WIP FPC-III support
[linux/fpc-iii.git] / arch / x86 / crypto / sha512-avx-asm.S
blob684d58c8bc4fe1c5e370be9dd9cc4dc6968da72a
1 ########################################################################
2 # Implement fast SHA-512 with AVX instructions. (x86_64)
4 # Copyright (C) 2013 Intel Corporation.
6 # Authors:
7 #     James Guilford <james.guilford@intel.com>
8 #     Kirk Yap <kirk.s.yap@intel.com>
9 #     David Cote <david.m.cote@intel.com>
10 #     Tim Chen <tim.c.chen@linux.intel.com>
12 # This software is available to you under a choice of one of two
13 # licenses.  You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
18 #     Redistribution and use in source and binary forms, with or
19 #     without modification, are permitted provided that the following
20 #     conditions are met:
22 #      - Redistributions of source code must retain the above
23 #        copyright notice, this list of conditions and the following
24 #        disclaimer.
26 #      - Redistributions in binary form must reproduce the above
27 #        copyright notice, this list of conditions and the following
28 #        disclaimer in the documentation and/or other materials
29 #        provided with the distribution.
31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 # SOFTWARE.
40 ########################################################################
42 # This code is described in an Intel White-Paper:
43 # "Fast SHA-512 Implementations on Intel Architecture Processors"
45 # To find it, surf to http://www.intel.com/p/en_US/embedded
46 # and search for that title.
48 ########################################################################
50 #include <linux/linkage.h>
52 .text
54 # Virtual Registers
55 # ARG1
56 digest  = %rdi
57 # ARG2
58 msg     = %rsi
59 # ARG3
60 msglen  = %rdx
61 T1      = %rcx
62 T2      = %r8
63 a_64    = %r9
64 b_64    = %r10
65 c_64    = %r11
66 d_64    = %r12
67 e_64    = %r13
68 f_64    = %r14
69 g_64    = %r15
70 h_64    = %rbx
71 tmp0    = %rax
73 # Local variables (stack frame)
75 # Message Schedule
76 W_SIZE = 80*8
77 # W[t] + K[t] | W[t+1] + K[t+1]
78 WK_SIZE = 2*8
79 RSPSAVE_SIZE = 1*8
80 GPRSAVE_SIZE = 5*8
82 frame_W = 0
83 frame_WK = frame_W + W_SIZE
84 frame_RSPSAVE = frame_WK + WK_SIZE
85 frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
86 frame_size = frame_GPRSAVE + GPRSAVE_SIZE
88 # Useful QWORD "arrays" for simpler memory references
89 # MSG, DIGEST, K_t, W_t are arrays
90 # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
92 # Input message (arg1)
93 #define MSG(i)    8*i(msg)
95 # Output Digest (arg2)
96 #define DIGEST(i) 8*i(digest)
98 # SHA Constants (static mem)
99 #define K_t(i)    8*i+K512(%rip)
101 # Message Schedule (stack frame)
102 #define W_t(i)    8*i+frame_W(%rsp)
104 # W[t]+K[t] (stack frame)
105 #define WK_2(i)   8*((i%2))+frame_WK(%rsp)
107 .macro RotateState
108         # Rotate symbols a..h right
109         TMP   = h_64
110         h_64  = g_64
111         g_64  = f_64
112         f_64  = e_64
113         e_64  = d_64
114         d_64  = c_64
115         c_64  = b_64
116         b_64  = a_64
117         a_64  = TMP
118 .endm
120 .macro RORQ p1 p2
121         # shld is faster than ror on Sandybridge
122         shld    $(64-\p2), \p1, \p1
123 .endm
125 .macro SHA512_Round rnd
126         # Compute Round %%t
127         mov     f_64, T1          # T1 = f
128         mov     e_64, tmp0        # tmp = e
129         xor     g_64, T1          # T1 = f ^ g
130         RORQ    tmp0, 23   # 41    # tmp = e ror 23
131         and     e_64, T1          # T1 = (f ^ g) & e
132         xor     e_64, tmp0        # tmp = (e ror 23) ^ e
133         xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
134         idx = \rnd
135         add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
136         RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
137         xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
138         mov     a_64, T2          # T2 = a
139         add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
140         RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
141         add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
142         mov     a_64, tmp0        # tmp = a
143         xor     c_64, T2          # T2 = a ^ c
144         and     c_64, tmp0        # tmp = a & c
145         and     b_64, T2          # T2 = (a ^ c) & b
146         xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
147         mov     a_64, tmp0        # tmp = a
148         RORQ    tmp0, 5  # 39     # tmp = a ror 5
149         xor     a_64, tmp0        # tmp = (a ror 5) ^ a
150         add     T1, d_64          # e(next_state) = d + T1
151         RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
152         xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
153         lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
154         RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
155         add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
156         RotateState
157 .endm
159 .macro SHA512_2Sched_2Round_avx rnd
160         # Compute rounds t-2 and t-1
161         # Compute message schedule QWORDS t and t+1
163         #   Two rounds are computed based on the values for K[t-2]+W[t-2] and
164         # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
165         # scheduler.
166         #   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
167         # They are then added to their respective SHA512 constants at
168         # [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
169         #   For brievity, the comments following vectored instructions only refer to
170         # the first of a pair of QWORDS.
171         # Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
172         #   The computation of the message schedule and the rounds are tightly
173         # stitched to take advantage of instruction-level parallelism.
175         idx = \rnd - 2
176         vmovdqa W_t(idx), %xmm4         # XMM4 = W[t-2]
177         idx = \rnd - 15
178         vmovdqu W_t(idx), %xmm5         # XMM5 = W[t-15]
179         mov     f_64, T1
180         vpsrlq  $61, %xmm4, %xmm0       # XMM0 = W[t-2]>>61
181         mov     e_64, tmp0
182         vpsrlq  $1, %xmm5, %xmm6        # XMM6 = W[t-15]>>1
183         xor     g_64, T1
184         RORQ    tmp0, 23 # 41
185         vpsrlq  $19, %xmm4, %xmm1       # XMM1 = W[t-2]>>19
186         and     e_64, T1
187         xor     e_64, tmp0
188         vpxor   %xmm1, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19
189         xor     g_64, T1
190         idx = \rnd
191         add     WK_2(idx), T1#
192         vpsrlq  $8, %xmm5, %xmm7        # XMM7 = W[t-15]>>8
193         RORQ    tmp0, 4 # 18
194         vpsrlq  $6, %xmm4, %xmm2        # XMM2 = W[t-2]>>6
195         xor     e_64, tmp0
196         mov     a_64, T2
197         add     h_64, T1
198         vpxor   %xmm7, %xmm6, %xmm6     # XMM6 = W[t-15]>>1 ^ W[t-15]>>8
199         RORQ    tmp0, 14 # 14
200         add     tmp0, T1
201         vpsrlq  $7, %xmm5, %xmm8        # XMM8 = W[t-15]>>7
202         mov     a_64, tmp0
203         xor     c_64, T2
204         vpsllq  $(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
205         and     c_64, tmp0
206         and     b_64, T2
207         vpxor   %xmm3, %xmm2, %xmm2     # XMM2 = W[t-2]>>6 ^ W[t-2]<<3
208         xor     tmp0, T2
209         mov     a_64, tmp0
210         vpsllq  $(64-1), %xmm5, %xmm9   # XMM9 = W[t-15]<<63
211         RORQ    tmp0, 5 # 39
212         vpxor   %xmm9, %xmm8, %xmm8     # XMM8 = W[t-15]>>7 ^ W[t-15]<<63
213         xor     a_64, tmp0
214         add     T1, d_64
215         RORQ    tmp0, 6 # 34
216         xor     a_64, tmp0
217         vpxor   %xmm8, %xmm6, %xmm6     # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
218                                         #  W[t-15]>>7 ^ W[t-15]<<63
219         lea     (T1, T2), h_64
220         RORQ    tmp0, 28 # 28
221         vpsllq  $(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
222         add     tmp0, h_64
223         RotateState
224         vpxor   %xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
225                                         #        W[t-2]<<25
226         mov     f_64, T1
227         vpxor   %xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
228         mov     e_64, tmp0
229         xor     g_64, T1
230         idx = \rnd - 16
231         vpaddq  W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
232         idx = \rnd - 7
233         vmovdqu W_t(idx), %xmm1         # XMM1 = W[t-7]
234         RORQ    tmp0, 23 # 41
235         and     e_64, T1
236         xor     e_64, tmp0
237         xor     g_64, T1
238         vpsllq  $(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
239         idx = \rnd + 1
240         add     WK_2(idx), T1
241         vpxor   %xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
242         RORQ    tmp0, 4 # 18
243         vpaddq  %xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
244         xor     e_64, tmp0
245         vpaddq  %xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
246                                         #               s0(W[t-15]) + W[t-16]
247         mov     a_64, T2
248         add     h_64, T1
249         RORQ    tmp0, 14 # 14
250         add     tmp0, T1
251         idx = \rnd
252         vmovdqa %xmm0, W_t(idx)         # Store W[t]
253         vpaddq  K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
254         vmovdqa %xmm0, WK_2(idx)        # Store W[t]+K[t] for next rounds
255         mov     a_64, tmp0
256         xor     c_64, T2
257         and     c_64, tmp0
258         and     b_64, T2
259         xor     tmp0, T2
260         mov     a_64, tmp0
261         RORQ    tmp0, 5 # 39
262         xor     a_64, tmp0
263         add     T1, d_64
264         RORQ    tmp0, 6 # 34
265         xor     a_64, tmp0
266         lea     (T1, T2), h_64
267         RORQ    tmp0, 28 # 28
268         add     tmp0, h_64
269         RotateState
270 .endm
272 ########################################################################
273 # void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
274 # Purpose: Updates the SHA512 digest stored at "state" with the message
275 # stored in "data".
276 # The size of the message pointed to by "data" must be an integer multiple
277 # of SHA512 message blocks.
278 # "blocks" is the message length in SHA512 blocks
279 ########################################################################
280 SYM_FUNC_START(sha512_transform_avx)
281         test msglen, msglen
282         je nowork
284         # Allocate Stack Space
285         mov     %rsp, %rax
286         sub     $frame_size, %rsp
287         and     $~(0x20 - 1), %rsp
288         mov     %rax, frame_RSPSAVE(%rsp)
290         # Save GPRs
291         mov     %rbx, frame_GPRSAVE(%rsp)
292         mov     %r12, frame_GPRSAVE +8*1(%rsp)
293         mov     %r13, frame_GPRSAVE +8*2(%rsp)
294         mov     %r14, frame_GPRSAVE +8*3(%rsp)
295         mov     %r15, frame_GPRSAVE +8*4(%rsp)
297 updateblock:
299         # Load state variables
300         mov     DIGEST(0), a_64
301         mov     DIGEST(1), b_64
302         mov     DIGEST(2), c_64
303         mov     DIGEST(3), d_64
304         mov     DIGEST(4), e_64
305         mov     DIGEST(5), f_64
306         mov     DIGEST(6), g_64
307         mov     DIGEST(7), h_64
309         t = 0
310         .rept 80/2 + 1
311         # (80 rounds) / (2 rounds/iteration) + (1 iteration)
312         # +1 iteration because the scheduler leads hashing by 1 iteration
313                 .if t < 2
314                         # BSWAP 2 QWORDS
315                         vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
316                         vmovdqu  MSG(t), %xmm0
317                         vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
318                         vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
319                         vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
320                         vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
321                 .elseif t < 16
322                         # BSWAP 2 QWORDS# Compute 2 Rounds
323                         vmovdqu  MSG(t), %xmm0
324                         vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
325                         SHA512_Round t-2    # Round t-2
326                         vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
327                         vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
328                         SHA512_Round t-1    # Round t-1
329                         vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
330                 .elseif t < 79
331                         # Schedule 2 QWORDS# Compute 2 Rounds
332                         SHA512_2Sched_2Round_avx t
333                 .else
334                         # Compute 2 Rounds
335                         SHA512_Round t-2
336                         SHA512_Round t-1
337                 .endif
338                 t = t+2
339         .endr
341         # Update digest
342         add     a_64, DIGEST(0)
343         add     b_64, DIGEST(1)
344         add     c_64, DIGEST(2)
345         add     d_64, DIGEST(3)
346         add     e_64, DIGEST(4)
347         add     f_64, DIGEST(5)
348         add     g_64, DIGEST(6)
349         add     h_64, DIGEST(7)
351         # Advance to next message block
352         add     $16*8, msg
353         dec     msglen
354         jnz     updateblock
356         # Restore GPRs
357         mov     frame_GPRSAVE(%rsp),      %rbx
358         mov     frame_GPRSAVE +8*1(%rsp), %r12
359         mov     frame_GPRSAVE +8*2(%rsp), %r13
360         mov     frame_GPRSAVE +8*3(%rsp), %r14
361         mov     frame_GPRSAVE +8*4(%rsp), %r15
363         # Restore Stack Pointer
364         mov     frame_RSPSAVE(%rsp), %rsp
366 nowork:
367         ret
368 SYM_FUNC_END(sha512_transform_avx)
370 ########################################################################
371 ### Binary Data
373 .section        .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
374 .align 16
375 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
376 XMM_QWORD_BSWAP:
377         .octa 0x08090a0b0c0d0e0f0001020304050607
379 # Mergeable 640-byte rodata section. This allows linker to merge the table
380 # with other, exactly the same 640-byte fragment of another rodata section
381 # (if such section exists).
382 .section        .rodata.cst640.K512, "aM", @progbits, 640
383 .align 64
384 # K[t] used in SHA512 hashing
385 K512:
386         .quad 0x428a2f98d728ae22,0x7137449123ef65cd
387         .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
388         .quad 0x3956c25bf348b538,0x59f111f1b605d019
389         .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
390         .quad 0xd807aa98a3030242,0x12835b0145706fbe
391         .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
392         .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
393         .quad 0x9bdc06a725c71235,0xc19bf174cf692694
394         .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
395         .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
396         .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
397         .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
398         .quad 0x983e5152ee66dfab,0xa831c66d2db43210
399         .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
400         .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
401         .quad 0x06ca6351e003826f,0x142929670a0e6e70
402         .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
403         .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
404         .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
405         .quad 0x81c2c92e47edaee6,0x92722c851482353b
406         .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
407         .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
408         .quad 0xd192e819d6ef5218,0xd69906245565a910
409         .quad 0xf40e35855771202a,0x106aa07032bbd1b8
410         .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
411         .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
412         .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
413         .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
414         .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
415         .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
416         .quad 0x90befffa23631e28,0xa4506cebde82bde9
417         .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
418         .quad 0xca273eceea26619c,0xd186b8c721c0c207
419         .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
420         .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
421         .quad 0x113f9804bef90dae,0x1b710b35131c471b
422         .quad 0x28db77f523047d84,0x32caab7b40c72493
423         .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
424         .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
425         .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817