
1866 for (i
= 0; i
< KERNEL_TSB4M_NENTRIES
; i
++) {
1867 struct tsb
*ent
= &swapper_4m_tsb
[i
];
1869 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1874 extern unsigned int kvmap_linear_patch
[1];
1876 static void __init
kernel_physical_mapping_init(void)
1878 unsigned long i
, mem_alloced
= 0UL;
1879 bool use_huge
= true;
1881 #ifdef CONFIG_DEBUG_PAGEALLOC
1884 for (i
= 0; i
< pall_ents
; i
++) {
1885 unsigned long phys_start
, phys_end
;
1887 phys_start
= pall
[i
].phys_addr
;
1888 phys_end
= phys_start
+ pall
[i
].reg_size
;
1890 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1891 PAGE_KERNEL
, use_huge
);
1894 printk("Allocated %ld bytes for kernel page tables.\n",
1897 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1898 flushi(&kvmap_linear_patch
[0]);
1900 flush_all_kernel_tsbs();
1905 #ifdef CONFIG_DEBUG_PAGEALLOC
1906 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1908 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1909 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1911 kernel_map_range(phys_start
, phys_end
,
1912 (enable
? PAGE_KERNEL
: __pgprot(0)), false);
1914 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1915 PAGE_OFFSET
+ phys_end
);
1917 /* we should perform an IPI and flush all tlbs,
1918 * but that can deadlock->flush only current cpu.
1920 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1921 PAGE_OFFSET
+ phys_end
);
1925 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1929 for (i
= 0; i
< pavail_ents
; i
++) {
1930 if (pavail
[i
].reg_size
>= size
)
1931 return pavail
[i
].phys_addr
;
1937 unsigned long PAGE_OFFSET
;
1938 EXPORT_SYMBOL(PAGE_OFFSET
);
1940 unsigned long VMALLOC_END
= 0x0000010000000000UL
;
1941 EXPORT_SYMBOL(VMALLOC_END
);
1943 unsigned long sparc64_va_hole_top
= 0xfffff80000000000UL
;
1944 unsigned long sparc64_va_hole_bottom
= 0x0000080000000000UL
;
1946 static void __init
setup_page_offset(void)
1948 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1949 /* Cheetah/Panther support a full 64-bit virtual
1950 * address, so we can use all that our page tables
1953 sparc64_va_hole_top
= 0xfff0000000000000UL
;
1954 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
1957 } else if (tlb_type
== hypervisor
) {
1958 switch (sun4v_chip_type
) {
1959 case SUN4V_CHIP_NIAGARA1
:
1960 case SUN4V_CHIP_NIAGARA2
:
1961 /* T1 and T2 support 48-bit virtual addresses. */
1962 sparc64_va_hole_top
= 0xffff800000000000UL
;
1963 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1967 case SUN4V_CHIP_NIAGARA3
:
1968 /* T3 supports 48-bit virtual addresses. */
1969 sparc64_va_hole_top
= 0xffff800000000000UL
;
1970 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1974 case SUN4V_CHIP_NIAGARA4
:
1975 case SUN4V_CHIP_NIAGARA5
:
1976 case SUN4V_CHIP_SPARC64X
:
1977 case SUN4V_CHIP_SPARC_M6
:
1978 /* T4 and later support 52-bit virtual addresses. */
1979 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1980 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1983 case SUN4V_CHIP_SPARC_M7
:
1984 case SUN4V_CHIP_SPARC_SN
:
1985 /* M7 and later support 52-bit virtual addresses. */
1986 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1987 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1990 case SUN4V_CHIP_SPARC_M8
:
1992 /* M8 and later support 54-bit virtual addresses.
1993 * However, restricting M8 and above VA bits to 53
1994 * as 4-level page table cannot support more than
1997 sparc64_va_hole_top
= 0xfff0000000000000UL
;
1998 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
2004 if (max_phys_bits
> MAX_PHYS_ADDRESS_BITS
) {
2005 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2010 PAGE_OFFSET
= sparc64_va_hole_top
;
2011 VMALLOC_END
= ((sparc64_va_hole_bottom
>> 1) +
2012 (sparc64_va_hole_bottom
>> 2));
2014 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2015 PAGE_OFFSET
, max_phys_bits
);
2016 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2017 VMALLOC_START
, VMALLOC_END
);
2018 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2019 VMEMMAP_BASE
, VMEMMAP_BASE
<< 1);
2022 static void __init
tsb_phys_patch(void)
2024 struct tsb_ldquad_phys_patch_entry
*pquad
;
2025 struct tsb_phys_patch_entry
*p
;
2027 pquad
= &__tsb_ldquad_phys_patch
;
2028 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
2029 unsigned long addr
= pquad
->addr
;
2031 if (tlb_type
== hypervisor
)
2032 *(unsigned int *) addr
= pquad
->sun4v_insn
;
2034 *(unsigned int *) addr
= pquad
->sun4u_insn
;
2036 __asm__
__volatile__("flush %0"
2043 p
= &__tsb_phys_patch
;
2044 while (p
< &__tsb_phys_patch_end
) {
2045 unsigned long addr
= p
->addr
;
2047 *(unsigned int *) addr
= p
->insn
;
2049 __asm__
__volatile__("flush %0"
2057 /* Don't mark as init, we give this to the Hypervisor. */
2058 #ifndef CONFIG_DEBUG_PAGEALLOC
2059 #define NUM_KTSB_DESCR 2
2061 #define NUM_KTSB_DESCR 1
2063 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
2065 /* The swapper TSBs are loaded with a base sequence of:
2067 * sethi %uhi(SYMBOL), REG1
2068 * sethi %hi(SYMBOL), REG2
2069 * or REG1, %ulo(SYMBOL), REG1
2070 * or REG2, %lo(SYMBOL), REG2
2071 * sllx REG1, 32, REG1
2072 * or REG1, REG2, REG1
2074 * When we use physical addressing for the TSB accesses, we patch the
2075 * first four instructions in the above sequence.
2078 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
2080 unsigned long high_bits
, low_bits
;
2082 high_bits
= (pa
>> 32) & 0xffffffff;
2083 low_bits
= (pa
>> 0) & 0xffffffff;
2085 while (start
< end
) {
2086 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
2088 ia
[0] = (ia
[0] & ~0x3fffff) | (high_bits
>> 10);
2089 __asm__
__volatile__("flush %0" : : "r" (ia
));
2091 ia
[1] = (ia
[1] & ~0x3fffff) | (low_bits
>> 10);
2092 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
2094 ia
[2] = (ia
[2] & ~0x1fff) | (high_bits
& 0x3ff);
2095 __asm__
__volatile__("flush %0" : : "r" (ia
+ 2));
2097 ia
[3] = (ia
[3] & ~0x1fff) | (low_bits
& 0x3ff);
2098 __asm__
__volatile__("flush %0" : : "r" (ia
+ 3));
2104 static void ktsb_phys_patch(void)
2106 extern unsigned int __swapper_tsb_phys_patch
;
2107 extern unsigned int __swapper_tsb_phys_patch_end
;
2108 unsigned long ktsb_pa
;
2110 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2111 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
2112 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
2113 #ifndef CONFIG_DEBUG_PAGEALLOC
2115 extern unsigned int __swapper_4m_tsb_phys_patch
;
2116 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
2117 ktsb_pa
= (kern_base
+
2118 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2119 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
2120 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
2125 static void __init
sun4v_ktsb_init(void)
2127 unsigned long ktsb_pa
;
2129 /* First KTSB for PAGE_SIZE mappings. */
2130 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2132 switch (PAGE_SIZE
) {
2135 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
2136 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
2140 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
2141 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
2145 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
2146 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
2149 case 4 * 1024 * 1024:
2150 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2151 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
2155 ktsb_descr
[0].assoc
= 1;
2156 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
2157 ktsb_descr
[0].ctx_idx
= 0;
2158 ktsb_descr
[0].tsb_base
= ktsb_pa
;
2159 ktsb_descr
[0].resv
= 0;
2161 #ifndef CONFIG_DEBUG_PAGEALLOC
2162 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2163 ktsb_pa
= (kern_base
+
2164 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2166 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2167 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
2168 HV_PGSZ_MASK_256MB
|
2170 HV_PGSZ_MASK_16GB
) &
2172 ktsb_descr
[1].assoc
= 1;
2173 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
2174 ktsb_descr
[1].ctx_idx
= 0;
2175 ktsb_descr
[1].tsb_base
= ktsb_pa
;
2176 ktsb_descr
[1].resv
= 0;
2180 void sun4v_ktsb_register(void)
2182 unsigned long pa
, ret
;
2184 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
2186 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
2188 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2189 "errors with %lx\n", pa
, ret
);
2194 static void __init
sun4u_linear_pte_xor_finalize(void)
2196 #ifndef CONFIG_DEBUG_PAGEALLOC
2197 /* This is where we would add Panther support for
2198 * 32MB and 256MB pages.
2203 static void __init
sun4v_linear_pte_xor_finalize(void)
2205 unsigned long pagecv_flag
;
2207 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2208 * enables MCD error. Do not set bit 9 on M7 processor.
2210 switch (sun4v_chip_type
) {
2211 case SUN4V_CHIP_SPARC_M7
:
2212 case SUN4V_CHIP_SPARC_M8
:
2213 case SUN4V_CHIP_SPARC_SN
:
2217 pagecv_flag
= _PAGE_CV_4V
;
2220 #ifndef CONFIG_DEBUG_PAGEALLOC
2221 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
2222 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2224 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| pagecv_flag
|
2225 _PAGE_P_4V
| _PAGE_W_4V
);
2227 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2230 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
2231 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
2233 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| pagecv_flag
|
2234 _PAGE_P_4V
| _PAGE_W_4V
);
2236 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
2239 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
2240 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
2242 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| pagecv_flag
|
2243 _PAGE_P_4V
| _PAGE_W_4V
);
2245 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
2250 /* paging_init() sets up the page tables */
2252 static unsigned long last_valid_pfn
;
2254 static void sun4u_pgprot_init(void);
2255 static void sun4v_pgprot_init(void);
2257 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2258 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2259 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2260 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2261 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2262 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2264 /* We need to exclude reserved regions. This exclusion will include
2265 * vmlinux and initrd. To be more precise the initrd size could be used to
2266 * compute a new lower limit because it is freed later during initialization.
2268 static void __init
reduce_memory(phys_addr_t limit_ram
)
2270 limit_ram
+= memblock_reserved_size();
2271 memblock_enforce_memory_limit(limit_ram
);
2274 void __init
paging_init(void)
2276 unsigned long end_pfn
, shift
, phys_base
;
2277 unsigned long real_end
, i
;
2279 setup_page_offset();
2281 /* These build time checkes make sure that the dcache_dirty_cpu()
2282 * page->flags usage will work.
2284 * When a page gets marked as dcache-dirty, we store the
2285 * cpu number starting at bit 32 in the page->flags. Also,
2286 * functions like clear_dcache_dirty_cpu use the cpu mask
2287 * in 13-bit signed-immediate instruction fields.
2291 * Page flags must not reach into upper 32 bits that are used
2292 * for the cpu number
2294 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
2297 * The bit fields placed in the high range must not reach below
2298 * the 32 bit boundary. Otherwise we cannot place the cpu field
2299 * at the 32 bit boundary.
2301 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
2302 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
2304 BUILD_BUG_ON(NR_CPUS
> 4096);
2306 kern_base
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
2307 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
2309 /* Invalidate both kernel TSBs. */
2310 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
2311 #ifndef CONFIG_DEBUG_PAGEALLOC
2312 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2315 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2316 * bit on M7 processor. This is a conflicting usage of the same
2317 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2318 * Detection error on all pages and this will lead to problems
2319 * later. Kernel does not run with MCD enabled and hence rest
2320 * of the required steps to fully configure memory corruption
2321 * detection are not taken. We need to ensure TTE.mcde is not
2322 * set on M7 processor. Compute the value of cacheability
2323 * flag for use later taking this into consideration.
2325 switch (sun4v_chip_type
) {
2326 case SUN4V_CHIP_SPARC_M7
:
2327 case SUN4V_CHIP_SPARC_M8
:
2328 case SUN4V_CHIP_SPARC_SN
:
2329 page_cache4v_flag
= _PAGE_CP_4V
;
2332 page_cache4v_flag
= _PAGE_CACHE_4V
;
2336 if (tlb_type
== hypervisor
)
2337 sun4v_pgprot_init();
2339 sun4u_pgprot_init();
2341 if (tlb_type
== cheetah_plus
||
2342 tlb_type
== hypervisor
) {
2347 if (tlb_type
== hypervisor
)
2348 sun4v_patch_tlb_handlers();
2350 /* Find available physical memory...
2352 * Read it twice in order to work around a bug in openfirmware.
2353 * The call to grab this table itself can cause openfirmware to
2354 * allocate memory, which in turn can take away some space from
2355 * the list of available memory. Reading it twice makes sure
2356 * we really do get the final value.
2358 read_obp_translations();
2359 read_obp_memory("reg", &pall
[0], &pall_ents
);
2360 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2361 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2363 phys_base
= 0xffffffffffffffffUL
;
2364 for (i
= 0; i
< pavail_ents
; i
++) {
2365 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
2366 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
2369 memblock_reserve(kern_base
, kern_size
);
2371 find_ramdisk(phys_base
);
2373 if (cmdline_memory_size
)
2374 reduce_memory(cmdline_memory_size
);
2376 memblock_allow_resize();
2377 memblock_dump_all();
2379 set_bit(0, mmu_context_bmap
);
2381 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
2383 real_end
= (unsigned long)_end
;
2384 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << ILOG2_4MB
);
2385 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2386 num_kernel_image_mappings
);
2388 /* Set kernel pgd to upper alias so physical page computations
2391 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
2393 memset(swapper_pg_dir
, 0, sizeof(swapper_pg_dir
));
2395 inherit_prom_mappings();
2397 /* Ok, we can use our TLB miss and window trap handlers safely. */
2402 prom_build_devicetree();
2403 of_populate_present_mask();
2405 of_fill_in_cpu_data();
2408 if (tlb_type
== hypervisor
) {
2410 mdesc_populate_present_mask(cpu_all_mask
);
2412 mdesc_fill_in_cpu_data(cpu_all_mask
);
2414 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
2416 sun4v_linear_pte_xor_finalize();
2419 sun4v_ktsb_register();
2421 unsigned long impl
, ver
;
2423 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
2424 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
2426 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
2427 impl
= ((ver
>> 32) & 0xffff);
2428 if (impl
== PANTHER_IMPL
)
2429 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
2430 HV_PGSZ_MASK_256MB
);
2432 sun4u_linear_pte_xor_finalize();
2435 /* Flush the TLBs and the 4M TSB so that the updated linear
2436 * pte XOR settings are realized for all mappings.
2439 #ifndef CONFIG_DEBUG_PAGEALLOC
2440 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2444 /* Setup bootmem... */
2445 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
2447 kernel_physical_mapping_init();
2450 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
2452 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
2454 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
2456 free_area_init(max_zone_pfns
);
2459 printk("Booting Linux...\n");
2462 int page_in_phys_avail(unsigned long paddr
)
2468 for (i
= 0; i
< pavail_ents
; i
++) {
2469 unsigned long start
, end
;
2471 start
= pavail
[i
].phys_addr
;
2472 end
= start
+ pavail
[i
].reg_size
;
2474 if (paddr
>= start
&& paddr
< end
)
2477 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
2479 #ifdef CONFIG_BLK_DEV_INITRD
2480 if (paddr
>= __pa(initrd_start
) &&
2481 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
2488 static void __init
register_page_bootmem_info(void)
2490 #ifdef CONFIG_NEED_MULTIPLE_NODES
2493 for_each_online_node(i
)
2494 if (NODE_DATA(i
)->node_spanned_pages
)
2495 register_page_bootmem_info_node(NODE_DATA(i
));
2498 void __init
mem_init(void)
2500 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2502 memblock_free_all();
2505 * Must be done after boot memory is put on freelist, because here we
2506 * might set fields in deferred struct pages that have not yet been
2507 * initialized, and memblock_free_all() initializes all the reserved
2508 * deferred pages for us.
2510 register_page_bootmem_info();
2513 * Set up the zero page, mark it reserved, so that page count
2514 * is not manipulated when freeing the page from user ptes.
2516 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2517 if (mem_map_zero
== NULL
) {
2518 prom_printf("paging_init: Cannot alloc zero page.\n");
2521 mark_page_reserved(mem_map_zero
);
2523 mem_init_print_info(NULL
);
2525 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2526 cheetah_ecache_flush_init();
2529 void free_initmem(void)
2531 unsigned long addr
, initend
;
2534 /* If the physical memory maps were trimmed by kernel command
2535 * line options, don't even try freeing this initmem stuff up.
2536 * The kernel image could have been in the trimmed out region
2537 * and if so the freeing below will free invalid page structs.
2539 if (cmdline_memory_size
)
2543 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2545 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2546 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2547 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2551 ((unsigned long) __va(kern_base
)) -
2552 ((unsigned long) KERNBASE
));
2553 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2556 free_reserved_page(virt_to_page(page
));
2560 pgprot_t PAGE_KERNEL __read_mostly
;
2561 EXPORT_SYMBOL(PAGE_KERNEL
);
2563 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2564 pgprot_t PAGE_COPY __read_mostly
;
2566 pgprot_t PAGE_SHARED __read_mostly
;
2567 EXPORT_SYMBOL(PAGE_SHARED
);
2569 unsigned long pg_iobits __read_mostly
;
2571 unsigned long _PAGE_IE __read_mostly
;
2572 EXPORT_SYMBOL(_PAGE_IE
);
2574 unsigned long _PAGE_E __read_mostly
;
2575 EXPORT_SYMBOL(_PAGE_E
);
2577 unsigned long _PAGE_CACHE __read_mostly
;
2578 EXPORT_SYMBOL(_PAGE_CACHE
);
2580 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2581 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2582 int node
, struct vmem_altmap
*altmap
)
2584 unsigned long pte_base
;
2586 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2587 _PAGE_CP_4U
| _PAGE_CV_4U
|
2588 _PAGE_P_4U
| _PAGE_W_4U
);
2589 if (tlb_type
== hypervisor
)
2590 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2591 page_cache4v_flag
| _PAGE_P_4V
| _PAGE_W_4V
);
2593 pte_base
|= _PAGE_PMD_HUGE
;
2595 vstart
= vstart
& PMD_MASK
;
2596 vend
= ALIGN(vend
, PMD_SIZE
);
2597 for (; vstart
< vend
; vstart
+= PMD_SIZE
) {
2598 pgd_t
*pgd
= vmemmap_pgd_populate(vstart
, node
);
2607 p4d
= vmemmap_p4d_populate(pgd
, vstart
, node
);
2611 pud
= vmemmap_pud_populate(p4d
, vstart
, node
);
2615 pmd
= pmd_offset(pud
, vstart
);
2616 pte
= pmd_val(*pmd
);
2617 if (!(pte
& _PAGE_VALID
)) {
2618 void *block
= vmemmap_alloc_block(PMD_SIZE
, node
);
2623 pmd_val(*pmd
) = pte_base
| __pa(block
);
2630 void vmemmap_free(unsigned long start
, unsigned long end
,
2631 struct vmem_altmap
*altmap
)
2634 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2636 static void prot_init_common(unsigned long page_none
,
2637 unsigned long page_shared
,
2638 unsigned long page_copy
,
2639 unsigned long page_readonly
,
2640 unsigned long page_exec_bit
)
2642 PAGE_COPY
= __pgprot(page_copy
);
2643 PAGE_SHARED
= __pgprot(page_shared
);
2645 protection_map
[0x0] = __pgprot(page_none
);
2646 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2647 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2648 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2649 protection_map
[0x4] = __pgprot(page_readonly
);
2650 protection_map
[0x5] = __pgprot(page_readonly
);
2651 protection_map
[0x6] = __pgprot(page_copy
);
2652 protection_map
[0x7] = __pgprot(page_copy
);
2653 protection_map
[0x8] = __pgprot(page_none
);
2654 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2655 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2656 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2657 protection_map
[0xc] = __pgprot(page_readonly
);
2658 protection_map
[0xd] = __pgprot(page_readonly
);
2659 protection_map
[0xe] = __pgprot(page_shared
);
2660 protection_map
[0xf] = __pgprot(page_shared
);
2663 static void __init
sun4u_pgprot_init(void)
2665 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2666 unsigned long page_exec_bit
;
2669 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2670 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2671 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2673 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2674 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2675 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2676 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2678 _PAGE_IE
= _PAGE_IE_4U
;
2679 _PAGE_E
= _PAGE_E_4U
;
2680 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2682 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2683 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2685 #ifdef CONFIG_DEBUG_PAGEALLOC
2686 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2688 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2691 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2692 _PAGE_P_4U
| _PAGE_W_4U
);
2694 for (i
= 1; i
< 4; i
++)
2695 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2697 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2698 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2699 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2702 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2703 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2704 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2705 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2706 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2707 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2708 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2710 page_exec_bit
= _PAGE_EXEC_4U
;
2712 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2716 static void __init
sun4v_pgprot_init(void)
2718 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2719 unsigned long page_exec_bit
;
2722 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2723 page_cache4v_flag
| _PAGE_P_4V
|
2724 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2726 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2728 _PAGE_IE
= _PAGE_IE_4V
;
2729 _PAGE_E
= _PAGE_E_4V
;
2730 _PAGE_CACHE
= page_cache4v_flag
;
2732 #ifdef CONFIG_DEBUG_PAGEALLOC
2733 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2735 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2738 kern_linear_pte_xor
[0] |= (page_cache4v_flag
| _PAGE_P_4V
|
2741 for (i
= 1; i
< 4; i
++)
2742 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2744 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2745 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2747 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2748 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2749 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2750 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2752 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| page_cache4v_flag
;
2753 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2754 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2755 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2756 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2757 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2758 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2760 page_exec_bit
= _PAGE_EXEC_4V
;
2762 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2766 unsigned long pte_sz_bits(unsigned long sz
)
2768 if (tlb_type
== hypervisor
) {
2772 return _PAGE_SZ8K_4V
;
2774 return _PAGE_SZ64K_4V
;
2776 return _PAGE_SZ512K_4V
;
2777 case 4 * 1024 * 1024:
2778 return _PAGE_SZ4MB_4V
;
2784 return _PAGE_SZ8K_4U
;
2786 return _PAGE_SZ64K_4U
;
2788 return _PAGE_SZ512K_4U
;
2789 case 4 * 1024 * 1024:
2790 return _PAGE_SZ4MB_4U
;
2795 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2799 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2800 pte_val(pte
) |= (((unsigned long)space
) << 32);
2801 pte_val(pte
) |= pte_sz_bits(page_size
);
2806 static unsigned long kern_large_tte(unsigned long paddr
)
2810 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2811 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2812 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2813 if (tlb_type
== hypervisor
)
2814 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2815 page_cache4v_flag
| _PAGE_P_4V
|
2816 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2821 /* If not locked, zap it. */
2822 void __flush_tlb_all(void)
2824 unsigned long pstate
;
2827 __asm__
__volatile__("flushw\n\t"
2828 "rdpr %%pstate, %0\n\t"
2829 "wrpr %0, %1, %%pstate"
2832 if (tlb_type
== hypervisor
) {
2833 sun4v_mmu_demap_all();
2834 } else if (tlb_type
== spitfire
) {
2835 for (i
= 0; i
< 64; i
++) {
2836 /* Spitfire Errata #32 workaround */
2837 /* NOTE: Always runs on spitfire, so no
2838 * cheetah+ page size encodings.
2840 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2844 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2846 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2847 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2850 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2851 spitfire_put_dtlb_data(i
, 0x0UL
);
2854 /* Spitfire Errata #32 workaround */
2855 /* NOTE: Always runs on spitfire, so no
2856 * cheetah+ page size encodings.
2858 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2862 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2864 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2865 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2868 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2869 spitfire_put_itlb_data(i
, 0x0UL
);
2872 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2873 cheetah_flush_dtlb_all();
2874 cheetah_flush_itlb_all();
2876 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2880 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
)
2882 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2886 pte
= (pte_t
*) page_address(page
);
2891 pgtable_t
pte_alloc_one(struct mm_struct
*mm
)
2893 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2896 if (!pgtable_pte_page_ctor(page
)) {
2900 return (pte_t
*) page_address(page
);
2903 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2905 free_page((unsigned long)pte
);
2908 static void __pte_free(pgtable_t pte
)
2910 struct page
*page
= virt_to_page(pte
);
2912 pgtable_pte_page_dtor(page
);
2916 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2921 void pgtable_free(void *table
, bool is_page
)
2926 kmem_cache_free(pgtable_cache
, table
);
2929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2930 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2933 unsigned long pte
, flags
;
2934 struct mm_struct
*mm
;
2937 if (!pmd_large(entry
) || !pmd_young(entry
))
2940 pte
= pmd_val(entry
);
2942 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2943 if (!(pte
& _PAGE_VALID
))
2946 /* We are fabricating 8MB pages using 4MB real hw pages. */
2947 pte
|= (addr
& (1UL << REAL_HPAGE_SHIFT
));
2951 spin_lock_irqsave(&mm
->context
.lock
, flags
);
2953 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
2954 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
2957 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
2959 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2961 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2962 static void context_reload(void *__data
)
2964 struct mm_struct
*mm
= __data
;
2966 if (mm
== current
->mm
)
2967 load_secondary_context(mm
);
2970 void hugetlb_setup(struct pt_regs
*regs
)
2972 struct mm_struct
*mm
= current
->mm
;
2973 struct tsb_config
*tp
;
2975 if (faulthandler_disabled() || !mm
) {
2976 const struct exception_table_entry
*entry
;
2978 entry
= search_exception_tables(regs
->tpc
);
2980 regs
->tpc
= entry
->fixup
;
2981 regs
->tnpc
= regs
->tpc
+ 4;
2984 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2985 die_if_kernel("HugeTSB in atomic", regs
);
2988 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
2989 if (likely(tp
->tsb
== NULL
))
2990 tsb_grow(mm
, MM_TSB_HUGE
, 0);
2992 tsb_context_switch(mm
);
2995 /* On UltraSPARC-III+ and later, configure the second half of
2996 * the Data-TLB for huge pages.
2998 if (tlb_type
== cheetah_plus
) {
2999 bool need_context_reload
= false;
3002 spin_lock_irq(&ctx_alloc_lock
);
3003 ctx
= mm
->context
.sparc64_ctx_val
;
3004 ctx
&= ~CTX_PGSZ_MASK
;
3005 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
3006 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
3008 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
3009 /* When changing the page size fields, we
3010 * must perform a context flush so that no
3011 * stale entries match. This flush must
3012 * occur with the original context register
3015 do_flush_tlb_mm(mm
);
3017 /* Reload the context register of all processors
3018 * also executing in this address space.
3020 mm
->context
.sparc64_ctx_val
= ctx
;
3021 need_context_reload
= true;
3023 spin_unlock_irq(&ctx_alloc_lock
);
3025 if (need_context_reload
)
3026 on_each_cpu(context_reload
, mm
, 0);
3031 static struct resource code_resource
= {
3032 .name
= "Kernel code",
3033 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3036 static struct resource data_resource
= {
3037 .name
= "Kernel data",
3038 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3041 static struct resource bss_resource
= {
3042 .name
= "Kernel bss",
3043 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3046 static inline resource_size_t
compute_kern_paddr(void *addr
)
3048 return (resource_size_t
) (addr
- KERNBASE
+ kern_base
);
3051 static void __init
kernel_lds_init(void)
3053 code_resource
.start
= compute_kern_paddr(_text
);
3054 code_resource
.end
= compute_kern_paddr(_etext
- 1);
3055 data_resource
.start
= compute_kern_paddr(_etext
);
3056 data_resource
.end
= compute_kern_paddr(_edata
- 1);
3057 bss_resource
.start
= compute_kern_paddr(__bss_start
);
3058 bss_resource
.end
= compute_kern_paddr(_end
- 1);
3061 static int __init
report_memory(void)
3064 struct resource
*res
;
3068 for (i
= 0; i
< pavail_ents
; i
++) {
3069 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
3072 pr_warn("Failed to allocate source.\n");
3076 res
->name
= "System RAM";
3077 res
->start
= pavail
[i
].phys_addr
;
3078 res
->end
= pavail
[i
].phys_addr
+ pavail
[i
].reg_size
- 1;
3079 res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
3081 if (insert_resource(&iomem_resource
, res
) < 0) {
3082 pr_warn("Resource insertion failed.\n");
3086 insert_resource(res
, &code_resource
);
3087 insert_resource(res
, &data_resource
);
3088 insert_resource(res
, &bss_resource
);
3093 arch_initcall(report_memory
);
3096 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3098 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3101 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
3103 if (start
< HI_OBP_ADDRESS
&& end
> LOW_OBP_ADDRESS
) {
3104 if (start
< LOW_OBP_ADDRESS
) {
3105 flush_tsb_kernel_range(start
, LOW_OBP_ADDRESS
);
3106 do_flush_tlb_kernel_range(start
, LOW_OBP_ADDRESS
);
3108 if (end
> HI_OBP_ADDRESS
) {
3109 flush_tsb_kernel_range(HI_OBP_ADDRESS
, end
);
3110 do_flush_tlb_kernel_range(HI_OBP_ADDRESS
, end
);
3113 flush_tsb_kernel_range(start
, end
);
3114 do_flush_tlb_kernel_range(start
, end
);
3118 void copy_user_highpage(struct page
*to
, struct page
*from
,
3119 unsigned long vaddr
, struct vm_area_struct
*vma
)
3123 vfrom
= kmap_atomic(from
);
3124 vto
= kmap_atomic(to
);
3125 copy_user_page(vto
, vfrom
, vaddr
, to
);
3127 kunmap_atomic(vfrom
);
3129 /* If this page has ADI enabled, copy over any ADI tags
3132 if (vma
->vm_flags
& VM_SPARC_ADI
) {
3133 unsigned long pfrom
, pto
, i
, adi_tag
;
3135 pfrom
= page_to_phys(from
);
3136 pto
= page_to_phys(to
);
3138 for (i
= pfrom
; i
< (pfrom
+ PAGE_SIZE
); i
+= adi_blksize()) {
3139 asm volatile("ldxa [%1] %2, %0\n\t"
3141 : "r" (i
), "i" (ASI_MCD_REAL
));
3142 asm volatile("stxa %0, [%1] %2\n\t"
3144 : "r" (adi_tag
), "r" (pto
),
3145 "i" (ASI_MCD_REAL
));
3146 pto
+= adi_blksize();
3148 asm volatile("membar #Sync\n\t");
3151 EXPORT_SYMBOL(copy_user_highpage
);
3153 void copy_highpage(struct page
*to
, struct page
*from
)
3157 vfrom
= kmap_atomic(from
);
3158 vto
= kmap_atomic(to
);
3159 copy_page(vto
, vfrom
);
3161 kunmap_atomic(vfrom
);
3163 /* If this platform is ADI enabled, copy any ADI tags
3166 if (adi_capable()) {
3167 unsigned long pfrom
, pto
, i
, adi_tag
;
3169 pfrom
= page_to_phys(from
);
3170 pto
= page_to_phys(to
);
3172 for (i
= pfrom
; i
< (pfrom
+ PAGE_SIZE
); i
+= adi_blksize()) {
3173 asm volatile("ldxa [%1] %2, %0\n\t"
3175 : "r" (i
), "i" (ASI_MCD_REAL
));
3176 asm volatile("stxa %0, [%1] %2\n\t"
3178 : "r" (adi_tag
), "r" (pto
),
3179 "i" (ASI_MCD_REAL
));
3180 pto
+= adi_blksize();
3182 asm volatile("membar #Sync\n\t");
3185 EXPORT_SYMBOL(copy_highpage
);