1 // SPDX-License-Identifier: GPL-2.0-only
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
23 #include <asm/cpu_device_id.h>
25 #include "../perf_event.h"
28 * Intel PerfMon, used on Core and later.
30 static u64 intel_perfmon_event_map
[PERF_COUNT_HW_MAX
] __read_mostly
=
32 [PERF_COUNT_HW_CPU_CYCLES
] = 0x003c,
33 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
34 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x4f2e,
35 [PERF_COUNT_HW_CACHE_MISSES
] = 0x412e,
36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
37 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
38 [PERF_COUNT_HW_BUS_CYCLES
] = 0x013c,
39 [PERF_COUNT_HW_REF_CPU_CYCLES
] = 0x0300, /* pseudo-encoding */
42 static struct event_constraint intel_core_event_constraints
[] __read_mostly
=
44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
53 static struct event_constraint intel_core2_event_constraints
[] __read_mostly
=
55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
71 static struct event_constraint intel_nehalem_event_constraints
[] __read_mostly
=
73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
87 static struct extra_reg intel_nehalem_extra_regs
[] __read_mostly
=
89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
95 static struct event_constraint intel_westmere_event_constraints
[] __read_mostly
=
97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
107 static struct event_constraint intel_snb_event_constraints
[] __read_mostly
=
109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
123 * When HT is off these events can only run on the bottom 4 counters
124 * When HT is on, they are impacted by the HT bug and require EXCL access
126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
134 static struct event_constraint intel_ivb_event_constraints
[] __read_mostly
=
136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
151 * When HT is off these events can only run on the bottom 4 counters
152 * When HT is on, they are impacted by the HT bug and require EXCL access
154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
162 static struct extra_reg intel_westmere_extra_regs
[] __read_mostly
=
164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0xffff, RSP_1
),
167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
171 static struct event_constraint intel_v1_event_constraints
[] __read_mostly
=
176 static struct event_constraint intel_gen_event_constraints
[] __read_mostly
=
178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 static struct event_constraint intel_slm_event_constraints
[] __read_mostly
=
186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
192 static struct event_constraint intel_skl_event_constraints
[] = {
193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
199 * when HT is off, these can only run on the bottom 4 counters
201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
210 static struct extra_reg intel_knl_extra_regs
[] __read_mostly
= {
211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x799ffbb6e7ull
, RSP_0
),
212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x399ffbffe7ull
, RSP_1
),
216 static struct extra_reg intel_snb_extra_regs
[] __read_mostly
= {
217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3f807f8fffull
, RSP_0
),
219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3f807f8fffull
, RSP_1
),
220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
224 static struct extra_reg intel_snbep_extra_regs
[] __read_mostly
= {
225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
232 static struct extra_reg intel_skl_extra_regs
[] __read_mostly
= {
233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
237 * Note the low 8 bits eventsel code is not a continuous field, containing
238 * some #GPing bits. These are masked out.
240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND
, 0x7fff17, FE
),
244 static struct event_constraint intel_icl_event_constraints
[] = {
245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
246 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* INST_RETIRED.PREC_DIST */
247 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
248 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
249 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
250 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING
, 0),
251 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC
, 1),
252 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND
, 2),
253 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND
, 3),
254 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
257 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
263 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
270 static struct extra_reg intel_icl_extra_regs
[] __read_mostly
= {
271 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffffbfffull
, RSP_0
),
272 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffffbfffull
, RSP_1
),
273 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND
, 0x7fff17, FE
),
278 EVENT_ATTR_STR(mem
-loads
, mem_ld_nhm
, "event=0x0b,umask=0x10,ldlat=3");
279 EVENT_ATTR_STR(mem
-loads
, mem_ld_snb
, "event=0xcd,umask=0x1,ldlat=3");
280 EVENT_ATTR_STR(mem
-stores
, mem_st_snb
, "event=0xcd,umask=0x2");
282 static struct attribute
*nhm_mem_events_attrs
[] = {
283 EVENT_PTR(mem_ld_nhm
),
288 * topdown events for Intel Core CPUs.
290 * The events are all in slots, which is a free slot in a 4 wide
291 * pipeline. Some events are already reported in slots, for cycle
292 * events we multiply by the pipeline width (4).
294 * With Hyper Threading on, topdown metrics are either summed or averaged
295 * between the threads of a core: (count_t0 + count_t1).
297 * For the average case the metric is always scaled to pipeline width,
298 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
301 EVENT_ATTR_STR_HT(topdown
-total
-slots
, td_total_slots
,
302 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
303 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
304 EVENT_ATTR_STR_HT(topdown
-total
-slots
.scale
, td_total_slots_scale
, "4", "2");
305 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued
,
306 "event=0xe,umask=0x1"); /* uops_issued.any */
307 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired
,
308 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
309 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles
,
310 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
311 EVENT_ATTR_STR_HT(topdown
-recovery
-bubbles
, td_recovery_bubbles
,
312 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
313 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
314 EVENT_ATTR_STR_HT(topdown
-recovery
-bubbles
.scale
, td_recovery_bubbles_scale
,
317 EVENT_ATTR_STR(slots
, slots
, "event=0x00,umask=0x4");
318 EVENT_ATTR_STR(topdown
-retiring
, td_retiring
, "event=0x00,umask=0x80");
319 EVENT_ATTR_STR(topdown
-bad
-spec
, td_bad_spec
, "event=0x00,umask=0x81");
320 EVENT_ATTR_STR(topdown
-fe
-bound
, td_fe_bound
, "event=0x00,umask=0x82");
321 EVENT_ATTR_STR(topdown
-be
-bound
, td_be_bound
, "event=0x00,umask=0x83");
323 static struct attribute
*snb_events_attrs
[] = {
324 EVENT_PTR(td_slots_issued
),
325 EVENT_PTR(td_slots_retired
),
326 EVENT_PTR(td_fetch_bubbles
),
327 EVENT_PTR(td_total_slots
),
328 EVENT_PTR(td_total_slots_scale
),
329 EVENT_PTR(td_recovery_bubbles
),
330 EVENT_PTR(td_recovery_bubbles_scale
),
334 static struct attribute
*snb_mem_events_attrs
[] = {
335 EVENT_PTR(mem_ld_snb
),
336 EVENT_PTR(mem_st_snb
),
340 static struct event_constraint intel_hsw_event_constraints
[] = {
341 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
342 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
343 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
344 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
345 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
346 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
347 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
348 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
349 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
350 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
351 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
352 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
355 * When HT is off these events can only run on the bottom 4 counters
356 * When HT is on, they are impacted by the HT bug and require EXCL access
358 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
359 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
360 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
361 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
366 static struct event_constraint intel_bdw_event_constraints
[] = {
367 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
368 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
369 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
370 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
371 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
373 * when HT is off, these can only run on the bottom 4 counters
375 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
376 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
377 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
378 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
382 static u64
intel_pmu_event_map(int hw_event
)
384 return intel_perfmon_event_map
[hw_event
];
388 * Notes on the events:
389 * - data reads do not include code reads (comparable to earlier tables)
390 * - data counts include speculative execution (except L1 write, dtlb, bpu)
391 * - remote node access includes remote memory, remote cache, remote mmio.
392 * - prefetches are not included in the counts.
393 * - icache miss does not include decoded icache
396 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
397 #define SKL_DEMAND_RFO BIT_ULL(1)
398 #define SKL_ANY_RESPONSE BIT_ULL(16)
399 #define SKL_SUPPLIER_NONE BIT_ULL(17)
400 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
401 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
402 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
403 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
404 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
405 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
406 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
407 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
408 #define SKL_SPL_HIT BIT_ULL(30)
409 #define SKL_SNOOP_NONE BIT_ULL(31)
410 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
411 #define SKL_SNOOP_MISS BIT_ULL(33)
412 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
413 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
414 #define SKL_SNOOP_HITM BIT_ULL(36)
415 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
416 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
417 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
418 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
419 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
420 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
421 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
422 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
423 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
424 SKL_SNOOP_HITM|SKL_SPL_HIT)
425 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
426 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
427 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
428 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
429 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
431 static __initconst
const u64 skl_hw_cache_event_ids
432 [PERF_COUNT_HW_CACHE_MAX
]
433 [PERF_COUNT_HW_CACHE_OP_MAX
]
434 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
438 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
439 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
442 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
443 [ C(RESULT_MISS
) ] = 0x0,
445 [ C(OP_PREFETCH
) ] = {
446 [ C(RESULT_ACCESS
) ] = 0x0,
447 [ C(RESULT_MISS
) ] = 0x0,
452 [ C(RESULT_ACCESS
) ] = 0x0,
453 [ C(RESULT_MISS
) ] = 0x283, /* ICACHE_64B.MISS */
456 [ C(RESULT_ACCESS
) ] = -1,
457 [ C(RESULT_MISS
) ] = -1,
459 [ C(OP_PREFETCH
) ] = {
460 [ C(RESULT_ACCESS
) ] = 0x0,
461 [ C(RESULT_MISS
) ] = 0x0,
466 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
467 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
470 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
471 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
473 [ C(OP_PREFETCH
) ] = {
474 [ C(RESULT_ACCESS
) ] = 0x0,
475 [ C(RESULT_MISS
) ] = 0x0,
480 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
481 [ C(RESULT_MISS
) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
484 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
485 [ C(RESULT_MISS
) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
487 [ C(OP_PREFETCH
) ] = {
488 [ C(RESULT_ACCESS
) ] = 0x0,
489 [ C(RESULT_MISS
) ] = 0x0,
494 [ C(RESULT_ACCESS
) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
495 [ C(RESULT_MISS
) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
498 [ C(RESULT_ACCESS
) ] = -1,
499 [ C(RESULT_MISS
) ] = -1,
501 [ C(OP_PREFETCH
) ] = {
502 [ C(RESULT_ACCESS
) ] = -1,
503 [ C(RESULT_MISS
) ] = -1,
508 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
509 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
512 [ C(RESULT_ACCESS
) ] = -1,
513 [ C(RESULT_MISS
) ] = -1,
515 [ C(OP_PREFETCH
) ] = {
516 [ C(RESULT_ACCESS
) ] = -1,
517 [ C(RESULT_MISS
) ] = -1,
522 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
523 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
526 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
527 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
529 [ C(OP_PREFETCH
) ] = {
530 [ C(RESULT_ACCESS
) ] = 0x0,
531 [ C(RESULT_MISS
) ] = 0x0,
536 static __initconst
const u64 skl_hw_cache_extra_regs
537 [PERF_COUNT_HW_CACHE_MAX
]
538 [PERF_COUNT_HW_CACHE_OP_MAX
]
539 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
543 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
544 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
545 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
546 SKL_L3_MISS
|SKL_ANY_SNOOP
|
550 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
551 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
552 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
553 SKL_L3_MISS
|SKL_ANY_SNOOP
|
556 [ C(OP_PREFETCH
) ] = {
557 [ C(RESULT_ACCESS
) ] = 0x0,
558 [ C(RESULT_MISS
) ] = 0x0,
563 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
564 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
565 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
566 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
569 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
570 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
571 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
572 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
574 [ C(OP_PREFETCH
) ] = {
575 [ C(RESULT_ACCESS
) ] = 0x0,
576 [ C(RESULT_MISS
) ] = 0x0,
581 #define SNB_DMND_DATA_RD (1ULL << 0)
582 #define SNB_DMND_RFO (1ULL << 1)
583 #define SNB_DMND_IFETCH (1ULL << 2)
584 #define SNB_DMND_WB (1ULL << 3)
585 #define SNB_PF_DATA_RD (1ULL << 4)
586 #define SNB_PF_RFO (1ULL << 5)
587 #define SNB_PF_IFETCH (1ULL << 6)
588 #define SNB_LLC_DATA_RD (1ULL << 7)
589 #define SNB_LLC_RFO (1ULL << 8)
590 #define SNB_LLC_IFETCH (1ULL << 9)
591 #define SNB_BUS_LOCKS (1ULL << 10)
592 #define SNB_STRM_ST (1ULL << 11)
593 #define SNB_OTHER (1ULL << 15)
594 #define SNB_RESP_ANY (1ULL << 16)
595 #define SNB_NO_SUPP (1ULL << 17)
596 #define SNB_LLC_HITM (1ULL << 18)
597 #define SNB_LLC_HITE (1ULL << 19)
598 #define SNB_LLC_HITS (1ULL << 20)
599 #define SNB_LLC_HITF (1ULL << 21)
600 #define SNB_LOCAL (1ULL << 22)
601 #define SNB_REMOTE (0xffULL << 23)
602 #define SNB_SNP_NONE (1ULL << 31)
603 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
604 #define SNB_SNP_MISS (1ULL << 33)
605 #define SNB_NO_FWD (1ULL << 34)
606 #define SNB_SNP_FWD (1ULL << 35)
607 #define SNB_HITM (1ULL << 36)
608 #define SNB_NON_DRAM (1ULL << 37)
610 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
611 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
612 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
614 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
615 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
618 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
619 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
621 #define SNB_L3_ACCESS SNB_RESP_ANY
622 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
624 static __initconst
const u64 snb_hw_cache_extra_regs
625 [PERF_COUNT_HW_CACHE_MAX
]
626 [PERF_COUNT_HW_CACHE_OP_MAX
]
627 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
631 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_L3_ACCESS
,
632 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_L3_MISS
,
635 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_L3_ACCESS
,
636 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_L3_MISS
,
638 [ C(OP_PREFETCH
) ] = {
639 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_L3_ACCESS
,
640 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_L3_MISS
,
645 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_DRAM_ANY
,
646 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_DRAM_REMOTE
,
649 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_DRAM_ANY
,
650 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_DRAM_REMOTE
,
652 [ C(OP_PREFETCH
) ] = {
653 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_ANY
,
654 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_REMOTE
,
659 static __initconst
const u64 snb_hw_cache_event_ids
660 [PERF_COUNT_HW_CACHE_MAX
]
661 [PERF_COUNT_HW_CACHE_OP_MAX
]
662 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
666 [ C(RESULT_ACCESS
) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
667 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPLACEMENT */
670 [ C(RESULT_ACCESS
) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
671 [ C(RESULT_MISS
) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
673 [ C(OP_PREFETCH
) ] = {
674 [ C(RESULT_ACCESS
) ] = 0x0,
675 [ C(RESULT_MISS
) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
680 [ C(RESULT_ACCESS
) ] = 0x0,
681 [ C(RESULT_MISS
) ] = 0x0280, /* ICACHE.MISSES */
684 [ C(RESULT_ACCESS
) ] = -1,
685 [ C(RESULT_MISS
) ] = -1,
687 [ C(OP_PREFETCH
) ] = {
688 [ C(RESULT_ACCESS
) ] = 0x0,
689 [ C(RESULT_MISS
) ] = 0x0,
694 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
695 [ C(RESULT_ACCESS
) ] = 0x01b7,
696 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
697 [ C(RESULT_MISS
) ] = 0x01b7,
700 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
701 [ C(RESULT_ACCESS
) ] = 0x01b7,
702 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
703 [ C(RESULT_MISS
) ] = 0x01b7,
705 [ C(OP_PREFETCH
) ] = {
706 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
707 [ C(RESULT_ACCESS
) ] = 0x01b7,
708 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
709 [ C(RESULT_MISS
) ] = 0x01b7,
714 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
715 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
718 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
719 [ C(RESULT_MISS
) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
721 [ C(OP_PREFETCH
) ] = {
722 [ C(RESULT_ACCESS
) ] = 0x0,
723 [ C(RESULT_MISS
) ] = 0x0,
728 [ C(RESULT_ACCESS
) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
729 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
732 [ C(RESULT_ACCESS
) ] = -1,
733 [ C(RESULT_MISS
) ] = -1,
735 [ C(OP_PREFETCH
) ] = {
736 [ C(RESULT_ACCESS
) ] = -1,
737 [ C(RESULT_MISS
) ] = -1,
742 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
743 [ C(RESULT_MISS
) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
746 [ C(RESULT_ACCESS
) ] = -1,
747 [ C(RESULT_MISS
) ] = -1,
749 [ C(OP_PREFETCH
) ] = {
750 [ C(RESULT_ACCESS
) ] = -1,
751 [ C(RESULT_MISS
) ] = -1,
756 [ C(RESULT_ACCESS
) ] = 0x01b7,
757 [ C(RESULT_MISS
) ] = 0x01b7,
760 [ C(RESULT_ACCESS
) ] = 0x01b7,
761 [ C(RESULT_MISS
) ] = 0x01b7,
763 [ C(OP_PREFETCH
) ] = {
764 [ C(RESULT_ACCESS
) ] = 0x01b7,
765 [ C(RESULT_MISS
) ] = 0x01b7,
772 * Notes on the events:
773 * - data reads do not include code reads (comparable to earlier tables)
774 * - data counts include speculative execution (except L1 write, dtlb, bpu)
775 * - remote node access includes remote memory, remote cache, remote mmio.
776 * - prefetches are not included in the counts because they are not
780 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
781 #define HSW_DEMAND_RFO BIT_ULL(1)
782 #define HSW_ANY_RESPONSE BIT_ULL(16)
783 #define HSW_SUPPLIER_NONE BIT_ULL(17)
784 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
785 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
786 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
787 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
788 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
789 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
790 HSW_L3_MISS_REMOTE_HOP2P)
791 #define HSW_SNOOP_NONE BIT_ULL(31)
792 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
793 #define HSW_SNOOP_MISS BIT_ULL(33)
794 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
795 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
796 #define HSW_SNOOP_HITM BIT_ULL(36)
797 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
798 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
799 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
800 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
801 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
802 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
803 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
804 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
805 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
806 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
807 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
809 #define BDW_L3_MISS_LOCAL BIT(26)
810 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
811 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
812 HSW_L3_MISS_REMOTE_HOP2P)
815 static __initconst
const u64 hsw_hw_cache_event_ids
816 [PERF_COUNT_HW_CACHE_MAX
]
817 [PERF_COUNT_HW_CACHE_OP_MAX
]
818 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
822 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
823 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
826 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
827 [ C(RESULT_MISS
) ] = 0x0,
829 [ C(OP_PREFETCH
) ] = {
830 [ C(RESULT_ACCESS
) ] = 0x0,
831 [ C(RESULT_MISS
) ] = 0x0,
836 [ C(RESULT_ACCESS
) ] = 0x0,
837 [ C(RESULT_MISS
) ] = 0x280, /* ICACHE.MISSES */
840 [ C(RESULT_ACCESS
) ] = -1,
841 [ C(RESULT_MISS
) ] = -1,
843 [ C(OP_PREFETCH
) ] = {
844 [ C(RESULT_ACCESS
) ] = 0x0,
845 [ C(RESULT_MISS
) ] = 0x0,
850 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
851 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
854 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
855 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
857 [ C(OP_PREFETCH
) ] = {
858 [ C(RESULT_ACCESS
) ] = 0x0,
859 [ C(RESULT_MISS
) ] = 0x0,
864 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
865 [ C(RESULT_MISS
) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
868 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
869 [ C(RESULT_MISS
) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
871 [ C(OP_PREFETCH
) ] = {
872 [ C(RESULT_ACCESS
) ] = 0x0,
873 [ C(RESULT_MISS
) ] = 0x0,
878 [ C(RESULT_ACCESS
) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
879 [ C(RESULT_MISS
) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
882 [ C(RESULT_ACCESS
) ] = -1,
883 [ C(RESULT_MISS
) ] = -1,
885 [ C(OP_PREFETCH
) ] = {
886 [ C(RESULT_ACCESS
) ] = -1,
887 [ C(RESULT_MISS
) ] = -1,
892 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
893 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
896 [ C(RESULT_ACCESS
) ] = -1,
897 [ C(RESULT_MISS
) ] = -1,
899 [ C(OP_PREFETCH
) ] = {
900 [ C(RESULT_ACCESS
) ] = -1,
901 [ C(RESULT_MISS
) ] = -1,
906 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
907 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
910 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
911 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
913 [ C(OP_PREFETCH
) ] = {
914 [ C(RESULT_ACCESS
) ] = 0x0,
915 [ C(RESULT_MISS
) ] = 0x0,
920 static __initconst
const u64 hsw_hw_cache_extra_regs
921 [PERF_COUNT_HW_CACHE_MAX
]
922 [PERF_COUNT_HW_CACHE_OP_MAX
]
923 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
927 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
929 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
930 HSW_L3_MISS
|HSW_ANY_SNOOP
,
933 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
935 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
936 HSW_L3_MISS
|HSW_ANY_SNOOP
,
938 [ C(OP_PREFETCH
) ] = {
939 [ C(RESULT_ACCESS
) ] = 0x0,
940 [ C(RESULT_MISS
) ] = 0x0,
945 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
946 HSW_L3_MISS_LOCAL_DRAM
|
948 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
953 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
954 HSW_L3_MISS_LOCAL_DRAM
|
956 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
960 [ C(OP_PREFETCH
) ] = {
961 [ C(RESULT_ACCESS
) ] = 0x0,
962 [ C(RESULT_MISS
) ] = 0x0,
967 static __initconst
const u64 westmere_hw_cache_event_ids
968 [PERF_COUNT_HW_CACHE_MAX
]
969 [PERF_COUNT_HW_CACHE_OP_MAX
]
970 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
974 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
975 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
978 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
979 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
981 [ C(OP_PREFETCH
) ] = {
982 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
983 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
988 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
989 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
992 [ C(RESULT_ACCESS
) ] = -1,
993 [ C(RESULT_MISS
) ] = -1,
995 [ C(OP_PREFETCH
) ] = {
996 [ C(RESULT_ACCESS
) ] = 0x0,
997 [ C(RESULT_MISS
) ] = 0x0,
1002 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1003 [ C(RESULT_ACCESS
) ] = 0x01b7,
1004 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1005 [ C(RESULT_MISS
) ] = 0x01b7,
1008 * Use RFO, not WRITEBACK, because a write miss would typically occur
1012 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1013 [ C(RESULT_ACCESS
) ] = 0x01b7,
1014 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1015 [ C(RESULT_MISS
) ] = 0x01b7,
1017 [ C(OP_PREFETCH
) ] = {
1018 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1019 [ C(RESULT_ACCESS
) ] = 0x01b7,
1020 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1021 [ C(RESULT_MISS
) ] = 0x01b7,
1026 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1027 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1030 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1031 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1033 [ C(OP_PREFETCH
) ] = {
1034 [ C(RESULT_ACCESS
) ] = 0x0,
1035 [ C(RESULT_MISS
) ] = 0x0,
1040 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1041 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.ANY */
1044 [ C(RESULT_ACCESS
) ] = -1,
1045 [ C(RESULT_MISS
) ] = -1,
1047 [ C(OP_PREFETCH
) ] = {
1048 [ C(RESULT_ACCESS
) ] = -1,
1049 [ C(RESULT_MISS
) ] = -1,
1054 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1055 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1058 [ C(RESULT_ACCESS
) ] = -1,
1059 [ C(RESULT_MISS
) ] = -1,
1061 [ C(OP_PREFETCH
) ] = {
1062 [ C(RESULT_ACCESS
) ] = -1,
1063 [ C(RESULT_MISS
) ] = -1,
1068 [ C(RESULT_ACCESS
) ] = 0x01b7,
1069 [ C(RESULT_MISS
) ] = 0x01b7,
1072 [ C(RESULT_ACCESS
) ] = 0x01b7,
1073 [ C(RESULT_MISS
) ] = 0x01b7,
1075 [ C(OP_PREFETCH
) ] = {
1076 [ C(RESULT_ACCESS
) ] = 0x01b7,
1077 [ C(RESULT_MISS
) ] = 0x01b7,
1083 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1084 * See IA32 SDM Vol 3B 30.6.1.3
1087 #define NHM_DMND_DATA_RD (1 << 0)
1088 #define NHM_DMND_RFO (1 << 1)
1089 #define NHM_DMND_IFETCH (1 << 2)
1090 #define NHM_DMND_WB (1 << 3)
1091 #define NHM_PF_DATA_RD (1 << 4)
1092 #define NHM_PF_DATA_RFO (1 << 5)
1093 #define NHM_PF_IFETCH (1 << 6)
1094 #define NHM_OFFCORE_OTHER (1 << 7)
1095 #define NHM_UNCORE_HIT (1 << 8)
1096 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1097 #define NHM_OTHER_CORE_HITM (1 << 10)
1099 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1100 #define NHM_REMOTE_DRAM (1 << 13)
1101 #define NHM_LOCAL_DRAM (1 << 14)
1102 #define NHM_NON_DRAM (1 << 15)
1104 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1105 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1107 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1108 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1109 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1111 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1112 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1113 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1115 static __initconst
const u64 nehalem_hw_cache_extra_regs
1116 [PERF_COUNT_HW_CACHE_MAX
]
1117 [PERF_COUNT_HW_CACHE_OP_MAX
]
1118 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1122 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_L3_ACCESS
,
1123 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_L3_MISS
,
1126 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_L3_ACCESS
,
1127 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_L3_MISS
,
1129 [ C(OP_PREFETCH
) ] = {
1130 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_L3_ACCESS
,
1131 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_L3_MISS
,
1136 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_LOCAL
|NHM_REMOTE
,
1137 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_REMOTE
,
1140 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_LOCAL
|NHM_REMOTE
,
1141 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_REMOTE
,
1143 [ C(OP_PREFETCH
) ] = {
1144 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_LOCAL
|NHM_REMOTE
,
1145 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_REMOTE
,
1150 static __initconst
const u64 nehalem_hw_cache_event_ids
1151 [PERF_COUNT_HW_CACHE_MAX
]
1152 [PERF_COUNT_HW_CACHE_OP_MAX
]
1153 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1157 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1158 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
1161 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1162 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
1164 [ C(OP_PREFETCH
) ] = {
1165 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1166 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
1171 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1172 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1175 [ C(RESULT_ACCESS
) ] = -1,
1176 [ C(RESULT_MISS
) ] = -1,
1178 [ C(OP_PREFETCH
) ] = {
1179 [ C(RESULT_ACCESS
) ] = 0x0,
1180 [ C(RESULT_MISS
) ] = 0x0,
1185 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186 [ C(RESULT_ACCESS
) ] = 0x01b7,
1187 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1188 [ C(RESULT_MISS
) ] = 0x01b7,
1191 * Use RFO, not WRITEBACK, because a write miss would typically occur
1195 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1196 [ C(RESULT_ACCESS
) ] = 0x01b7,
1197 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1198 [ C(RESULT_MISS
) ] = 0x01b7,
1200 [ C(OP_PREFETCH
) ] = {
1201 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1202 [ C(RESULT_ACCESS
) ] = 0x01b7,
1203 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1204 [ C(RESULT_MISS
) ] = 0x01b7,
1209 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1210 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1213 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1214 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1216 [ C(OP_PREFETCH
) ] = {
1217 [ C(RESULT_ACCESS
) ] = 0x0,
1218 [ C(RESULT_MISS
) ] = 0x0,
1223 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1224 [ C(RESULT_MISS
) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1227 [ C(RESULT_ACCESS
) ] = -1,
1228 [ C(RESULT_MISS
) ] = -1,
1230 [ C(OP_PREFETCH
) ] = {
1231 [ C(RESULT_ACCESS
) ] = -1,
1232 [ C(RESULT_MISS
) ] = -1,
1237 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1238 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1241 [ C(RESULT_ACCESS
) ] = -1,
1242 [ C(RESULT_MISS
) ] = -1,
1244 [ C(OP_PREFETCH
) ] = {
1245 [ C(RESULT_ACCESS
) ] = -1,
1246 [ C(RESULT_MISS
) ] = -1,
1251 [ C(RESULT_ACCESS
) ] = 0x01b7,
1252 [ C(RESULT_MISS
) ] = 0x01b7,
1255 [ C(RESULT_ACCESS
) ] = 0x01b7,
1256 [ C(RESULT_MISS
) ] = 0x01b7,
1258 [ C(OP_PREFETCH
) ] = {
1259 [ C(RESULT_ACCESS
) ] = 0x01b7,
1260 [ C(RESULT_MISS
) ] = 0x01b7,
1265 static __initconst
const u64 core2_hw_cache_event_ids
1266 [PERF_COUNT_HW_CACHE_MAX
]
1267 [PERF_COUNT_HW_CACHE_OP_MAX
]
1268 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1272 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1273 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1276 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1277 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1279 [ C(OP_PREFETCH
) ] = {
1280 [ C(RESULT_ACCESS
) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1281 [ C(RESULT_MISS
) ] = 0,
1286 [ C(RESULT_ACCESS
) ] = 0x0080, /* L1I.READS */
1287 [ C(RESULT_MISS
) ] = 0x0081, /* L1I.MISSES */
1290 [ C(RESULT_ACCESS
) ] = -1,
1291 [ C(RESULT_MISS
) ] = -1,
1293 [ C(OP_PREFETCH
) ] = {
1294 [ C(RESULT_ACCESS
) ] = 0,
1295 [ C(RESULT_MISS
) ] = 0,
1300 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1301 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1304 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1305 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1307 [ C(OP_PREFETCH
) ] = {
1308 [ C(RESULT_ACCESS
) ] = 0,
1309 [ C(RESULT_MISS
) ] = 0,
1314 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1315 [ C(RESULT_MISS
) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1318 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1319 [ C(RESULT_MISS
) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1321 [ C(OP_PREFETCH
) ] = {
1322 [ C(RESULT_ACCESS
) ] = 0,
1323 [ C(RESULT_MISS
) ] = 0,
1328 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1329 [ C(RESULT_MISS
) ] = 0x1282, /* ITLBMISSES */
1332 [ C(RESULT_ACCESS
) ] = -1,
1333 [ C(RESULT_MISS
) ] = -1,
1335 [ C(OP_PREFETCH
) ] = {
1336 [ C(RESULT_ACCESS
) ] = -1,
1337 [ C(RESULT_MISS
) ] = -1,
1342 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1343 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1346 [ C(RESULT_ACCESS
) ] = -1,
1347 [ C(RESULT_MISS
) ] = -1,
1349 [ C(OP_PREFETCH
) ] = {
1350 [ C(RESULT_ACCESS
) ] = -1,
1351 [ C(RESULT_MISS
) ] = -1,
1356 static __initconst
const u64 atom_hw_cache_event_ids
1357 [PERF_COUNT_HW_CACHE_MAX
]
1358 [PERF_COUNT_HW_CACHE_OP_MAX
]
1359 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1363 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE.LD */
1364 [ C(RESULT_MISS
) ] = 0,
1367 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE.ST */
1368 [ C(RESULT_MISS
) ] = 0,
1370 [ C(OP_PREFETCH
) ] = {
1371 [ C(RESULT_ACCESS
) ] = 0x0,
1372 [ C(RESULT_MISS
) ] = 0,
1377 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1378 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1381 [ C(RESULT_ACCESS
) ] = -1,
1382 [ C(RESULT_MISS
) ] = -1,
1384 [ C(OP_PREFETCH
) ] = {
1385 [ C(RESULT_ACCESS
) ] = 0,
1386 [ C(RESULT_MISS
) ] = 0,
1391 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1392 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1395 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1396 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1398 [ C(OP_PREFETCH
) ] = {
1399 [ C(RESULT_ACCESS
) ] = 0,
1400 [ C(RESULT_MISS
) ] = 0,
1405 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1406 [ C(RESULT_MISS
) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1409 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1410 [ C(RESULT_MISS
) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1412 [ C(OP_PREFETCH
) ] = {
1413 [ C(RESULT_ACCESS
) ] = 0,
1414 [ C(RESULT_MISS
) ] = 0,
1419 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1420 [ C(RESULT_MISS
) ] = 0x0282, /* ITLB.MISSES */
1423 [ C(RESULT_ACCESS
) ] = -1,
1424 [ C(RESULT_MISS
) ] = -1,
1426 [ C(OP_PREFETCH
) ] = {
1427 [ C(RESULT_ACCESS
) ] = -1,
1428 [ C(RESULT_MISS
) ] = -1,
1433 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1434 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1437 [ C(RESULT_ACCESS
) ] = -1,
1438 [ C(RESULT_MISS
) ] = -1,
1440 [ C(OP_PREFETCH
) ] = {
1441 [ C(RESULT_ACCESS
) ] = -1,
1442 [ C(RESULT_MISS
) ] = -1,
1447 EVENT_ATTR_STR(topdown
-total
-slots
, td_total_slots_slm
, "event=0x3c");
1448 EVENT_ATTR_STR(topdown
-total
-slots
.scale
, td_total_slots_scale_slm
, "2");
1449 /* no_alloc_cycles.not_delivered */
1450 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles_slm
,
1451 "event=0xca,umask=0x50");
1452 EVENT_ATTR_STR(topdown
-fetch
-bubbles
.scale
, td_fetch_bubbles_scale_slm
, "2");
1453 /* uops_retired.all */
1454 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued_slm
,
1455 "event=0xc2,umask=0x10");
1456 /* uops_retired.all */
1457 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired_slm
,
1458 "event=0xc2,umask=0x10");
1460 static struct attribute
*slm_events_attrs
[] = {
1461 EVENT_PTR(td_total_slots_slm
),
1462 EVENT_PTR(td_total_slots_scale_slm
),
1463 EVENT_PTR(td_fetch_bubbles_slm
),
1464 EVENT_PTR(td_fetch_bubbles_scale_slm
),
1465 EVENT_PTR(td_slots_issued_slm
),
1466 EVENT_PTR(td_slots_retired_slm
),
1470 static struct extra_reg intel_slm_extra_regs
[] __read_mostly
=
1472 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1473 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x768005ffffull
, RSP_0
),
1474 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x368005ffffull
, RSP_1
),
1478 #define SLM_DMND_READ SNB_DMND_DATA_RD
1479 #define SLM_DMND_WRITE SNB_DMND_RFO
1480 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1482 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1483 #define SLM_LLC_ACCESS SNB_RESP_ANY
1484 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1486 static __initconst
const u64 slm_hw_cache_extra_regs
1487 [PERF_COUNT_HW_CACHE_MAX
]
1488 [PERF_COUNT_HW_CACHE_OP_MAX
]
1489 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1493 [ C(RESULT_ACCESS
) ] = SLM_DMND_READ
|SLM_LLC_ACCESS
,
1494 [ C(RESULT_MISS
) ] = 0,
1497 [ C(RESULT_ACCESS
) ] = SLM_DMND_WRITE
|SLM_LLC_ACCESS
,
1498 [ C(RESULT_MISS
) ] = SLM_DMND_WRITE
|SLM_LLC_MISS
,
1500 [ C(OP_PREFETCH
) ] = {
1501 [ C(RESULT_ACCESS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_ACCESS
,
1502 [ C(RESULT_MISS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_MISS
,
1507 static __initconst
const u64 slm_hw_cache_event_ids
1508 [PERF_COUNT_HW_CACHE_MAX
]
1509 [PERF_COUNT_HW_CACHE_OP_MAX
]
1510 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1514 [ C(RESULT_ACCESS
) ] = 0,
1515 [ C(RESULT_MISS
) ] = 0x0104, /* LD_DCU_MISS */
1518 [ C(RESULT_ACCESS
) ] = 0,
1519 [ C(RESULT_MISS
) ] = 0,
1521 [ C(OP_PREFETCH
) ] = {
1522 [ C(RESULT_ACCESS
) ] = 0,
1523 [ C(RESULT_MISS
) ] = 0,
1528 [ C(RESULT_ACCESS
) ] = 0x0380, /* ICACHE.ACCESSES */
1529 [ C(RESULT_MISS
) ] = 0x0280, /* ICACGE.MISSES */
1532 [ C(RESULT_ACCESS
) ] = -1,
1533 [ C(RESULT_MISS
) ] = -1,
1535 [ C(OP_PREFETCH
) ] = {
1536 [ C(RESULT_ACCESS
) ] = 0,
1537 [ C(RESULT_MISS
) ] = 0,
1542 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1543 [ C(RESULT_ACCESS
) ] = 0x01b7,
1544 [ C(RESULT_MISS
) ] = 0,
1547 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1548 [ C(RESULT_ACCESS
) ] = 0x01b7,
1549 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1550 [ C(RESULT_MISS
) ] = 0x01b7,
1552 [ C(OP_PREFETCH
) ] = {
1553 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1554 [ C(RESULT_ACCESS
) ] = 0x01b7,
1555 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1556 [ C(RESULT_MISS
) ] = 0x01b7,
1561 [ C(RESULT_ACCESS
) ] = 0,
1562 [ C(RESULT_MISS
) ] = 0x0804, /* LD_DTLB_MISS */
1565 [ C(RESULT_ACCESS
) ] = 0,
1566 [ C(RESULT_MISS
) ] = 0,
1568 [ C(OP_PREFETCH
) ] = {
1569 [ C(RESULT_ACCESS
) ] = 0,
1570 [ C(RESULT_MISS
) ] = 0,
1575 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1576 [ C(RESULT_MISS
) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1579 [ C(RESULT_ACCESS
) ] = -1,
1580 [ C(RESULT_MISS
) ] = -1,
1582 [ C(OP_PREFETCH
) ] = {
1583 [ C(RESULT_ACCESS
) ] = -1,
1584 [ C(RESULT_MISS
) ] = -1,
1589 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1590 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1593 [ C(RESULT_ACCESS
) ] = -1,
1594 [ C(RESULT_MISS
) ] = -1,
1596 [ C(OP_PREFETCH
) ] = {
1597 [ C(RESULT_ACCESS
) ] = -1,
1598 [ C(RESULT_MISS
) ] = -1,
1603 EVENT_ATTR_STR(topdown
-total
-slots
, td_total_slots_glm
, "event=0x3c");
1604 EVENT_ATTR_STR(topdown
-total
-slots
.scale
, td_total_slots_scale_glm
, "3");
1605 /* UOPS_NOT_DELIVERED.ANY */
1606 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles_glm
, "event=0x9c");
1607 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1608 EVENT_ATTR_STR(topdown
-recovery
-bubbles
, td_recovery_bubbles_glm
, "event=0xca,umask=0x02");
1609 /* UOPS_RETIRED.ANY */
1610 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired_glm
, "event=0xc2");
1611 /* UOPS_ISSUED.ANY */
1612 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued_glm
, "event=0x0e");
1614 static struct attribute
*glm_events_attrs
[] = {
1615 EVENT_PTR(td_total_slots_glm
),
1616 EVENT_PTR(td_total_slots_scale_glm
),
1617 EVENT_PTR(td_fetch_bubbles_glm
),
1618 EVENT_PTR(td_recovery_bubbles_glm
),
1619 EVENT_PTR(td_slots_issued_glm
),
1620 EVENT_PTR(td_slots_retired_glm
),
1624 static struct extra_reg intel_glm_extra_regs
[] __read_mostly
= {
1625 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1626 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x760005ffbfull
, RSP_0
),
1627 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x360005ffbfull
, RSP_1
),
1631 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1632 #define GLM_DEMAND_RFO BIT_ULL(1)
1633 #define GLM_ANY_RESPONSE BIT_ULL(16)
1634 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1635 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1636 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1637 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1638 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1639 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1640 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1642 static __initconst
const u64 glm_hw_cache_event_ids
1643 [PERF_COUNT_HW_CACHE_MAX
]
1644 [PERF_COUNT_HW_CACHE_OP_MAX
]
1645 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1648 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1649 [C(RESULT_MISS
)] = 0x0,
1652 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1653 [C(RESULT_MISS
)] = 0x0,
1655 [C(OP_PREFETCH
)] = {
1656 [C(RESULT_ACCESS
)] = 0x0,
1657 [C(RESULT_MISS
)] = 0x0,
1662 [C(RESULT_ACCESS
)] = 0x0380, /* ICACHE.ACCESSES */
1663 [C(RESULT_MISS
)] = 0x0280, /* ICACHE.MISSES */
1666 [C(RESULT_ACCESS
)] = -1,
1667 [C(RESULT_MISS
)] = -1,
1669 [C(OP_PREFETCH
)] = {
1670 [C(RESULT_ACCESS
)] = 0x0,
1671 [C(RESULT_MISS
)] = 0x0,
1676 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1677 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1680 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1681 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1683 [C(OP_PREFETCH
)] = {
1684 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1685 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1690 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1691 [C(RESULT_MISS
)] = 0x0,
1694 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1695 [C(RESULT_MISS
)] = 0x0,
1697 [C(OP_PREFETCH
)] = {
1698 [C(RESULT_ACCESS
)] = 0x0,
1699 [C(RESULT_MISS
)] = 0x0,
1704 [C(RESULT_ACCESS
)] = 0x00c0, /* INST_RETIRED.ANY_P */
1705 [C(RESULT_MISS
)] = 0x0481, /* ITLB.MISS */
1708 [C(RESULT_ACCESS
)] = -1,
1709 [C(RESULT_MISS
)] = -1,
1711 [C(OP_PREFETCH
)] = {
1712 [C(RESULT_ACCESS
)] = -1,
1713 [C(RESULT_MISS
)] = -1,
1718 [C(RESULT_ACCESS
)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1719 [C(RESULT_MISS
)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1722 [C(RESULT_ACCESS
)] = -1,
1723 [C(RESULT_MISS
)] = -1,
1725 [C(OP_PREFETCH
)] = {
1726 [C(RESULT_ACCESS
)] = -1,
1727 [C(RESULT_MISS
)] = -1,
1732 static __initconst
const u64 glm_hw_cache_extra_regs
1733 [PERF_COUNT_HW_CACHE_MAX
]
1734 [PERF_COUNT_HW_CACHE_OP_MAX
]
1735 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1738 [C(RESULT_ACCESS
)] = GLM_DEMAND_READ
|
1740 [C(RESULT_MISS
)] = GLM_DEMAND_READ
|
1744 [C(RESULT_ACCESS
)] = GLM_DEMAND_WRITE
|
1746 [C(RESULT_MISS
)] = GLM_DEMAND_WRITE
|
1749 [C(OP_PREFETCH
)] = {
1750 [C(RESULT_ACCESS
)] = GLM_DEMAND_PREFETCH
|
1752 [C(RESULT_MISS
)] = GLM_DEMAND_PREFETCH
|
1758 static __initconst
const u64 glp_hw_cache_event_ids
1759 [PERF_COUNT_HW_CACHE_MAX
]
1760 [PERF_COUNT_HW_CACHE_OP_MAX
]
1761 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1764 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1765 [C(RESULT_MISS
)] = 0x0,
1768 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1769 [C(RESULT_MISS
)] = 0x0,
1771 [C(OP_PREFETCH
)] = {
1772 [C(RESULT_ACCESS
)] = 0x0,
1773 [C(RESULT_MISS
)] = 0x0,
1778 [C(RESULT_ACCESS
)] = 0x0380, /* ICACHE.ACCESSES */
1779 [C(RESULT_MISS
)] = 0x0280, /* ICACHE.MISSES */
1782 [C(RESULT_ACCESS
)] = -1,
1783 [C(RESULT_MISS
)] = -1,
1785 [C(OP_PREFETCH
)] = {
1786 [C(RESULT_ACCESS
)] = 0x0,
1787 [C(RESULT_MISS
)] = 0x0,
1792 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1793 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1796 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1797 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1799 [C(OP_PREFETCH
)] = {
1800 [C(RESULT_ACCESS
)] = 0x0,
1801 [C(RESULT_MISS
)] = 0x0,
1806 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1807 [C(RESULT_MISS
)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1810 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1811 [C(RESULT_MISS
)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1813 [C(OP_PREFETCH
)] = {
1814 [C(RESULT_ACCESS
)] = 0x0,
1815 [C(RESULT_MISS
)] = 0x0,
1820 [C(RESULT_ACCESS
)] = 0x00c0, /* INST_RETIRED.ANY_P */
1821 [C(RESULT_MISS
)] = 0x0481, /* ITLB.MISS */
1824 [C(RESULT_ACCESS
)] = -1,
1825 [C(RESULT_MISS
)] = -1,
1827 [C(OP_PREFETCH
)] = {
1828 [C(RESULT_ACCESS
)] = -1,
1829 [C(RESULT_MISS
)] = -1,
1834 [C(RESULT_ACCESS
)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1835 [C(RESULT_MISS
)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1838 [C(RESULT_ACCESS
)] = -1,
1839 [C(RESULT_MISS
)] = -1,
1841 [C(OP_PREFETCH
)] = {
1842 [C(RESULT_ACCESS
)] = -1,
1843 [C(RESULT_MISS
)] = -1,
1848 static __initconst
const u64 glp_hw_cache_extra_regs
1849 [PERF_COUNT_HW_CACHE_MAX
]
1850 [PERF_COUNT_HW_CACHE_OP_MAX
]
1851 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1854 [C(RESULT_ACCESS
)] = GLM_DEMAND_READ
|
1856 [C(RESULT_MISS
)] = GLM_DEMAND_READ
|
1860 [C(RESULT_ACCESS
)] = GLM_DEMAND_WRITE
|
1862 [C(RESULT_MISS
)] = GLM_DEMAND_WRITE
|
1865 [C(OP_PREFETCH
)] = {
1866 [C(RESULT_ACCESS
)] = 0x0,
1867 [C(RESULT_MISS
)] = 0x0,
1872 #define TNT_LOCAL_DRAM BIT_ULL(26)
1873 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
1874 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
1875 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
1876 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1877 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1878 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1880 static __initconst
const u64 tnt_hw_cache_extra_regs
1881 [PERF_COUNT_HW_CACHE_MAX
]
1882 [PERF_COUNT_HW_CACHE_OP_MAX
]
1883 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1886 [C(RESULT_ACCESS
)] = TNT_DEMAND_READ
|
1888 [C(RESULT_MISS
)] = TNT_DEMAND_READ
|
1892 [C(RESULT_ACCESS
)] = TNT_DEMAND_WRITE
|
1894 [C(RESULT_MISS
)] = TNT_DEMAND_WRITE
|
1897 [C(OP_PREFETCH
)] = {
1898 [C(RESULT_ACCESS
)] = 0x0,
1899 [C(RESULT_MISS
)] = 0x0,
1904 EVENT_ATTR_STR(topdown
-fe
-bound
, td_fe_bound_tnt
, "event=0x71,umask=0x0");
1905 EVENT_ATTR_STR(topdown
-retiring
, td_retiring_tnt
, "event=0xc2,umask=0x0");
1906 EVENT_ATTR_STR(topdown
-bad
-spec
, td_bad_spec_tnt
, "event=0x73,umask=0x6");
1907 EVENT_ATTR_STR(topdown
-be
-bound
, td_be_bound_tnt
, "event=0x74,umask=0x0");
1909 static struct attribute
*tnt_events_attrs
[] = {
1910 EVENT_PTR(td_fe_bound_tnt
),
1911 EVENT_PTR(td_retiring_tnt
),
1912 EVENT_PTR(td_bad_spec_tnt
),
1913 EVENT_PTR(td_be_bound_tnt
),
1917 static struct extra_reg intel_tnt_extra_regs
[] __read_mostly
= {
1918 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1919 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x800ff0ffffff9fffull
, RSP_0
),
1920 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0xff0ffffff9fffull
, RSP_1
),
1924 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1925 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1926 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1927 #define KNL_MCDRAM_FAR BIT_ULL(22)
1928 #define KNL_DDR_LOCAL BIT_ULL(23)
1929 #define KNL_DDR_FAR BIT_ULL(24)
1930 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1931 KNL_DDR_LOCAL | KNL_DDR_FAR)
1932 #define KNL_L2_READ SLM_DMND_READ
1933 #define KNL_L2_WRITE SLM_DMND_WRITE
1934 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1935 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1936 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1937 KNL_DRAM_ANY | SNB_SNP_ANY | \
1940 static __initconst
const u64 knl_hw_cache_extra_regs
1941 [PERF_COUNT_HW_CACHE_MAX
]
1942 [PERF_COUNT_HW_CACHE_OP_MAX
]
1943 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1946 [C(RESULT_ACCESS
)] = KNL_L2_READ
| KNL_L2_ACCESS
,
1947 [C(RESULT_MISS
)] = 0,
1950 [C(RESULT_ACCESS
)] = KNL_L2_WRITE
| KNL_L2_ACCESS
,
1951 [C(RESULT_MISS
)] = KNL_L2_WRITE
| KNL_L2_MISS
,
1953 [C(OP_PREFETCH
)] = {
1954 [C(RESULT_ACCESS
)] = KNL_L2_PREFETCH
| KNL_L2_ACCESS
,
1955 [C(RESULT_MISS
)] = KNL_L2_PREFETCH
| KNL_L2_MISS
,
1961 * Used from PMIs where the LBRs are already disabled.
1963 * This function could be called consecutively. It is required to remain in
1964 * disabled state if called consecutively.
1966 * During consecutive calls, the same disable value will be written to related
1967 * registers, so the PMU state remains unchanged.
1969 * intel_bts events don't coexist with intel PMU's BTS events because of
1970 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1971 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1973 * Avoid PEBS_ENABLE MSR access in PMIs.
1974 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
1975 * It doesn't matter if the PEBS is enabled or not.
1976 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
1977 * access PEBS_ENABLE MSR in disable_all()/enable_all().
1978 * However, there are some cases which may change PEBS status, e.g. PMI
1979 * throttle. The PEBS_ENABLE should be updated where the status changes.
1981 static void __intel_pmu_disable_all(void)
1983 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1985 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1987 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
))
1988 intel_pmu_disable_bts();
1991 static void intel_pmu_disable_all(void)
1993 __intel_pmu_disable_all();
1994 intel_pmu_pebs_disable_all();
1995 intel_pmu_lbr_disable_all();
1998 static void __intel_pmu_enable_all(int added
, bool pmi
)
2000 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2002 intel_pmu_lbr_enable_all(pmi
);
2003 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
,
2004 x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
);
2006 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
2007 struct perf_event
*event
=
2008 cpuc
->events
[INTEL_PMC_IDX_FIXED_BTS
];
2010 if (WARN_ON_ONCE(!event
))
2013 intel_pmu_enable_bts(event
->hw
.config
);
2017 static void intel_pmu_enable_all(int added
)
2019 intel_pmu_pebs_enable_all();
2020 __intel_pmu_enable_all(added
, false);
2025 * Intel Errata AAK100 (model 26)
2026 * Intel Errata AAP53 (model 30)
2027 * Intel Errata BD53 (model 44)
2029 * The official story:
2030 * These chips need to be 'reset' when adding counters by programming the
2031 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2032 * in sequence on the same PMC or on different PMCs.
2034 * In practise it appears some of these events do in fact count, and
2035 * we need to program all 4 events.
2037 static void intel_pmu_nhm_workaround(void)
2039 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2040 static const unsigned long nhm_magic
[4] = {
2046 struct perf_event
*event
;
2050 * The Errata requires below steps:
2051 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2052 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2053 * the corresponding PMCx;
2054 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2055 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2056 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2060 * The real steps we choose are a little different from above.
2061 * A) To reduce MSR operations, we don't run step 1) as they
2062 * are already cleared before this function is called;
2063 * B) Call x86_perf_event_update to save PMCx before configuring
2064 * PERFEVTSELx with magic number;
2065 * C) With step 5), we do clear only when the PERFEVTSELx is
2066 * not used currently.
2067 * D) Call x86_perf_event_set_period to restore PMCx;
2070 /* We always operate 4 pairs of PERF Counters */
2071 for (i
= 0; i
< 4; i
++) {
2072 event
= cpuc
->events
[i
];
2074 x86_perf_event_update(event
);
2077 for (i
= 0; i
< 4; i
++) {
2078 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, nhm_magic
[i
]);
2079 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0
+ i
, 0x0);
2082 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0xf);
2083 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0x0);
2085 for (i
= 0; i
< 4; i
++) {
2086 event
= cpuc
->events
[i
];
2089 x86_perf_event_set_period(event
);
2090 __x86_pmu_enable_event(&event
->hw
,
2091 ARCH_PERFMON_EVENTSEL_ENABLE
);
2093 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, 0x0);
2097 static void intel_pmu_nhm_enable_all(int added
)
2100 intel_pmu_nhm_workaround();
2101 intel_pmu_enable_all(added
);
2104 static void intel_set_tfa(struct cpu_hw_events
*cpuc
, bool on
)
2106 u64 val
= on
? MSR_TFA_RTM_FORCE_ABORT
: 0;
2108 if (cpuc
->tfa_shadow
!= val
) {
2109 cpuc
->tfa_shadow
= val
;
2110 wrmsrl(MSR_TSX_FORCE_ABORT
, val
);
2114 static void intel_tfa_commit_scheduling(struct cpu_hw_events
*cpuc
, int idx
, int cntr
)
2117 * We're going to use PMC3, make sure TFA is set before we touch it.
2120 intel_set_tfa(cpuc
, true);
2123 static void intel_tfa_pmu_enable_all(int added
)
2125 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2128 * If we find PMC3 is no longer used when we enable the PMU, we can
2131 if (!test_bit(3, cpuc
->active_mask
))
2132 intel_set_tfa(cpuc
, false);
2134 intel_pmu_enable_all(added
);
2137 static void enable_counter_freeze(void)
2139 update_debugctlmsr(get_debugctlmsr() |
2140 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI
);
2143 static void disable_counter_freeze(void)
2145 update_debugctlmsr(get_debugctlmsr() &
2146 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI
);
2149 static inline u64
intel_pmu_get_status(void)
2153 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
2158 static inline void intel_pmu_ack_status(u64 ack
)
2160 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, ack
);
2163 static inline bool event_is_checkpointed(struct perf_event
*event
)
2165 return unlikely(event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) != 0;
2168 static inline void intel_set_masks(struct perf_event
*event
, int idx
)
2170 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2172 if (event
->attr
.exclude_host
)
2173 __set_bit(idx
, (unsigned long *)&cpuc
->intel_ctrl_guest_mask
);
2174 if (event
->attr
.exclude_guest
)
2175 __set_bit(idx
, (unsigned long *)&cpuc
->intel_ctrl_host_mask
);
2176 if (event_is_checkpointed(event
))
2177 __set_bit(idx
, (unsigned long *)&cpuc
->intel_cp_status
);
2180 static inline void intel_clear_masks(struct perf_event
*event
, int idx
)
2182 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2184 __clear_bit(idx
, (unsigned long *)&cpuc
->intel_ctrl_guest_mask
);
2185 __clear_bit(idx
, (unsigned long *)&cpuc
->intel_ctrl_host_mask
);
2186 __clear_bit(idx
, (unsigned long *)&cpuc
->intel_cp_status
);
2189 static void intel_pmu_disable_fixed(struct perf_event
*event
)
2191 struct hw_perf_event
*hwc
= &event
->hw
;
2195 if (is_topdown_idx(idx
)) {
2196 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2199 * When there are other active TopDown events,
2200 * don't disable the fixed counter 3.
2202 if (*(u64
*)cpuc
->active_mask
& INTEL_PMC_OTHER_TOPDOWN_BITS(idx
))
2204 idx
= INTEL_PMC_IDX_FIXED_SLOTS
;
2207 intel_clear_masks(event
, idx
);
2209 mask
= 0xfULL
<< ((idx
- INTEL_PMC_IDX_FIXED
) * 4);
2210 rdmsrl(hwc
->config_base
, ctrl_val
);
2212 wrmsrl(hwc
->config_base
, ctrl_val
);
2215 static void intel_pmu_disable_event(struct perf_event
*event
)
2217 struct hw_perf_event
*hwc
= &event
->hw
;
2221 case 0 ... INTEL_PMC_IDX_FIXED
- 1:
2222 intel_clear_masks(event
, idx
);
2223 x86_pmu_disable_event(event
);
2225 case INTEL_PMC_IDX_FIXED
... INTEL_PMC_IDX_FIXED_BTS
- 1:
2226 case INTEL_PMC_IDX_METRIC_BASE
... INTEL_PMC_IDX_METRIC_END
:
2227 intel_pmu_disable_fixed(event
);
2229 case INTEL_PMC_IDX_FIXED_BTS
:
2230 intel_pmu_disable_bts();
2231 intel_pmu_drain_bts_buffer();
2233 case INTEL_PMC_IDX_FIXED_VLBR
:
2234 intel_clear_masks(event
, idx
);
2237 intel_clear_masks(event
, idx
);
2238 pr_warn("Failed to disable the event with invalid index %d\n",
2244 * Needs to be called after x86_pmu_disable_event,
2245 * so we don't trigger the event without PEBS bit set.
2247 if (unlikely(event
->attr
.precise_ip
))
2248 intel_pmu_pebs_disable(event
);
2251 static void intel_pmu_del_event(struct perf_event
*event
)
2253 if (needs_branch_stack(event
))
2254 intel_pmu_lbr_del(event
);
2255 if (event
->attr
.precise_ip
)
2256 intel_pmu_pebs_del(event
);
2259 static int icl_set_topdown_event_period(struct perf_event
*event
)
2261 struct hw_perf_event
*hwc
= &event
->hw
;
2262 s64 left
= local64_read(&hwc
->period_left
);
2265 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2266 * Software should start both registers, PERF_METRICS and fixed
2267 * counter 3, from zero.
2268 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2269 * After that, both MSRs will be cleared for each read.
2270 * Don't need to clear them again.
2272 if (left
== x86_pmu
.max_period
) {
2273 wrmsrl(MSR_CORE_PERF_FIXED_CTR3
, 0);
2274 wrmsrl(MSR_PERF_METRICS
, 0);
2275 hwc
->saved_slots
= 0;
2276 hwc
->saved_metric
= 0;
2279 if ((hwc
->saved_slots
) && is_slots_event(event
)) {
2280 wrmsrl(MSR_CORE_PERF_FIXED_CTR3
, hwc
->saved_slots
);
2281 wrmsrl(MSR_PERF_METRICS
, hwc
->saved_metric
);
2284 perf_event_update_userpage(event
);
2289 static inline u64
icl_get_metrics_event_value(u64 metric
, u64 slots
, int idx
)
2294 * The metric is reported as an 8bit integer fraction
2295 * suming up to 0xff.
2296 * slots-in-metric = (Metric / 0xff) * slots
2298 val
= (metric
>> ((idx
- INTEL_PMC_IDX_METRIC_BASE
) * 8)) & 0xff;
2299 return mul_u64_u32_div(slots
, val
, 0xff);
2302 static u64
icl_get_topdown_value(struct perf_event
*event
,
2303 u64 slots
, u64 metrics
)
2305 int idx
= event
->hw
.idx
;
2308 if (is_metric_idx(idx
))
2309 delta
= icl_get_metrics_event_value(metrics
, slots
, idx
);
2316 static void __icl_update_topdown_event(struct perf_event
*event
,
2317 u64 slots
, u64 metrics
,
2318 u64 last_slots
, u64 last_metrics
)
2320 u64 delta
, last
= 0;
2322 delta
= icl_get_topdown_value(event
, slots
, metrics
);
2324 last
= icl_get_topdown_value(event
, last_slots
, last_metrics
);
2327 * The 8bit integer fraction of metric may be not accurate,
2328 * especially when the changes is very small.
2329 * For example, if only a few bad_spec happens, the fraction
2330 * may be reduced from 1 to 0. If so, the bad_spec event value
2331 * will be 0 which is definitely less than the last value.
2332 * Avoid update event->count for this case.
2336 local64_add(delta
, &event
->count
);
2340 static void update_saved_topdown_regs(struct perf_event
*event
,
2341 u64 slots
, u64 metrics
)
2343 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2344 struct perf_event
*other
;
2347 event
->hw
.saved_slots
= slots
;
2348 event
->hw
.saved_metric
= metrics
;
2350 for_each_set_bit(idx
, cpuc
->active_mask
, INTEL_PMC_IDX_TD_BE_BOUND
+ 1) {
2351 if (!is_topdown_idx(idx
))
2353 other
= cpuc
->events
[idx
];
2354 other
->hw
.saved_slots
= slots
;
2355 other
->hw
.saved_metric
= metrics
;
2360 * Update all active Topdown events.
2362 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2363 * modify by a NMI. PMU has to be disabled before calling this function.
2365 static u64
icl_update_topdown_event(struct perf_event
*event
)
2367 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2368 struct perf_event
*other
;
2373 /* read Fixed counter 3 */
2374 rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE
), slots
);
2378 /* read PERF_METRICS */
2379 rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS
, metrics
);
2381 for_each_set_bit(idx
, cpuc
->active_mask
, INTEL_PMC_IDX_TD_BE_BOUND
+ 1) {
2382 if (!is_topdown_idx(idx
))
2384 other
= cpuc
->events
[idx
];
2385 __icl_update_topdown_event(other
, slots
, metrics
,
2386 event
? event
->hw
.saved_slots
: 0,
2387 event
? event
->hw
.saved_metric
: 0);
2391 * Check and update this event, which may have been cleared
2392 * in active_mask e.g. x86_pmu_stop()
2394 if (event
&& !test_bit(event
->hw
.idx
, cpuc
->active_mask
)) {
2395 __icl_update_topdown_event(event
, slots
, metrics
,
2396 event
->hw
.saved_slots
,
2397 event
->hw
.saved_metric
);
2400 * In x86_pmu_stop(), the event is cleared in active_mask first,
2401 * then drain the delta, which indicates context switch for
2403 * Save metric and slots for context switch.
2404 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2405 * Because the values will be restored in next schedule in.
2407 update_saved_topdown_regs(event
, slots
, metrics
);
2412 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2413 wrmsrl(MSR_CORE_PERF_FIXED_CTR3
, 0);
2414 wrmsrl(MSR_PERF_METRICS
, 0);
2416 update_saved_topdown_regs(event
, 0, 0);
2422 static void intel_pmu_read_topdown_event(struct perf_event
*event
)
2424 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2426 /* Only need to call update_topdown_event() once for group read. */
2427 if ((cpuc
->txn_flags
& PERF_PMU_TXN_READ
) &&
2428 !is_slots_event(event
))
2431 perf_pmu_disable(event
->pmu
);
2432 x86_pmu
.update_topdown_event(event
);
2433 perf_pmu_enable(event
->pmu
);
2436 static void intel_pmu_read_event(struct perf_event
*event
)
2438 if (event
->hw
.flags
& PERF_X86_EVENT_AUTO_RELOAD
)
2439 intel_pmu_auto_reload_read(event
);
2440 else if (is_topdown_count(event
) && x86_pmu
.update_topdown_event
)
2441 intel_pmu_read_topdown_event(event
);
2443 x86_perf_event_update(event
);
2446 static void intel_pmu_enable_fixed(struct perf_event
*event
)
2448 struct hw_perf_event
*hwc
= &event
->hw
;
2449 u64 ctrl_val
, mask
, bits
= 0;
2452 if (is_topdown_idx(idx
)) {
2453 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2455 * When there are other active TopDown events,
2456 * don't enable the fixed counter 3 again.
2458 if (*(u64
*)cpuc
->active_mask
& INTEL_PMC_OTHER_TOPDOWN_BITS(idx
))
2461 idx
= INTEL_PMC_IDX_FIXED_SLOTS
;
2464 intel_set_masks(event
, idx
);
2467 * Enable IRQ generation (0x8), if not PEBS,
2468 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2471 if (!event
->attr
.precise_ip
)
2473 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_USR
)
2475 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
2479 * ANY bit is supported in v3 and up
2481 if (x86_pmu
.version
> 2 && hwc
->config
& ARCH_PERFMON_EVENTSEL_ANY
)
2484 idx
-= INTEL_PMC_IDX_FIXED
;
2486 mask
= 0xfULL
<< (idx
* 4);
2488 if (x86_pmu
.intel_cap
.pebs_baseline
&& event
->attr
.precise_ip
) {
2489 bits
|= ICL_FIXED_0_ADAPTIVE
<< (idx
* 4);
2490 mask
|= ICL_FIXED_0_ADAPTIVE
<< (idx
* 4);
2493 rdmsrl(hwc
->config_base
, ctrl_val
);
2496 wrmsrl(hwc
->config_base
, ctrl_val
);
2499 static void intel_pmu_enable_event(struct perf_event
*event
)
2501 struct hw_perf_event
*hwc
= &event
->hw
;
2504 if (unlikely(event
->attr
.precise_ip
))
2505 intel_pmu_pebs_enable(event
);
2508 case 0 ... INTEL_PMC_IDX_FIXED
- 1:
2509 intel_set_masks(event
, idx
);
2510 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
2512 case INTEL_PMC_IDX_FIXED
... INTEL_PMC_IDX_FIXED_BTS
- 1:
2513 case INTEL_PMC_IDX_METRIC_BASE
... INTEL_PMC_IDX_METRIC_END
:
2514 intel_pmu_enable_fixed(event
);
2516 case INTEL_PMC_IDX_FIXED_BTS
:
2517 if (!__this_cpu_read(cpu_hw_events
.enabled
))
2519 intel_pmu_enable_bts(hwc
->config
);
2521 case INTEL_PMC_IDX_FIXED_VLBR
:
2522 intel_set_masks(event
, idx
);
2525 pr_warn("Failed to enable the event with invalid index %d\n",
2530 static void intel_pmu_add_event(struct perf_event
*event
)
2532 if (event
->attr
.precise_ip
)
2533 intel_pmu_pebs_add(event
);
2534 if (needs_branch_stack(event
))
2535 intel_pmu_lbr_add(event
);
2539 * Save and restart an expired event. Called by NMI contexts,
2540 * so it has to be careful about preempting normal event ops:
2542 int intel_pmu_save_and_restart(struct perf_event
*event
)
2544 x86_perf_event_update(event
);
2546 * For a checkpointed counter always reset back to 0. This
2547 * avoids a situation where the counter overflows, aborts the
2548 * transaction and is then set back to shortly before the
2549 * overflow, and overflows and aborts again.
2551 if (unlikely(event_is_checkpointed(event
))) {
2552 /* No race with NMIs because the counter should not be armed */
2553 wrmsrl(event
->hw
.event_base
, 0);
2554 local64_set(&event
->hw
.prev_count
, 0);
2556 return x86_perf_event_set_period(event
);
2559 static void intel_pmu_reset(void)
2561 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
2562 unsigned long flags
;
2565 if (!x86_pmu
.num_counters
)
2568 local_irq_save(flags
);
2570 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2572 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
2573 wrmsrl_safe(x86_pmu_config_addr(idx
), 0ull);
2574 wrmsrl_safe(x86_pmu_event_addr(idx
), 0ull);
2576 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++)
2577 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, 0ull);
2580 ds
->bts_index
= ds
->bts_buffer_base
;
2582 /* Ack all overflows and disable fixed counters */
2583 if (x86_pmu
.version
>= 2) {
2584 intel_pmu_ack_status(intel_pmu_get_status());
2585 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2588 /* Reset LBRs and LBR freezing */
2589 if (x86_pmu
.lbr_nr
) {
2590 update_debugctlmsr(get_debugctlmsr() &
2591 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
|DEBUGCTLMSR_LBR
));
2594 local_irq_restore(flags
);
2597 static int handle_pmi_common(struct pt_regs
*regs
, u64 status
)
2599 struct perf_sample_data data
;
2600 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2604 inc_irq_stat(apic_perf_irqs
);
2607 * Ignore a range of extra bits in status that do not indicate
2608 * overflow by themselves.
2610 status
&= ~(GLOBAL_STATUS_COND_CHG
|
2611 GLOBAL_STATUS_ASIF
|
2612 GLOBAL_STATUS_LBRS_FROZEN
);
2616 * In case multiple PEBS events are sampled at the same time,
2617 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2618 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2619 * having their bits set in the status register. This is a sign
2620 * that there was at least one PEBS record pending at the time
2621 * of the PMU interrupt. PEBS counters must only be processed
2622 * via the drain_pebs() calls and not via the regular sample
2623 * processing loop coming after that the function, otherwise
2624 * phony regular samples may be generated in the sampling buffer
2625 * not marked with the EXACT tag. Another possibility is to have
2626 * one PEBS event and at least one non-PEBS event whic hoverflows
2627 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2628 * not be set, yet the overflow status bit for the PEBS counter will
2631 * To avoid this problem, we systematically ignore the PEBS-enabled
2632 * counters from the GLOBAL_STATUS mask and we always process PEBS
2633 * events via drain_pebs().
2635 if (x86_pmu
.flags
& PMU_FL_PEBS_ALL
)
2636 status
&= ~cpuc
->pebs_enabled
;
2638 status
&= ~(cpuc
->pebs_enabled
& PEBS_COUNTER_MASK
);
2641 * PEBS overflow sets bit 62 in the global status register
2643 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT
, (unsigned long *)&status
)) {
2644 u64 pebs_enabled
= cpuc
->pebs_enabled
;
2647 x86_pmu
.drain_pebs(regs
, &data
);
2648 status
&= x86_pmu
.intel_ctrl
| GLOBAL_STATUS_TRACE_TOPAPMI
;
2651 * PMI throttle may be triggered, which stops the PEBS event.
2652 * Although cpuc->pebs_enabled is updated accordingly, the
2653 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2654 * cpuc->enabled has been forced to 0 in PMI.
2655 * Update the MSR if pebs_enabled is changed.
2657 if (pebs_enabled
!= cpuc
->pebs_enabled
)
2658 wrmsrl(MSR_IA32_PEBS_ENABLE
, cpuc
->pebs_enabled
);
2664 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT
, (unsigned long *)&status
)) {
2666 if (unlikely(perf_guest_cbs
&& perf_guest_cbs
->is_in_guest() &&
2667 perf_guest_cbs
->handle_intel_pt_intr
))
2668 perf_guest_cbs
->handle_intel_pt_intr();
2670 intel_pt_interrupt();
2674 * Intel Perf mertrics
2676 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT
, (unsigned long *)&status
)) {
2678 if (x86_pmu
.update_topdown_event
)
2679 x86_pmu
.update_topdown_event(NULL
);
2683 * Checkpointed counters can lead to 'spurious' PMIs because the
2684 * rollback caused by the PMI will have cleared the overflow status
2685 * bit. Therefore always force probe these counters.
2687 status
|= cpuc
->intel_cp_status
;
2689 for_each_set_bit(bit
, (unsigned long *)&status
, X86_PMC_IDX_MAX
) {
2690 struct perf_event
*event
= cpuc
->events
[bit
];
2694 if (!test_bit(bit
, cpuc
->active_mask
))
2697 if (!intel_pmu_save_and_restart(event
))
2700 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
2702 if (has_branch_stack(event
))
2703 data
.br_stack
= &cpuc
->lbr_stack
;
2705 if (perf_event_overflow(event
, &data
, regs
))
2706 x86_pmu_stop(event
, 0);
2712 static bool disable_counter_freezing
= true;
2713 static int __init
intel_perf_counter_freezing_setup(char *s
)
2717 if (kstrtobool(s
, &res
))
2720 disable_counter_freezing
= !res
;
2723 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup
);
2726 * Simplified handler for Arch Perfmon v4:
2727 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2728 * This is done automatically on PMU ack.
2729 * - Ack the PMU only after the APIC.
2732 static int intel_pmu_handle_irq_v4(struct pt_regs
*regs
)
2734 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2738 int pmu_enabled
= cpuc
->enabled
;
2741 /* PMU has been disabled because of counter freezing */
2743 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
2745 intel_bts_disable_local();
2746 handled
= intel_pmu_drain_bts_buffer();
2747 handled
+= intel_bts_interrupt();
2749 status
= intel_pmu_get_status();
2753 intel_pmu_lbr_read();
2754 if (++loops
> 100) {
2758 WARN(1, "perfevents: irq loop stuck!\n");
2759 perf_event_print_debug();
2767 handled
+= handle_pmi_common(regs
, status
);
2769 /* Ack the PMI in the APIC */
2770 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2773 * The counters start counting immediately while ack the status.
2774 * Make it as close as possible to IRET. This avoids bogus
2775 * freezing on Skylake CPUs.
2778 intel_pmu_ack_status(status
);
2781 * CPU may issues two PMIs very close to each other.
2782 * When the PMI handler services the first one, the
2783 * GLOBAL_STATUS is already updated to reflect both.
2784 * When it IRETs, the second PMI is immediately
2785 * handled and it sees clear status. At the meantime,
2786 * there may be a third PMI, because the freezing bit
2787 * isn't set since the ack in first PMI handlers.
2788 * Double check if there is more work to be done.
2790 status
= intel_pmu_get_status();
2796 intel_bts_enable_local();
2797 cpuc
->enabled
= pmu_enabled
;
2802 * This handler is triggered by the local APIC, so the APIC IRQ handling
2805 static int intel_pmu_handle_irq(struct pt_regs
*regs
)
2807 struct cpu_hw_events
*cpuc
;
2813 cpuc
= this_cpu_ptr(&cpu_hw_events
);
2816 * Save the PMU state.
2817 * It needs to be restored when leaving the handler.
2819 pmu_enabled
= cpuc
->enabled
;
2821 * No known reason to not always do late ACK,
2822 * but just in case do it opt-in.
2824 if (!x86_pmu
.late_ack
)
2825 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2826 intel_bts_disable_local();
2828 __intel_pmu_disable_all();
2829 handled
= intel_pmu_drain_bts_buffer();
2830 handled
+= intel_bts_interrupt();
2831 status
= intel_pmu_get_status();
2837 intel_pmu_lbr_read();
2838 intel_pmu_ack_status(status
);
2839 if (++loops
> 100) {
2843 WARN(1, "perfevents: irq loop stuck!\n");
2844 perf_event_print_debug();
2851 handled
+= handle_pmi_common(regs
, status
);
2854 * Repeat if there is more work to be done:
2856 status
= intel_pmu_get_status();
2861 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2862 cpuc
->enabled
= pmu_enabled
;
2864 __intel_pmu_enable_all(0, true);
2865 intel_bts_enable_local();
2868 * Only unmask the NMI after the overflow counters
2869 * have been reset. This avoids spurious NMIs on
2872 if (x86_pmu
.late_ack
)
2873 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2877 static struct event_constraint
*
2878 intel_bts_constraints(struct perf_event
*event
)
2880 if (unlikely(intel_pmu_has_bts(event
)))
2881 return &bts_constraint
;
2887 * Note: matches a fake event, like Fixed2.
2889 static struct event_constraint
*
2890 intel_vlbr_constraints(struct perf_event
*event
)
2892 struct event_constraint
*c
= &vlbr_constraint
;
2894 if (unlikely(constraint_match(c
, event
->hw
.config
)))
2900 static int intel_alt_er(int idx
, u64 config
)
2904 if (!(x86_pmu
.flags
& PMU_FL_HAS_RSP_1
))
2907 if (idx
== EXTRA_REG_RSP_0
)
2908 alt_idx
= EXTRA_REG_RSP_1
;
2910 if (idx
== EXTRA_REG_RSP_1
)
2911 alt_idx
= EXTRA_REG_RSP_0
;
2913 if (config
& ~x86_pmu
.extra_regs
[alt_idx
].valid_mask
)
2919 static void intel_fixup_er(struct perf_event
*event
, int idx
)
2921 event
->hw
.extra_reg
.idx
= idx
;
2923 if (idx
== EXTRA_REG_RSP_0
) {
2924 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
2925 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_0
].event
;
2926 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_0
;
2927 } else if (idx
== EXTRA_REG_RSP_1
) {
2928 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
2929 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_1
].event
;
2930 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_1
;
2935 * manage allocation of shared extra msr for certain events
2938 * per-cpu: to be shared between the various events on a single PMU
2939 * per-core: per-cpu + shared by HT threads
2941 static struct event_constraint
*
2942 __intel_shared_reg_get_constraints(struct cpu_hw_events
*cpuc
,
2943 struct perf_event
*event
,
2944 struct hw_perf_event_extra
*reg
)
2946 struct event_constraint
*c
= &emptyconstraint
;
2947 struct er_account
*era
;
2948 unsigned long flags
;
2952 * reg->alloc can be set due to existing state, so for fake cpuc we
2953 * need to ignore this, otherwise we might fail to allocate proper fake
2954 * state for this extra reg constraint. Also see the comment below.
2956 if (reg
->alloc
&& !cpuc
->is_fake
)
2957 return NULL
; /* call x86_get_event_constraint() */
2960 era
= &cpuc
->shared_regs
->regs
[idx
];
2962 * we use spin_lock_irqsave() to avoid lockdep issues when
2963 * passing a fake cpuc
2965 raw_spin_lock_irqsave(&era
->lock
, flags
);
2967 if (!atomic_read(&era
->ref
) || era
->config
== reg
->config
) {
2970 * If its a fake cpuc -- as per validate_{group,event}() we
2971 * shouldn't touch event state and we can avoid doing so
2972 * since both will only call get_event_constraints() once
2973 * on each event, this avoids the need for reg->alloc.
2975 * Not doing the ER fixup will only result in era->reg being
2976 * wrong, but since we won't actually try and program hardware
2977 * this isn't a problem either.
2979 if (!cpuc
->is_fake
) {
2980 if (idx
!= reg
->idx
)
2981 intel_fixup_er(event
, idx
);
2984 * x86_schedule_events() can call get_event_constraints()
2985 * multiple times on events in the case of incremental
2986 * scheduling(). reg->alloc ensures we only do the ER
2992 /* lock in msr value */
2993 era
->config
= reg
->config
;
2994 era
->reg
= reg
->reg
;
2997 atomic_inc(&era
->ref
);
3000 * need to call x86_get_event_constraint()
3001 * to check if associated event has constraints
3005 idx
= intel_alt_er(idx
, reg
->config
);
3006 if (idx
!= reg
->idx
) {
3007 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
3011 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
3017 __intel_shared_reg_put_constraints(struct cpu_hw_events
*cpuc
,
3018 struct hw_perf_event_extra
*reg
)
3020 struct er_account
*era
;
3023 * Only put constraint if extra reg was actually allocated. Also takes
3024 * care of event which do not use an extra shared reg.
3026 * Also, if this is a fake cpuc we shouldn't touch any event state
3027 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3028 * either since it'll be thrown out.
3030 if (!reg
->alloc
|| cpuc
->is_fake
)
3033 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
3035 /* one fewer user */
3036 atomic_dec(&era
->ref
);
3038 /* allocate again next time */
3042 static struct event_constraint
*
3043 intel_shared_regs_constraints(struct cpu_hw_events
*cpuc
,
3044 struct perf_event
*event
)
3046 struct event_constraint
*c
= NULL
, *d
;
3047 struct hw_perf_event_extra
*xreg
, *breg
;
3049 xreg
= &event
->hw
.extra_reg
;
3050 if (xreg
->idx
!= EXTRA_REG_NONE
) {
3051 c
= __intel_shared_reg_get_constraints(cpuc
, event
, xreg
);
3052 if (c
== &emptyconstraint
)
3055 breg
= &event
->hw
.branch_reg
;
3056 if (breg
->idx
!= EXTRA_REG_NONE
) {
3057 d
= __intel_shared_reg_get_constraints(cpuc
, event
, breg
);
3058 if (d
== &emptyconstraint
) {
3059 __intel_shared_reg_put_constraints(cpuc
, xreg
);
3066 struct event_constraint
*
3067 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3068 struct perf_event
*event
)
3070 struct event_constraint
*c
;
3072 if (x86_pmu
.event_constraints
) {
3073 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
3074 if (constraint_match(c
, event
->hw
.config
)) {
3075 event
->hw
.flags
|= c
->flags
;
3081 return &unconstrained
;
3084 static struct event_constraint
*
3085 __intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3086 struct perf_event
*event
)
3088 struct event_constraint
*c
;
3090 c
= intel_vlbr_constraints(event
);
3094 c
= intel_bts_constraints(event
);
3098 c
= intel_shared_regs_constraints(cpuc
, event
);
3102 c
= intel_pebs_constraints(event
);
3106 return x86_get_event_constraints(cpuc
, idx
, event
);
3110 intel_start_scheduling(struct cpu_hw_events
*cpuc
)
3112 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
3113 struct intel_excl_states
*xl
;
3114 int tid
= cpuc
->excl_thread_id
;
3117 * nothing needed if in group validation mode
3119 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
3123 * no exclusion needed
3125 if (WARN_ON_ONCE(!excl_cntrs
))
3128 xl
= &excl_cntrs
->states
[tid
];
3130 xl
->sched_started
= true;
3132 * lock shared state until we are done scheduling
3133 * in stop_event_scheduling()
3134 * makes scheduling appear as a transaction
3136 raw_spin_lock(&excl_cntrs
->lock
);
3139 static void intel_commit_scheduling(struct cpu_hw_events
*cpuc
, int idx
, int cntr
)
3141 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
3142 struct event_constraint
*c
= cpuc
->event_constraint
[idx
];
3143 struct intel_excl_states
*xl
;
3144 int tid
= cpuc
->excl_thread_id
;
3146 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
3149 if (WARN_ON_ONCE(!excl_cntrs
))
3152 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
))
3155 xl
= &excl_cntrs
->states
[tid
];
3157 lockdep_assert_held(&excl_cntrs
->lock
);
3159 if (c
->flags
& PERF_X86_EVENT_EXCL
)
3160 xl
->state
[cntr
] = INTEL_EXCL_EXCLUSIVE
;
3162 xl
->state
[cntr
] = INTEL_EXCL_SHARED
;
3166 intel_stop_scheduling(struct cpu_hw_events
*cpuc
)
3168 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
3169 struct intel_excl_states
*xl
;
3170 int tid
= cpuc
->excl_thread_id
;
3173 * nothing needed if in group validation mode
3175 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
3178 * no exclusion needed
3180 if (WARN_ON_ONCE(!excl_cntrs
))
3183 xl
= &excl_cntrs
->states
[tid
];
3185 xl
->sched_started
= false;
3187 * release shared state lock (acquired in intel_start_scheduling())
3189 raw_spin_unlock(&excl_cntrs
->lock
);
3192 static struct event_constraint
*
3193 dyn_constraint(struct cpu_hw_events
*cpuc
, struct event_constraint
*c
, int idx
)
3195 WARN_ON_ONCE(!cpuc
->constraint_list
);
3197 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
)) {
3198 struct event_constraint
*cx
;
3201 * grab pre-allocated constraint entry
3203 cx
= &cpuc
->constraint_list
[idx
];
3206 * initialize dynamic constraint
3207 * with static constraint
3212 * mark constraint as dynamic
3214 cx
->flags
|= PERF_X86_EVENT_DYNAMIC
;
3221 static struct event_constraint
*
3222 intel_get_excl_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
,
3223 int idx
, struct event_constraint
*c
)
3225 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
3226 struct intel_excl_states
*xlo
;
3227 int tid
= cpuc
->excl_thread_id
;
3231 * validating a group does not require
3232 * enforcing cross-thread exclusion
3234 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
3238 * no exclusion needed
3240 if (WARN_ON_ONCE(!excl_cntrs
))
3244 * because we modify the constraint, we need
3245 * to make a copy. Static constraints come
3246 * from static const tables.
3248 * only needed when constraint has not yet
3249 * been cloned (marked dynamic)
3251 c
= dyn_constraint(cpuc
, c
, idx
);
3254 * From here on, the constraint is dynamic.
3255 * Either it was just allocated above, or it
3256 * was allocated during a earlier invocation
3261 * state of sibling HT
3263 xlo
= &excl_cntrs
->states
[tid
^ 1];
3266 * event requires exclusive counter access
3269 is_excl
= c
->flags
& PERF_X86_EVENT_EXCL
;
3270 if (is_excl
&& !(event
->hw
.flags
& PERF_X86_EVENT_EXCL_ACCT
)) {
3271 event
->hw
.flags
|= PERF_X86_EVENT_EXCL_ACCT
;
3272 if (!cpuc
->n_excl
++)
3273 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 1);
3277 * Modify static constraint with current dynamic
3280 * EXCLUSIVE: sibling counter measuring exclusive event
3281 * SHARED : sibling counter measuring non-exclusive event
3282 * UNUSED : sibling counter unused
3285 for_each_set_bit(i
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
3287 * exclusive event in sibling counter
3288 * our corresponding counter cannot be used
3289 * regardless of our event
3291 if (xlo
->state
[i
] == INTEL_EXCL_EXCLUSIVE
) {
3292 __clear_bit(i
, c
->idxmsk
);
3297 * if measuring an exclusive event, sibling
3298 * measuring non-exclusive, then counter cannot
3301 if (is_excl
&& xlo
->state
[i
] == INTEL_EXCL_SHARED
) {
3302 __clear_bit(i
, c
->idxmsk
);
3309 * if we return an empty mask, then switch
3310 * back to static empty constraint to avoid
3311 * the cost of freeing later on
3314 c
= &emptyconstraint
;
3321 static struct event_constraint
*
3322 intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3323 struct perf_event
*event
)
3325 struct event_constraint
*c1
, *c2
;
3327 c1
= cpuc
->event_constraint
[idx
];
3331 * - static constraint: no change across incremental scheduling calls
3332 * - dynamic constraint: handled by intel_get_excl_constraints()
3334 c2
= __intel_get_event_constraints(cpuc
, idx
, event
);
3336 WARN_ON_ONCE(!(c1
->flags
& PERF_X86_EVENT_DYNAMIC
));
3337 bitmap_copy(c1
->idxmsk
, c2
->idxmsk
, X86_PMC_IDX_MAX
);
3338 c1
->weight
= c2
->weight
;
3342 if (cpuc
->excl_cntrs
)
3343 return intel_get_excl_constraints(cpuc
, event
, idx
, c2
);
3348 static void intel_put_excl_constraints(struct cpu_hw_events
*cpuc
,
3349 struct perf_event
*event
)
3351 struct hw_perf_event
*hwc
= &event
->hw
;
3352 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
3353 int tid
= cpuc
->excl_thread_id
;
3354 struct intel_excl_states
*xl
;
3357 * nothing needed if in group validation mode
3362 if (WARN_ON_ONCE(!excl_cntrs
))
3365 if (hwc
->flags
& PERF_X86_EVENT_EXCL_ACCT
) {
3366 hwc
->flags
&= ~PERF_X86_EVENT_EXCL_ACCT
;
3367 if (!--cpuc
->n_excl
)
3368 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 0);
3372 * If event was actually assigned, then mark the counter state as
3375 if (hwc
->idx
>= 0) {
3376 xl
= &excl_cntrs
->states
[tid
];
3379 * put_constraint may be called from x86_schedule_events()
3380 * which already has the lock held so here make locking
3383 if (!xl
->sched_started
)
3384 raw_spin_lock(&excl_cntrs
->lock
);
3386 xl
->state
[hwc
->idx
] = INTEL_EXCL_UNUSED
;
3388 if (!xl
->sched_started
)
3389 raw_spin_unlock(&excl_cntrs
->lock
);
3394 intel_put_shared_regs_event_constraints(struct cpu_hw_events
*cpuc
,
3395 struct perf_event
*event
)
3397 struct hw_perf_event_extra
*reg
;
3399 reg
= &event
->hw
.extra_reg
;
3400 if (reg
->idx
!= EXTRA_REG_NONE
)
3401 __intel_shared_reg_put_constraints(cpuc
, reg
);
3403 reg
= &event
->hw
.branch_reg
;
3404 if (reg
->idx
!= EXTRA_REG_NONE
)
3405 __intel_shared_reg_put_constraints(cpuc
, reg
);
3408 static void intel_put_event_constraints(struct cpu_hw_events
*cpuc
,
3409 struct perf_event
*event
)
3411 intel_put_shared_regs_event_constraints(cpuc
, event
);
3414 * is PMU has exclusive counter restrictions, then
3415 * all events are subject to and must call the
3416 * put_excl_constraints() routine
3418 if (cpuc
->excl_cntrs
)
3419 intel_put_excl_constraints(cpuc
, event
);
3422 static void intel_pebs_aliases_core2(struct perf_event
*event
)
3424 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
3426 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3427 * (0x003c) so that we can use it with PEBS.
3429 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3430 * PEBS capable. However we can use INST_RETIRED.ANY_P
3431 * (0x00c0), which is a PEBS capable event, to get the same
3434 * INST_RETIRED.ANY_P counts the number of cycles that retires
3435 * CNTMASK instructions. By setting CNTMASK to a value (16)
3436 * larger than the maximum number of instructions that can be
3437 * retired per cycle (4) and then inverting the condition, we
3438 * count all cycles that retire 16 or less instructions, which
3441 * Thereby we gain a PEBS capable cycle counter.
3443 u64 alt_config
= X86_CONFIG(.event
=0xc0, .inv
=1, .cmask
=16);
3445 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3446 event
->hw
.config
= alt_config
;
3450 static void intel_pebs_aliases_snb(struct perf_event
*event
)
3452 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
3454 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3455 * (0x003c) so that we can use it with PEBS.
3457 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3458 * PEBS capable. However we can use UOPS_RETIRED.ALL
3459 * (0x01c2), which is a PEBS capable event, to get the same
3462 * UOPS_RETIRED.ALL counts the number of cycles that retires
3463 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3464 * larger than the maximum number of micro-ops that can be
3465 * retired per cycle (4) and then inverting the condition, we
3466 * count all cycles that retire 16 or less micro-ops, which
3469 * Thereby we gain a PEBS capable cycle counter.
3471 u64 alt_config
= X86_CONFIG(.event
=0xc2, .umask
=0x01, .inv
=1, .cmask
=16);
3473 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3474 event
->hw
.config
= alt_config
;
3478 static void intel_pebs_aliases_precdist(struct perf_event
*event
)
3480 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
3482 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3483 * (0x003c) so that we can use it with PEBS.
3485 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3486 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3487 * (0x01c0), which is a PEBS capable event, to get the same
3490 * The PREC_DIST event has special support to minimize sample
3491 * shadowing effects. One drawback is that it can be
3492 * only programmed on counter 1, but that seems like an
3493 * acceptable trade off.
3495 u64 alt_config
= X86_CONFIG(.event
=0xc0, .umask
=0x01, .inv
=1, .cmask
=16);
3497 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3498 event
->hw
.config
= alt_config
;
3502 static void intel_pebs_aliases_ivb(struct perf_event
*event
)
3504 if (event
->attr
.precise_ip
< 3)
3505 return intel_pebs_aliases_snb(event
);
3506 return intel_pebs_aliases_precdist(event
);
3509 static void intel_pebs_aliases_skl(struct perf_event
*event
)
3511 if (event
->attr
.precise_ip
< 3)
3512 return intel_pebs_aliases_core2(event
);
3513 return intel_pebs_aliases_precdist(event
);
3516 static unsigned long intel_pmu_large_pebs_flags(struct perf_event
*event
)
3518 unsigned long flags
= x86_pmu
.large_pebs_flags
;
3520 if (event
->attr
.use_clockid
)
3521 flags
&= ~PERF_SAMPLE_TIME
;
3522 if (!event
->attr
.exclude_kernel
)
3523 flags
&= ~PERF_SAMPLE_REGS_USER
;
3524 if (event
->attr
.sample_regs_user
& ~PEBS_GP_REGS
)
3525 flags
&= ~(PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_REGS_INTR
);
3529 static int intel_pmu_bts_config(struct perf_event
*event
)
3531 struct perf_event_attr
*attr
= &event
->attr
;
3533 if (unlikely(intel_pmu_has_bts(event
))) {
3534 /* BTS is not supported by this architecture. */
3535 if (!x86_pmu
.bts_active
)
3538 /* BTS is currently only allowed for user-mode. */
3539 if (!attr
->exclude_kernel
)
3542 /* BTS is not allowed for precise events. */
3543 if (attr
->precise_ip
)
3546 /* disallow bts if conflicting events are present */
3547 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
3550 event
->destroy
= hw_perf_lbr_event_destroy
;
3556 static int core_pmu_hw_config(struct perf_event
*event
)
3558 int ret
= x86_pmu_hw_config(event
);
3563 return intel_pmu_bts_config(event
);
3566 static int intel_pmu_hw_config(struct perf_event
*event
)
3568 int ret
= x86_pmu_hw_config(event
);
3573 ret
= intel_pmu_bts_config(event
);
3577 if (event
->attr
.precise_ip
) {
3578 if (!(event
->attr
.freq
|| (event
->attr
.wakeup_events
&& !event
->attr
.watermark
))) {
3579 event
->hw
.flags
|= PERF_X86_EVENT_AUTO_RELOAD
;
3580 if (!(event
->attr
.sample_type
&
3581 ~intel_pmu_large_pebs_flags(event
)))
3582 event
->hw
.flags
|= PERF_X86_EVENT_LARGE_PEBS
;
3584 if (x86_pmu
.pebs_aliases
)
3585 x86_pmu
.pebs_aliases(event
);
3587 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3588 event
->attr
.sample_type
|= __PERF_SAMPLE_CALLCHAIN_EARLY
;
3591 if (needs_branch_stack(event
)) {
3592 ret
= intel_pmu_setup_lbr_filter(event
);
3597 * BTS is set up earlier in this path, so don't account twice
3599 if (!unlikely(intel_pmu_has_bts(event
))) {
3600 /* disallow lbr if conflicting events are present */
3601 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
3604 event
->destroy
= hw_perf_lbr_event_destroy
;
3608 if (event
->attr
.aux_output
) {
3609 if (!event
->attr
.precise_ip
)
3612 event
->hw
.flags
|= PERF_X86_EVENT_PEBS_VIA_PT
;
3615 if (event
->attr
.type
!= PERF_TYPE_RAW
)
3619 * Config Topdown slots and metric events
3621 * The slots event on Fixed Counter 3 can support sampling,
3622 * which will be handled normally in x86_perf_event_update().
3624 * Metric events don't support sampling and require being paired
3625 * with a slots event as group leader. When the slots event
3626 * is used in a metrics group, it too cannot support sampling.
3628 if (x86_pmu
.intel_cap
.perf_metrics
&& is_topdown_event(event
)) {
3629 if (event
->attr
.config1
|| event
->attr
.config2
)
3633 * The TopDown metrics events and slots event don't
3634 * support any filters.
3636 if (event
->attr
.config
& X86_ALL_EVENT_FLAGS
)
3639 if (is_metric_event(event
)) {
3640 struct perf_event
*leader
= event
->group_leader
;
3642 /* The metric events don't support sampling. */
3643 if (is_sampling_event(event
))
3646 /* The metric events require a slots group leader. */
3647 if (!is_slots_event(leader
))
3651 * The leader/SLOTS must not be a sampling event for
3652 * metric use; hardware requires it starts at 0 when used
3653 * in conjunction with MSR_PERF_METRICS.
3655 if (is_sampling_event(leader
))
3658 event
->event_caps
|= PERF_EV_CAP_SIBLING
;
3660 * Only once we have a METRICs sibling do we
3661 * need TopDown magic.
3663 leader
->hw
.flags
|= PERF_X86_EVENT_TOPDOWN
;
3664 event
->hw
.flags
|= PERF_X86_EVENT_TOPDOWN
;
3668 if (!(event
->attr
.config
& ARCH_PERFMON_EVENTSEL_ANY
))
3671 if (x86_pmu
.version
< 3)
3674 ret
= perf_allow_cpu(&event
->attr
);
3678 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_ANY
;
3683 #ifdef CONFIG_RETPOLINE
3684 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
);
3685 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
);
3688 struct perf_guest_switch_msr
*perf_guest_get_msrs(int *nr
)
3690 #ifdef CONFIG_RETPOLINE
3691 if (x86_pmu
.guest_get_msrs
== intel_guest_get_msrs
)
3692 return intel_guest_get_msrs(nr
);
3693 else if (x86_pmu
.guest_get_msrs
== core_guest_get_msrs
)
3694 return core_guest_get_msrs(nr
);
3696 if (x86_pmu
.guest_get_msrs
)
3697 return x86_pmu
.guest_get_msrs(nr
);
3701 EXPORT_SYMBOL_GPL(perf_guest_get_msrs
);
3703 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
)
3705 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3706 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
3708 arr
[0].msr
= MSR_CORE_PERF_GLOBAL_CTRL
;
3709 arr
[0].host
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
;
3710 arr
[0].guest
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_host_mask
;
3711 if (x86_pmu
.flags
& PMU_FL_PEBS_ALL
)
3712 arr
[0].guest
&= ~cpuc
->pebs_enabled
;
3714 arr
[0].guest
&= ~(cpuc
->pebs_enabled
& PEBS_COUNTER_MASK
);
3717 if (x86_pmu
.pebs
&& x86_pmu
.pebs_no_isolation
) {
3719 * If PMU counter has PEBS enabled it is not enough to
3720 * disable counter on a guest entry since PEBS memory
3721 * write can overshoot guest entry and corrupt guest
3722 * memory. Disabling PEBS solves the problem.
3724 * Don't do this if the CPU already enforces it.
3726 arr
[1].msr
= MSR_IA32_PEBS_ENABLE
;
3727 arr
[1].host
= cpuc
->pebs_enabled
;
3735 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
)
3737 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3738 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
3741 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
3742 struct perf_event
*event
= cpuc
->events
[idx
];
3744 arr
[idx
].msr
= x86_pmu_config_addr(idx
);
3745 arr
[idx
].host
= arr
[idx
].guest
= 0;
3747 if (!test_bit(idx
, cpuc
->active_mask
))
3750 arr
[idx
].host
= arr
[idx
].guest
=
3751 event
->hw
.config
| ARCH_PERFMON_EVENTSEL_ENABLE
;
3753 if (event
->attr
.exclude_host
)
3754 arr
[idx
].host
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
3755 else if (event
->attr
.exclude_guest
)
3756 arr
[idx
].guest
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
3759 *nr
= x86_pmu
.num_counters
;
3763 static void core_pmu_enable_event(struct perf_event
*event
)
3765 if (!event
->attr
.exclude_host
)
3766 x86_pmu_enable_event(event
);
3769 static void core_pmu_enable_all(int added
)
3771 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3774 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
3775 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
3777 if (!test_bit(idx
, cpuc
->active_mask
) ||
3778 cpuc
->events
[idx
]->attr
.exclude_host
)
3781 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
3785 static int hsw_hw_config(struct perf_event
*event
)
3787 int ret
= intel_pmu_hw_config(event
);
3791 if (!boot_cpu_has(X86_FEATURE_RTM
) && !boot_cpu_has(X86_FEATURE_HLE
))
3793 event
->hw
.config
|= event
->attr
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
);
3796 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3797 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3800 if ((event
->hw
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
)) &&
3801 ((event
->hw
.config
& ARCH_PERFMON_EVENTSEL_ANY
) ||
3802 event
->attr
.precise_ip
> 0))
3805 if (event_is_checkpointed(event
)) {
3807 * Sampling of checkpointed events can cause situations where
3808 * the CPU constantly aborts because of a overflow, which is
3809 * then checkpointed back and ignored. Forbid checkpointing
3812 * But still allow a long sampling period, so that perf stat
3815 if (event
->attr
.sample_period
> 0 &&
3816 event
->attr
.sample_period
< 0x7fffffff)
3822 static struct event_constraint counter0_constraint
=
3823 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3825 static struct event_constraint counter2_constraint
=
3826 EVENT_CONSTRAINT(0, 0x4, 0);
3828 static struct event_constraint fixed0_constraint
=
3829 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3831 static struct event_constraint fixed0_counter0_constraint
=
3832 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL
);
3834 static struct event_constraint
*
3835 hsw_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3836 struct perf_event
*event
)
3838 struct event_constraint
*c
;
3840 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3842 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3843 if (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) {
3844 if (c
->idxmsk64
& (1U << 2))
3845 return &counter2_constraint
;
3846 return &emptyconstraint
;
3852 static struct event_constraint
*
3853 icl_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3854 struct perf_event
*event
)
3857 * Fixed counter 0 has less skid.
3858 * Force instruction:ppp in Fixed counter 0
3860 if ((event
->attr
.precise_ip
== 3) &&
3861 constraint_match(&fixed0_constraint
, event
->hw
.config
))
3862 return &fixed0_constraint
;
3864 return hsw_get_event_constraints(cpuc
, idx
, event
);
3867 static struct event_constraint
*
3868 glp_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3869 struct perf_event
*event
)
3871 struct event_constraint
*c
;
3873 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3874 if (event
->attr
.precise_ip
== 3)
3875 return &counter0_constraint
;
3877 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3882 static struct event_constraint
*
3883 tnt_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3884 struct perf_event
*event
)
3886 struct event_constraint
*c
;
3889 * :ppp means to do reduced skid PEBS,
3890 * which is available on PMC0 and fixed counter 0.
3892 if (event
->attr
.precise_ip
== 3) {
3893 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3894 if (constraint_match(&fixed0_constraint
, event
->hw
.config
))
3895 return &fixed0_counter0_constraint
;
3897 return &counter0_constraint
;
3900 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3905 static bool allow_tsx_force_abort
= true;
3907 static struct event_constraint
*
3908 tfa_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3909 struct perf_event
*event
)
3911 struct event_constraint
*c
= hsw_get_event_constraints(cpuc
, idx
, event
);
3914 * Without TFA we must not use PMC3.
3916 if (!allow_tsx_force_abort
&& test_bit(3, c
->idxmsk
)) {
3917 c
= dyn_constraint(cpuc
, c
, idx
);
3918 c
->idxmsk64
&= ~(1ULL << 3);
3928 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3929 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3930 * the two to enforce a minimum period of 128 (the smallest value that has bits
3931 * 0-5 cleared and >= 100).
3933 * Because of how the code in x86_perf_event_set_period() works, the truncation
3934 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3935 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3937 * Therefore the effective (average) period matches the requested period,
3938 * despite coarser hardware granularity.
3940 static u64
bdw_limit_period(struct perf_event
*event
, u64 left
)
3942 if ((event
->hw
.config
& INTEL_ARCH_EVENT_MASK
) ==
3943 X86_CONFIG(.event
=0xc0, .umask
=0x01)) {
3951 static u64
nhm_limit_period(struct perf_event
*event
, u64 left
)
3953 return max(left
, 32ULL);
3956 PMU_FORMAT_ATTR(event
, "config:0-7" );
3957 PMU_FORMAT_ATTR(umask
, "config:8-15" );
3958 PMU_FORMAT_ATTR(edge
, "config:18" );
3959 PMU_FORMAT_ATTR(pc
, "config:19" );
3960 PMU_FORMAT_ATTR(any
, "config:21" ); /* v3 + */
3961 PMU_FORMAT_ATTR(inv
, "config:23" );
3962 PMU_FORMAT_ATTR(cmask
, "config:24-31" );
3963 PMU_FORMAT_ATTR(in_tx
, "config:32");
3964 PMU_FORMAT_ATTR(in_tx_cp
, "config:33");
3966 static struct attribute
*intel_arch_formats_attr
[] = {
3967 &format_attr_event
.attr
,
3968 &format_attr_umask
.attr
,
3969 &format_attr_edge
.attr
,
3970 &format_attr_pc
.attr
,
3971 &format_attr_inv
.attr
,
3972 &format_attr_cmask
.attr
,
3976 ssize_t
intel_event_sysfs_show(char *page
, u64 config
)
3978 u64 event
= (config
& ARCH_PERFMON_EVENTSEL_EVENT
);
3980 return x86_event_sysfs_show(page
, config
, event
);
3983 static struct intel_shared_regs
*allocate_shared_regs(int cpu
)
3985 struct intel_shared_regs
*regs
;
3988 regs
= kzalloc_node(sizeof(struct intel_shared_regs
),
3989 GFP_KERNEL
, cpu_to_node(cpu
));
3992 * initialize the locks to keep lockdep happy
3994 for (i
= 0; i
< EXTRA_REG_MAX
; i
++)
3995 raw_spin_lock_init(®s
->regs
[i
].lock
);
4002 static struct intel_excl_cntrs
*allocate_excl_cntrs(int cpu
)
4004 struct intel_excl_cntrs
*c
;
4006 c
= kzalloc_node(sizeof(struct intel_excl_cntrs
),
4007 GFP_KERNEL
, cpu_to_node(cpu
));
4009 raw_spin_lock_init(&c
->lock
);
4016 int intel_cpuc_prepare(struct cpu_hw_events
*cpuc
, int cpu
)
4018 cpuc
->pebs_record_size
= x86_pmu
.pebs_record_size
;
4020 if (x86_pmu
.extra_regs
|| x86_pmu
.lbr_sel_map
) {
4021 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
4022 if (!cpuc
->shared_regs
)
4026 if (x86_pmu
.flags
& (PMU_FL_EXCL_CNTRS
| PMU_FL_TFA
)) {
4027 size_t sz
= X86_PMC_IDX_MAX
* sizeof(struct event_constraint
);
4029 cpuc
->constraint_list
= kzalloc_node(sz
, GFP_KERNEL
, cpu_to_node(cpu
));
4030 if (!cpuc
->constraint_list
)
4031 goto err_shared_regs
;
4034 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
4035 cpuc
->excl_cntrs
= allocate_excl_cntrs(cpu
);
4036 if (!cpuc
->excl_cntrs
)
4037 goto err_constraint_list
;
4039 cpuc
->excl_thread_id
= 0;
4044 err_constraint_list
:
4045 kfree(cpuc
->constraint_list
);
4046 cpuc
->constraint_list
= NULL
;
4049 kfree(cpuc
->shared_regs
);
4050 cpuc
->shared_regs
= NULL
;
4056 static int intel_pmu_cpu_prepare(int cpu
)
4058 return intel_cpuc_prepare(&per_cpu(cpu_hw_events
, cpu
), cpu
);
4061 static void flip_smm_bit(void *data
)
4063 unsigned long set
= *(unsigned long *)data
;
4066 msr_set_bit(MSR_IA32_DEBUGCTLMSR
,
4067 DEBUGCTLMSR_FREEZE_IN_SMM_BIT
);
4069 msr_clear_bit(MSR_IA32_DEBUGCTLMSR
,
4070 DEBUGCTLMSR_FREEZE_IN_SMM_BIT
);
4074 static void intel_pmu_cpu_starting(int cpu
)
4076 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
4077 int core_id
= topology_core_id(cpu
);
4080 init_debug_store_on_cpu(cpu
);
4082 * Deal with CPUs that don't clear their LBRs on power-up.
4084 intel_pmu_lbr_reset();
4086 cpuc
->lbr_sel
= NULL
;
4088 if (x86_pmu
.flags
& PMU_FL_TFA
) {
4089 WARN_ON_ONCE(cpuc
->tfa_shadow
);
4090 cpuc
->tfa_shadow
= ~0ULL;
4091 intel_set_tfa(cpuc
, false);
4094 if (x86_pmu
.version
> 1)
4095 flip_smm_bit(&x86_pmu
.attr_freeze_on_smi
);
4097 if (x86_pmu
.counter_freezing
)
4098 enable_counter_freeze();
4100 /* Disable perf metrics if any added CPU doesn't support it. */
4101 if (x86_pmu
.intel_cap
.perf_metrics
) {
4102 union perf_capabilities perf_cap
;
4104 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, perf_cap
.capabilities
);
4105 if (!perf_cap
.perf_metrics
) {
4106 x86_pmu
.intel_cap
.perf_metrics
= 0;
4107 x86_pmu
.intel_ctrl
&= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS
);
4111 if (!cpuc
->shared_regs
)
4114 if (!(x86_pmu
.flags
& PMU_FL_NO_HT_SHARING
)) {
4115 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
4116 struct intel_shared_regs
*pc
;
4118 pc
= per_cpu(cpu_hw_events
, i
).shared_regs
;
4119 if (pc
&& pc
->core_id
== core_id
) {
4120 cpuc
->kfree_on_online
[0] = cpuc
->shared_regs
;
4121 cpuc
->shared_regs
= pc
;
4125 cpuc
->shared_regs
->core_id
= core_id
;
4126 cpuc
->shared_regs
->refcnt
++;
4129 if (x86_pmu
.lbr_sel_map
)
4130 cpuc
->lbr_sel
= &cpuc
->shared_regs
->regs
[EXTRA_REG_LBR
];
4132 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
4133 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
4134 struct cpu_hw_events
*sibling
;
4135 struct intel_excl_cntrs
*c
;
4137 sibling
= &per_cpu(cpu_hw_events
, i
);
4138 c
= sibling
->excl_cntrs
;
4139 if (c
&& c
->core_id
== core_id
) {
4140 cpuc
->kfree_on_online
[1] = cpuc
->excl_cntrs
;
4141 cpuc
->excl_cntrs
= c
;
4142 if (!sibling
->excl_thread_id
)
4143 cpuc
->excl_thread_id
= 1;
4147 cpuc
->excl_cntrs
->core_id
= core_id
;
4148 cpuc
->excl_cntrs
->refcnt
++;
4152 static void free_excl_cntrs(struct cpu_hw_events
*cpuc
)
4154 struct intel_excl_cntrs
*c
;
4156 c
= cpuc
->excl_cntrs
;
4158 if (c
->core_id
== -1 || --c
->refcnt
== 0)
4160 cpuc
->excl_cntrs
= NULL
;
4163 kfree(cpuc
->constraint_list
);
4164 cpuc
->constraint_list
= NULL
;
4167 static void intel_pmu_cpu_dying(int cpu
)
4169 fini_debug_store_on_cpu(cpu
);
4171 if (x86_pmu
.counter_freezing
)
4172 disable_counter_freeze();
4175 void intel_cpuc_finish(struct cpu_hw_events
*cpuc
)
4177 struct intel_shared_regs
*pc
;
4179 pc
= cpuc
->shared_regs
;
4181 if (pc
->core_id
== -1 || --pc
->refcnt
== 0)
4183 cpuc
->shared_regs
= NULL
;
4186 free_excl_cntrs(cpuc
);
4189 static void intel_pmu_cpu_dead(int cpu
)
4191 intel_cpuc_finish(&per_cpu(cpu_hw_events
, cpu
));
4194 static void intel_pmu_sched_task(struct perf_event_context
*ctx
,
4197 intel_pmu_pebs_sched_task(ctx
, sched_in
);
4198 intel_pmu_lbr_sched_task(ctx
, sched_in
);
4201 static void intel_pmu_swap_task_ctx(struct perf_event_context
*prev
,
4202 struct perf_event_context
*next
)
4204 intel_pmu_lbr_swap_task_ctx(prev
, next
);
4207 static int intel_pmu_check_period(struct perf_event
*event
, u64 value
)
4209 return intel_pmu_has_bts_period(event
, value
) ? -EINVAL
: 0;
4212 static int intel_pmu_aux_output_match(struct perf_event
*event
)
4214 if (!x86_pmu
.intel_cap
.pebs_output_pt_available
)
4217 return is_intel_pt_event(event
);
4220 PMU_FORMAT_ATTR(offcore_rsp
, "config1:0-63");
4222 PMU_FORMAT_ATTR(ldlat
, "config1:0-15");
4224 PMU_FORMAT_ATTR(frontend
, "config1:0-23");
4226 static struct attribute
*intel_arch3_formats_attr
[] = {
4227 &format_attr_event
.attr
,
4228 &format_attr_umask
.attr
,
4229 &format_attr_edge
.attr
,
4230 &format_attr_pc
.attr
,
4231 &format_attr_any
.attr
,
4232 &format_attr_inv
.attr
,
4233 &format_attr_cmask
.attr
,
4237 static struct attribute
*hsw_format_attr
[] = {
4238 &format_attr_in_tx
.attr
,
4239 &format_attr_in_tx_cp
.attr
,
4240 &format_attr_offcore_rsp
.attr
,
4241 &format_attr_ldlat
.attr
,
4245 static struct attribute
*nhm_format_attr
[] = {
4246 &format_attr_offcore_rsp
.attr
,
4247 &format_attr_ldlat
.attr
,
4251 static struct attribute
*slm_format_attr
[] = {
4252 &format_attr_offcore_rsp
.attr
,
4256 static struct attribute
*skl_format_attr
[] = {
4257 &format_attr_frontend
.attr
,
4261 static __initconst
const struct x86_pmu core_pmu
= {
4263 .handle_irq
= x86_pmu_handle_irq
,
4264 .disable_all
= x86_pmu_disable_all
,
4265 .enable_all
= core_pmu_enable_all
,
4266 .enable
= core_pmu_enable_event
,
4267 .disable
= x86_pmu_disable_event
,
4268 .hw_config
= core_pmu_hw_config
,
4269 .schedule_events
= x86_schedule_events
,
4270 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
4271 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
4272 .event_map
= intel_pmu_event_map
,
4273 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
4275 .large_pebs_flags
= LARGE_PEBS_FLAGS
,
4278 * Intel PMCs cannot be accessed sanely above 32-bit width,
4279 * so we install an artificial 1<<31 period regardless of
4280 * the generic event period:
4282 .max_period
= (1ULL<<31) - 1,
4283 .get_event_constraints
= intel_get_event_constraints
,
4284 .put_event_constraints
= intel_put_event_constraints
,
4285 .event_constraints
= intel_core_event_constraints
,
4286 .guest_get_msrs
= core_guest_get_msrs
,
4287 .format_attrs
= intel_arch_formats_attr
,
4288 .events_sysfs_show
= intel_event_sysfs_show
,
4291 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4292 * together with PMU version 1 and thus be using core_pmu with
4293 * shared_regs. We need following callbacks here to allocate
4296 .cpu_prepare
= intel_pmu_cpu_prepare
,
4297 .cpu_starting
= intel_pmu_cpu_starting
,
4298 .cpu_dying
= intel_pmu_cpu_dying
,
4299 .cpu_dead
= intel_pmu_cpu_dead
,
4301 .check_period
= intel_pmu_check_period
,
4303 .lbr_reset
= intel_pmu_lbr_reset_64
,
4304 .lbr_read
= intel_pmu_lbr_read_64
,
4305 .lbr_save
= intel_pmu_lbr_save
,
4306 .lbr_restore
= intel_pmu_lbr_restore
,
4309 static __initconst
const struct x86_pmu intel_pmu
= {
4311 .handle_irq
= intel_pmu_handle_irq
,
4312 .disable_all
= intel_pmu_disable_all
,
4313 .enable_all
= intel_pmu_enable_all
,
4314 .enable
= intel_pmu_enable_event
,
4315 .disable
= intel_pmu_disable_event
,
4316 .add
= intel_pmu_add_event
,
4317 .del
= intel_pmu_del_event
,
4318 .read
= intel_pmu_read_event
,
4319 .hw_config
= intel_pmu_hw_config
,
4320 .schedule_events
= x86_schedule_events
,
4321 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
4322 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
4323 .event_map
= intel_pmu_event_map
,
4324 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
4326 .large_pebs_flags
= LARGE_PEBS_FLAGS
,
4328 * Intel PMCs cannot be accessed sanely above 32 bit width,
4329 * so we install an artificial 1<<31 period regardless of
4330 * the generic event period:
4332 .max_period
= (1ULL << 31) - 1,
4333 .get_event_constraints
= intel_get_event_constraints
,
4334 .put_event_constraints
= intel_put_event_constraints
,
4335 .pebs_aliases
= intel_pebs_aliases_core2
,
4337 .format_attrs
= intel_arch3_formats_attr
,
4338 .events_sysfs_show
= intel_event_sysfs_show
,
4340 .cpu_prepare
= intel_pmu_cpu_prepare
,
4341 .cpu_starting
= intel_pmu_cpu_starting
,
4342 .cpu_dying
= intel_pmu_cpu_dying
,
4343 .cpu_dead
= intel_pmu_cpu_dead
,
4345 .guest_get_msrs
= intel_guest_get_msrs
,
4346 .sched_task
= intel_pmu_sched_task
,
4347 .swap_task_ctx
= intel_pmu_swap_task_ctx
,
4349 .check_period
= intel_pmu_check_period
,
4351 .aux_output_match
= intel_pmu_aux_output_match
,
4353 .lbr_reset
= intel_pmu_lbr_reset_64
,
4354 .lbr_read
= intel_pmu_lbr_read_64
,
4355 .lbr_save
= intel_pmu_lbr_save
,
4356 .lbr_restore
= intel_pmu_lbr_restore
,
4359 static __init
void intel_clovertown_quirk(void)
4362 * PEBS is unreliable due to:
4364 * AJ67 - PEBS may experience CPL leaks
4365 * AJ68 - PEBS PMI may be delayed by one event
4366 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4367 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4369 * AJ67 could be worked around by restricting the OS/USR flags.
4370 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4372 * AJ106 could possibly be worked around by not allowing LBR
4373 * usage from PEBS, including the fixup.
4374 * AJ68 could possibly be worked around by always programming
4375 * a pebs_event_reset[0] value and coping with the lost events.
4377 * But taken together it might just make sense to not enable PEBS on
4380 pr_warn("PEBS disabled due to CPU errata\n");
4382 x86_pmu
.pebs_constraints
= NULL
;
4385 static const struct x86_cpu_desc isolation_ucodes
[] = {
4386 INTEL_CPU_DESC(INTEL_FAM6_HASWELL
, 3, 0x0000001f),
4387 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L
, 1, 0x0000001e),
4388 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G
, 1, 0x00000015),
4389 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X
, 2, 0x00000037),
4390 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X
, 4, 0x0000000a),
4391 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL
, 4, 0x00000023),
4392 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G
, 1, 0x00000014),
4393 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D
, 2, 0x00000010),
4394 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D
, 3, 0x07000009),
4395 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D
, 4, 0x0f000009),
4396 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D
, 5, 0x0e000002),
4397 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X
, 2, 0x0b000014),
4398 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X
, 3, 0x00000021),
4399 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X
, 4, 0x00000000),
4400 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L
, 3, 0x0000007c),
4401 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE
, 3, 0x0000007c),
4402 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 9, 0x0000004e),
4403 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L
, 9, 0x0000004e),
4404 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L
, 10, 0x0000004e),
4405 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L
, 11, 0x0000004e),
4406 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L
, 12, 0x0000004e),
4407 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 10, 0x0000004e),
4408 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 11, 0x0000004e),
4409 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 12, 0x0000004e),
4410 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 13, 0x0000004e),
4414 static void intel_check_pebs_isolation(void)
4416 x86_pmu
.pebs_no_isolation
= !x86_cpu_has_min_microcode_rev(isolation_ucodes
);
4419 static __init
void intel_pebs_isolation_quirk(void)
4421 WARN_ON_ONCE(x86_pmu
.check_microcode
);
4422 x86_pmu
.check_microcode
= intel_check_pebs_isolation
;
4423 intel_check_pebs_isolation();
4426 static const struct x86_cpu_desc pebs_ucodes
[] = {
4427 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE
, 7, 0x00000028),
4428 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X
, 6, 0x00000618),
4429 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X
, 7, 0x0000070c),
4433 static bool intel_snb_pebs_broken(void)
4435 return !x86_cpu_has_min_microcode_rev(pebs_ucodes
);
4438 static void intel_snb_check_microcode(void)
4440 if (intel_snb_pebs_broken() == x86_pmu
.pebs_broken
)
4444 * Serialized by the microcode lock..
4446 if (x86_pmu
.pebs_broken
) {
4447 pr_info("PEBS enabled due to microcode update\n");
4448 x86_pmu
.pebs_broken
= 0;
4450 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4451 x86_pmu
.pebs_broken
= 1;
4455 static bool is_lbr_from(unsigned long msr
)
4457 unsigned long lbr_from_nr
= x86_pmu
.lbr_from
+ x86_pmu
.lbr_nr
;
4459 return x86_pmu
.lbr_from
<= msr
&& msr
< lbr_from_nr
;
4463 * Under certain circumstances, access certain MSR may cause #GP.
4464 * The function tests if the input MSR can be safely accessed.
4466 static bool check_msr(unsigned long msr
, u64 mask
)
4468 u64 val_old
, val_new
, val_tmp
;
4471 * Disable the check for real HW, so we don't
4472 * mess with potentionaly enabled registers:
4474 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR
))
4478 * Read the current value, change it and read it back to see if it
4479 * matches, this is needed to detect certain hardware emulators
4480 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4482 if (rdmsrl_safe(msr
, &val_old
))
4486 * Only change the bits which can be updated by wrmsrl.
4488 val_tmp
= val_old
^ mask
;
4490 if (is_lbr_from(msr
))
4491 val_tmp
= lbr_from_signext_quirk_wr(val_tmp
);
4493 if (wrmsrl_safe(msr
, val_tmp
) ||
4494 rdmsrl_safe(msr
, &val_new
))
4498 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4499 * should equal rdmsrl()'s even with the quirk.
4501 if (val_new
!= val_tmp
)
4504 if (is_lbr_from(msr
))
4505 val_old
= lbr_from_signext_quirk_wr(val_old
);
4507 /* Here it's sure that the MSR can be safely accessed.
4508 * Restore the old value and return.
4510 wrmsrl(msr
, val_old
);
4515 static __init
void intel_sandybridge_quirk(void)
4517 x86_pmu
.check_microcode
= intel_snb_check_microcode
;
4519 intel_snb_check_microcode();
4523 static const struct { int id
; char *name
; } intel_arch_events_map
[] __initconst
= {
4524 { PERF_COUNT_HW_CPU_CYCLES
, "cpu cycles" },
4525 { PERF_COUNT_HW_INSTRUCTIONS
, "instructions" },
4526 { PERF_COUNT_HW_BUS_CYCLES
, "bus cycles" },
4527 { PERF_COUNT_HW_CACHE_REFERENCES
, "cache references" },
4528 { PERF_COUNT_HW_CACHE_MISSES
, "cache misses" },
4529 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS
, "branch instructions" },
4530 { PERF_COUNT_HW_BRANCH_MISSES
, "branch misses" },
4533 static __init
void intel_arch_events_quirk(void)
4537 /* disable event that reported as not presend by cpuid */
4538 for_each_set_bit(bit
, x86_pmu
.events_mask
, ARRAY_SIZE(intel_arch_events_map
)) {
4539 intel_perfmon_event_map
[intel_arch_events_map
[bit
].id
] = 0;
4540 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4541 intel_arch_events_map
[bit
].name
);
4545 static __init
void intel_nehalem_quirk(void)
4547 union cpuid10_ebx ebx
;
4549 ebx
.full
= x86_pmu
.events_maskl
;
4550 if (ebx
.split
.no_branch_misses_retired
) {
4552 * Erratum AAJ80 detected, we work it around by using
4553 * the BR_MISP_EXEC.ANY event. This will over-count
4554 * branch-misses, but it's still much better than the
4555 * architectural event which is often completely bogus:
4557 intel_perfmon_event_map
[PERF_COUNT_HW_BRANCH_MISSES
] = 0x7f89;
4558 ebx
.split
.no_branch_misses_retired
= 0;
4559 x86_pmu
.events_maskl
= ebx
.full
;
4560 pr_info("CPU erratum AAJ80 worked around\n");
4564 static const struct x86_cpu_desc counter_freezing_ucodes
[] = {
4565 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT
, 2, 0x0000000e),
4566 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT
, 9, 0x0000002e),
4567 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT
, 10, 0x00000008),
4568 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D
, 1, 0x00000028),
4569 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS
, 1, 0x00000028),
4570 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS
, 8, 0x00000006),
4574 static bool intel_counter_freezing_broken(void)
4576 return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes
);
4579 static __init
void intel_counter_freezing_quirk(void)
4581 /* Check if it's already disabled */
4582 if (disable_counter_freezing
)
4586 * If the system starts with the wrong ucode, leave the
4587 * counter-freezing feature permanently disabled.
4589 if (intel_counter_freezing_broken()) {
4590 pr_info("PMU counter freezing disabled due to CPU errata,"
4591 "please upgrade microcode\n");
4592 x86_pmu
.counter_freezing
= false;
4593 x86_pmu
.handle_irq
= intel_pmu_handle_irq
;
4598 * enable software workaround for errata:
4603 * Only needed when HT is enabled. However detecting
4604 * if HT is enabled is difficult (model specific). So instead,
4605 * we enable the workaround in the early boot, and verify if
4606 * it is needed in a later initcall phase once we have valid
4607 * topology information to check if HT is actually enabled
4609 static __init
void intel_ht_bug(void)
4611 x86_pmu
.flags
|= PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
;
4613 x86_pmu
.start_scheduling
= intel_start_scheduling
;
4614 x86_pmu
.commit_scheduling
= intel_commit_scheduling
;
4615 x86_pmu
.stop_scheduling
= intel_stop_scheduling
;
4618 EVENT_ATTR_STR(mem
-loads
, mem_ld_hsw
, "event=0xcd,umask=0x1,ldlat=3");
4619 EVENT_ATTR_STR(mem
-stores
, mem_st_hsw
, "event=0xd0,umask=0x82")
4621 /* Haswell special events */
4622 EVENT_ATTR_STR(tx
-start
, tx_start
, "event=0xc9,umask=0x1");
4623 EVENT_ATTR_STR(tx
-commit
, tx_commit
, "event=0xc9,umask=0x2");
4624 EVENT_ATTR_STR(tx
-abort
, tx_abort
, "event=0xc9,umask=0x4");
4625 EVENT_ATTR_STR(tx
-capacity
, tx_capacity
, "event=0x54,umask=0x2");
4626 EVENT_ATTR_STR(tx
-conflict
, tx_conflict
, "event=0x54,umask=0x1");
4627 EVENT_ATTR_STR(el
-start
, el_start
, "event=0xc8,umask=0x1");
4628 EVENT_ATTR_STR(el
-commit
, el_commit
, "event=0xc8,umask=0x2");
4629 EVENT_ATTR_STR(el
-abort
, el_abort
, "event=0xc8,umask=0x4");
4630 EVENT_ATTR_STR(el
-capacity
, el_capacity
, "event=0x54,umask=0x2");
4631 EVENT_ATTR_STR(el
-conflict
, el_conflict
, "event=0x54,umask=0x1");
4632 EVENT_ATTR_STR(cycles
-t
, cycles_t
, "event=0x3c,in_tx=1");
4633 EVENT_ATTR_STR(cycles
-ct
, cycles_ct
, "event=0x3c,in_tx=1,in_tx_cp=1");
4635 static struct attribute
*hsw_events_attrs
[] = {
4636 EVENT_PTR(td_slots_issued
),
4637 EVENT_PTR(td_slots_retired
),
4638 EVENT_PTR(td_fetch_bubbles
),
4639 EVENT_PTR(td_total_slots
),
4640 EVENT_PTR(td_total_slots_scale
),
4641 EVENT_PTR(td_recovery_bubbles
),
4642 EVENT_PTR(td_recovery_bubbles_scale
),
4646 static struct attribute
*hsw_mem_events_attrs
[] = {
4647 EVENT_PTR(mem_ld_hsw
),
4648 EVENT_PTR(mem_st_hsw
),
4652 static struct attribute
*hsw_tsx_events_attrs
[] = {
4653 EVENT_PTR(tx_start
),
4654 EVENT_PTR(tx_commit
),
4655 EVENT_PTR(tx_abort
),
4656 EVENT_PTR(tx_capacity
),
4657 EVENT_PTR(tx_conflict
),
4658 EVENT_PTR(el_start
),
4659 EVENT_PTR(el_commit
),
4660 EVENT_PTR(el_abort
),
4661 EVENT_PTR(el_capacity
),
4662 EVENT_PTR(el_conflict
),
4663 EVENT_PTR(cycles_t
),
4664 EVENT_PTR(cycles_ct
),
4668 EVENT_ATTR_STR(tx
-capacity
-read
, tx_capacity_read
, "event=0x54,umask=0x80");
4669 EVENT_ATTR_STR(tx
-capacity
-write
, tx_capacity_write
, "event=0x54,umask=0x2");
4670 EVENT_ATTR_STR(el
-capacity
-read
, el_capacity_read
, "event=0x54,umask=0x80");
4671 EVENT_ATTR_STR(el
-capacity
-write
, el_capacity_write
, "event=0x54,umask=0x2");
4673 static struct attribute
*icl_events_attrs
[] = {
4674 EVENT_PTR(mem_ld_hsw
),
4675 EVENT_PTR(mem_st_hsw
),
4679 static struct attribute
*icl_td_events_attrs
[] = {
4681 EVENT_PTR(td_retiring
),
4682 EVENT_PTR(td_bad_spec
),
4683 EVENT_PTR(td_fe_bound
),
4684 EVENT_PTR(td_be_bound
),
4688 static struct attribute
*icl_tsx_events_attrs
[] = {
4689 EVENT_PTR(tx_start
),
4690 EVENT_PTR(tx_abort
),
4691 EVENT_PTR(tx_commit
),
4692 EVENT_PTR(tx_capacity_read
),
4693 EVENT_PTR(tx_capacity_write
),
4694 EVENT_PTR(tx_conflict
),
4695 EVENT_PTR(el_start
),
4696 EVENT_PTR(el_abort
),
4697 EVENT_PTR(el_commit
),
4698 EVENT_PTR(el_capacity_read
),
4699 EVENT_PTR(el_capacity_write
),
4700 EVENT_PTR(el_conflict
),
4701 EVENT_PTR(cycles_t
),
4702 EVENT_PTR(cycles_ct
),
4706 static ssize_t
freeze_on_smi_show(struct device
*cdev
,
4707 struct device_attribute
*attr
,
4710 return sprintf(buf
, "%lu\n", x86_pmu
.attr_freeze_on_smi
);
4713 static DEFINE_MUTEX(freeze_on_smi_mutex
);
4715 static ssize_t
freeze_on_smi_store(struct device
*cdev
,
4716 struct device_attribute
*attr
,
4717 const char *buf
, size_t count
)
4722 ret
= kstrtoul(buf
, 0, &val
);
4729 mutex_lock(&freeze_on_smi_mutex
);
4731 if (x86_pmu
.attr_freeze_on_smi
== val
)
4734 x86_pmu
.attr_freeze_on_smi
= val
;
4737 on_each_cpu(flip_smm_bit
, &val
, 1);
4740 mutex_unlock(&freeze_on_smi_mutex
);
4745 static void update_tfa_sched(void *ignored
)
4747 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
4750 * check if PMC3 is used
4751 * and if so force schedule out for all event types all contexts
4753 if (test_bit(3, cpuc
->active_mask
))
4754 perf_pmu_resched(x86_get_pmu());
4757 static ssize_t
show_sysctl_tfa(struct device
*cdev
,
4758 struct device_attribute
*attr
,
4761 return snprintf(buf
, 40, "%d\n", allow_tsx_force_abort
);
4764 static ssize_t
set_sysctl_tfa(struct device
*cdev
,
4765 struct device_attribute
*attr
,
4766 const char *buf
, size_t count
)
4771 ret
= kstrtobool(buf
, &val
);
4776 if (val
== allow_tsx_force_abort
)
4779 allow_tsx_force_abort
= val
;
4782 on_each_cpu(update_tfa_sched
, NULL
, 1);
4789 static DEVICE_ATTR_RW(freeze_on_smi
);
4791 static ssize_t
branches_show(struct device
*cdev
,
4792 struct device_attribute
*attr
,
4795 return snprintf(buf
, PAGE_SIZE
, "%d\n", x86_pmu
.lbr_nr
);
4798 static DEVICE_ATTR_RO(branches
);
4800 static struct attribute
*lbr_attrs
[] = {
4801 &dev_attr_branches
.attr
,
4805 static char pmu_name_str
[30];
4807 static ssize_t
pmu_name_show(struct device
*cdev
,
4808 struct device_attribute
*attr
,
4811 return snprintf(buf
, PAGE_SIZE
, "%s\n", pmu_name_str
);
4814 static DEVICE_ATTR_RO(pmu_name
);
4816 static struct attribute
*intel_pmu_caps_attrs
[] = {
4817 &dev_attr_pmu_name
.attr
,
4821 static DEVICE_ATTR(allow_tsx_force_abort
, 0644,
4825 static struct attribute
*intel_pmu_attrs
[] = {
4826 &dev_attr_freeze_on_smi
.attr
,
4827 &dev_attr_allow_tsx_force_abort
.attr
,
4832 tsx_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4834 return boot_cpu_has(X86_FEATURE_RTM
) ? attr
->mode
: 0;
4838 pebs_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4840 return x86_pmu
.pebs
? attr
->mode
: 0;
4844 lbr_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4846 return x86_pmu
.lbr_nr
? attr
->mode
: 0;
4850 exra_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4852 return x86_pmu
.version
>= 2 ? attr
->mode
: 0;
4856 default_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4858 if (attr
== &dev_attr_allow_tsx_force_abort
.attr
)
4859 return x86_pmu
.flags
& PMU_FL_TFA
? attr
->mode
: 0;
4864 static struct attribute_group group_events_td
= {
4868 static struct attribute_group group_events_mem
= {
4870 .is_visible
= pebs_is_visible
,
4873 static struct attribute_group group_events_tsx
= {
4875 .is_visible
= tsx_is_visible
,
4878 static struct attribute_group group_caps_gen
= {
4880 .attrs
= intel_pmu_caps_attrs
,
4883 static struct attribute_group group_caps_lbr
= {
4886 .is_visible
= lbr_is_visible
,
4889 static struct attribute_group group_format_extra
= {
4891 .is_visible
= exra_is_visible
,
4894 static struct attribute_group group_format_extra_skl
= {
4896 .is_visible
= exra_is_visible
,
4899 static struct attribute_group group_default
= {
4900 .attrs
= intel_pmu_attrs
,
4901 .is_visible
= default_is_visible
,
4904 static const struct attribute_group
*attr_update
[] = {
4910 &group_format_extra
,
4911 &group_format_extra_skl
,
4916 static struct attribute
*empty_attrs
;
4918 __init
int intel_pmu_init(void)
4920 struct attribute
**extra_skl_attr
= &empty_attrs
;
4921 struct attribute
**extra_attr
= &empty_attrs
;
4922 struct attribute
**td_attr
= &empty_attrs
;
4923 struct attribute
**mem_attr
= &empty_attrs
;
4924 struct attribute
**tsx_attr
= &empty_attrs
;
4925 union cpuid10_edx edx
;
4926 union cpuid10_eax eax
;
4927 union cpuid10_ebx ebx
;
4928 struct event_constraint
*c
;
4929 unsigned int unused
;
4930 struct extra_reg
*er
;
4935 if (!cpu_has(&boot_cpu_data
, X86_FEATURE_ARCH_PERFMON
)) {
4936 switch (boot_cpu_data
.x86
) {
4938 return p6_pmu_init();
4940 return knc_pmu_init();
4942 return p4_pmu_init();
4948 * Check whether the Architectural PerfMon supports
4949 * Branch Misses Retired hw_event or not.
4951 cpuid(10, &eax
.full
, &ebx
.full
, &unused
, &edx
.full
);
4952 if (eax
.split
.mask_length
< ARCH_PERFMON_EVENTS_COUNT
)
4955 version
= eax
.split
.version_id
;
4959 x86_pmu
= intel_pmu
;
4961 x86_pmu
.version
= version
;
4962 x86_pmu
.num_counters
= eax
.split
.num_counters
;
4963 x86_pmu
.cntval_bits
= eax
.split
.bit_width
;
4964 x86_pmu
.cntval_mask
= (1ULL << eax
.split
.bit_width
) - 1;
4966 x86_pmu
.events_maskl
= ebx
.full
;
4967 x86_pmu
.events_mask_len
= eax
.split
.mask_length
;
4969 x86_pmu
.max_pebs_events
= min_t(unsigned, MAX_PEBS_EVENTS
, x86_pmu
.num_counters
);
4972 * Quirk: v2 perfmon does not report fixed-purpose events, so
4973 * assume at least 3 events, when not running in a hypervisor:
4976 int assume
= 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR
);
4978 x86_pmu
.num_counters_fixed
=
4979 max((int)edx
.split
.num_counters_fixed
, assume
);
4983 x86_pmu
.counter_freezing
= !disable_counter_freezing
;
4985 if (boot_cpu_has(X86_FEATURE_PDCM
)) {
4988 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, capabilities
);
4989 x86_pmu
.intel_cap
.capabilities
= capabilities
;
4992 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_32
) {
4993 x86_pmu
.lbr_reset
= intel_pmu_lbr_reset_32
;
4994 x86_pmu
.lbr_read
= intel_pmu_lbr_read_32
;
4997 if (boot_cpu_has(X86_FEATURE_ARCH_LBR
))
4998 intel_pmu_arch_lbr_init();
5002 x86_add_quirk(intel_arch_events_quirk
); /* Install first, so it runs last */
5005 x86_pmu
.intel_cap
.anythread_deprecated
= edx
.split
.anythread_deprecated
;
5006 if (x86_pmu
.intel_cap
.anythread_deprecated
)
5007 pr_cont(" AnyThread deprecated, ");
5011 * Install the hw-cache-events table:
5013 switch (boot_cpu_data
.x86_model
) {
5014 case INTEL_FAM6_CORE_YONAH
:
5015 pr_cont("Core events, ");
5019 case INTEL_FAM6_CORE2_MEROM
:
5020 x86_add_quirk(intel_clovertown_quirk
);
5023 case INTEL_FAM6_CORE2_MEROM_L
:
5024 case INTEL_FAM6_CORE2_PENRYN
:
5025 case INTEL_FAM6_CORE2_DUNNINGTON
:
5026 memcpy(hw_cache_event_ids
, core2_hw_cache_event_ids
,
5027 sizeof(hw_cache_event_ids
));
5029 intel_pmu_lbr_init_core();
5031 x86_pmu
.event_constraints
= intel_core2_event_constraints
;
5032 x86_pmu
.pebs_constraints
= intel_core2_pebs_event_constraints
;
5033 pr_cont("Core2 events, ");
5037 case INTEL_FAM6_NEHALEM
:
5038 case INTEL_FAM6_NEHALEM_EP
:
5039 case INTEL_FAM6_NEHALEM_EX
:
5040 memcpy(hw_cache_event_ids
, nehalem_hw_cache_event_ids
,
5041 sizeof(hw_cache_event_ids
));
5042 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
5043 sizeof(hw_cache_extra_regs
));
5045 intel_pmu_lbr_init_nhm();
5047 x86_pmu
.event_constraints
= intel_nehalem_event_constraints
;
5048 x86_pmu
.pebs_constraints
= intel_nehalem_pebs_event_constraints
;
5049 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
5050 x86_pmu
.extra_regs
= intel_nehalem_extra_regs
;
5051 x86_pmu
.limit_period
= nhm_limit_period
;
5053 mem_attr
= nhm_mem_events_attrs
;
5055 /* UOPS_ISSUED.STALLED_CYCLES */
5056 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
5057 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
5058 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5059 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
5060 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
5062 intel_pmu_pebs_data_source_nhm();
5063 x86_add_quirk(intel_nehalem_quirk
);
5064 x86_pmu
.pebs_no_tlb
= 1;
5065 extra_attr
= nhm_format_attr
;
5067 pr_cont("Nehalem events, ");
5071 case INTEL_FAM6_ATOM_BONNELL
:
5072 case INTEL_FAM6_ATOM_BONNELL_MID
:
5073 case INTEL_FAM6_ATOM_SALTWELL
:
5074 case INTEL_FAM6_ATOM_SALTWELL_MID
:
5075 case INTEL_FAM6_ATOM_SALTWELL_TABLET
:
5076 memcpy(hw_cache_event_ids
, atom_hw_cache_event_ids
,
5077 sizeof(hw_cache_event_ids
));
5079 intel_pmu_lbr_init_atom();
5081 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
5082 x86_pmu
.pebs_constraints
= intel_atom_pebs_event_constraints
;
5083 x86_pmu
.pebs_aliases
= intel_pebs_aliases_core2
;
5084 pr_cont("Atom events, ");
5088 case INTEL_FAM6_ATOM_SILVERMONT
:
5089 case INTEL_FAM6_ATOM_SILVERMONT_D
:
5090 case INTEL_FAM6_ATOM_SILVERMONT_MID
:
5091 case INTEL_FAM6_ATOM_AIRMONT
:
5092 case INTEL_FAM6_ATOM_AIRMONT_MID
:
5093 memcpy(hw_cache_event_ids
, slm_hw_cache_event_ids
,
5094 sizeof(hw_cache_event_ids
));
5095 memcpy(hw_cache_extra_regs
, slm_hw_cache_extra_regs
,
5096 sizeof(hw_cache_extra_regs
));
5098 intel_pmu_lbr_init_slm();
5100 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
5101 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
5102 x86_pmu
.extra_regs
= intel_slm_extra_regs
;
5103 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5104 td_attr
= slm_events_attrs
;
5105 extra_attr
= slm_format_attr
;
5106 pr_cont("Silvermont events, ");
5107 name
= "silvermont";
5110 case INTEL_FAM6_ATOM_GOLDMONT
:
5111 case INTEL_FAM6_ATOM_GOLDMONT_D
:
5112 x86_add_quirk(intel_counter_freezing_quirk
);
5113 memcpy(hw_cache_event_ids
, glm_hw_cache_event_ids
,
5114 sizeof(hw_cache_event_ids
));
5115 memcpy(hw_cache_extra_regs
, glm_hw_cache_extra_regs
,
5116 sizeof(hw_cache_extra_regs
));
5118 intel_pmu_lbr_init_skl();
5120 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
5121 x86_pmu
.pebs_constraints
= intel_glm_pebs_event_constraints
;
5122 x86_pmu
.extra_regs
= intel_glm_extra_regs
;
5124 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5125 * for precise cycles.
5126 * :pp is identical to :ppp
5128 x86_pmu
.pebs_aliases
= NULL
;
5129 x86_pmu
.pebs_prec_dist
= true;
5130 x86_pmu
.lbr_pt_coexist
= true;
5131 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5132 td_attr
= glm_events_attrs
;
5133 extra_attr
= slm_format_attr
;
5134 pr_cont("Goldmont events, ");
5138 case INTEL_FAM6_ATOM_GOLDMONT_PLUS
:
5139 x86_add_quirk(intel_counter_freezing_quirk
);
5140 memcpy(hw_cache_event_ids
, glp_hw_cache_event_ids
,
5141 sizeof(hw_cache_event_ids
));
5142 memcpy(hw_cache_extra_regs
, glp_hw_cache_extra_regs
,
5143 sizeof(hw_cache_extra_regs
));
5145 intel_pmu_lbr_init_skl();
5147 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
5148 x86_pmu
.extra_regs
= intel_glm_extra_regs
;
5150 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5151 * for precise cycles.
5153 x86_pmu
.pebs_aliases
= NULL
;
5154 x86_pmu
.pebs_prec_dist
= true;
5155 x86_pmu
.lbr_pt_coexist
= true;
5156 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5157 x86_pmu
.flags
|= PMU_FL_PEBS_ALL
;
5158 x86_pmu
.get_event_constraints
= glp_get_event_constraints
;
5159 td_attr
= glm_events_attrs
;
5160 /* Goldmont Plus has 4-wide pipeline */
5161 event_attr_td_total_slots_scale_glm
.event_str
= "4";
5162 extra_attr
= slm_format_attr
;
5163 pr_cont("Goldmont plus events, ");
5164 name
= "goldmont_plus";
5167 case INTEL_FAM6_ATOM_TREMONT_D
:
5168 case INTEL_FAM6_ATOM_TREMONT
:
5169 case INTEL_FAM6_ATOM_TREMONT_L
:
5170 x86_pmu
.late_ack
= true;
5171 memcpy(hw_cache_event_ids
, glp_hw_cache_event_ids
,
5172 sizeof(hw_cache_event_ids
));
5173 memcpy(hw_cache_extra_regs
, tnt_hw_cache_extra_regs
,
5174 sizeof(hw_cache_extra_regs
));
5175 hw_cache_event_ids
[C(ITLB
)][C(OP_READ
)][C(RESULT_ACCESS
)] = -1;
5177 intel_pmu_lbr_init_skl();
5179 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
5180 x86_pmu
.extra_regs
= intel_tnt_extra_regs
;
5182 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5183 * for precise cycles.
5185 x86_pmu
.pebs_aliases
= NULL
;
5186 x86_pmu
.pebs_prec_dist
= true;
5187 x86_pmu
.lbr_pt_coexist
= true;
5188 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5189 x86_pmu
.get_event_constraints
= tnt_get_event_constraints
;
5190 td_attr
= tnt_events_attrs
;
5191 extra_attr
= slm_format_attr
;
5192 pr_cont("Tremont events, ");
5196 case INTEL_FAM6_WESTMERE
:
5197 case INTEL_FAM6_WESTMERE_EP
:
5198 case INTEL_FAM6_WESTMERE_EX
:
5199 memcpy(hw_cache_event_ids
, westmere_hw_cache_event_ids
,
5200 sizeof(hw_cache_event_ids
));
5201 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
5202 sizeof(hw_cache_extra_regs
));
5204 intel_pmu_lbr_init_nhm();
5206 x86_pmu
.event_constraints
= intel_westmere_event_constraints
;
5207 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
5208 x86_pmu
.pebs_constraints
= intel_westmere_pebs_event_constraints
;
5209 x86_pmu
.extra_regs
= intel_westmere_extra_regs
;
5210 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5212 mem_attr
= nhm_mem_events_attrs
;
5214 /* UOPS_ISSUED.STALLED_CYCLES */
5215 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
5216 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
5217 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5218 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
5219 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
5221 intel_pmu_pebs_data_source_nhm();
5222 extra_attr
= nhm_format_attr
;
5223 pr_cont("Westmere events, ");
5227 case INTEL_FAM6_SANDYBRIDGE
:
5228 case INTEL_FAM6_SANDYBRIDGE_X
:
5229 x86_add_quirk(intel_sandybridge_quirk
);
5230 x86_add_quirk(intel_ht_bug
);
5231 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
5232 sizeof(hw_cache_event_ids
));
5233 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
5234 sizeof(hw_cache_extra_regs
));
5236 intel_pmu_lbr_init_snb();
5238 x86_pmu
.event_constraints
= intel_snb_event_constraints
;
5239 x86_pmu
.pebs_constraints
= intel_snb_pebs_event_constraints
;
5240 x86_pmu
.pebs_aliases
= intel_pebs_aliases_snb
;
5241 if (boot_cpu_data
.x86_model
== INTEL_FAM6_SANDYBRIDGE_X
)
5242 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
5244 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
5247 /* all extra regs are per-cpu when HT is on */
5248 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5249 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5251 td_attr
= snb_events_attrs
;
5252 mem_attr
= snb_mem_events_attrs
;
5254 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5255 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
5256 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
5257 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5258 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
5259 X86_CONFIG(.event
=0xb1, .umask
=0x01, .inv
=1, .cmask
=1);
5261 extra_attr
= nhm_format_attr
;
5263 pr_cont("SandyBridge events, ");
5264 name
= "sandybridge";
5267 case INTEL_FAM6_IVYBRIDGE
:
5268 case INTEL_FAM6_IVYBRIDGE_X
:
5269 x86_add_quirk(intel_ht_bug
);
5270 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
5271 sizeof(hw_cache_event_ids
));
5272 /* dTLB-load-misses on IVB is different than SNB */
5273 hw_cache_event_ids
[C(DTLB
)][C(OP_READ
)][C(RESULT_MISS
)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5275 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
5276 sizeof(hw_cache_extra_regs
));
5278 intel_pmu_lbr_init_snb();
5280 x86_pmu
.event_constraints
= intel_ivb_event_constraints
;
5281 x86_pmu
.pebs_constraints
= intel_ivb_pebs_event_constraints
;
5282 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
5283 x86_pmu
.pebs_prec_dist
= true;
5284 if (boot_cpu_data
.x86_model
== INTEL_FAM6_IVYBRIDGE_X
)
5285 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
5287 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
5288 /* all extra regs are per-cpu when HT is on */
5289 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5290 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5292 td_attr
= snb_events_attrs
;
5293 mem_attr
= snb_mem_events_attrs
;
5295 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5296 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
5297 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
5299 extra_attr
= nhm_format_attr
;
5301 pr_cont("IvyBridge events, ");
5306 case INTEL_FAM6_HASWELL
:
5307 case INTEL_FAM6_HASWELL_X
:
5308 case INTEL_FAM6_HASWELL_L
:
5309 case INTEL_FAM6_HASWELL_G
:
5310 x86_add_quirk(intel_ht_bug
);
5311 x86_add_quirk(intel_pebs_isolation_quirk
);
5312 x86_pmu
.late_ack
= true;
5313 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
5314 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
5316 intel_pmu_lbr_init_hsw();
5318 x86_pmu
.event_constraints
= intel_hsw_event_constraints
;
5319 x86_pmu
.pebs_constraints
= intel_hsw_pebs_event_constraints
;
5320 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
5321 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
5322 x86_pmu
.pebs_prec_dist
= true;
5323 /* all extra regs are per-cpu when HT is on */
5324 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5325 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5327 x86_pmu
.hw_config
= hsw_hw_config
;
5328 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
5329 x86_pmu
.lbr_double_abort
= true;
5330 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
5331 hsw_format_attr
: nhm_format_attr
;
5332 td_attr
= hsw_events_attrs
;
5333 mem_attr
= hsw_mem_events_attrs
;
5334 tsx_attr
= hsw_tsx_events_attrs
;
5335 pr_cont("Haswell events, ");
5339 case INTEL_FAM6_BROADWELL
:
5340 case INTEL_FAM6_BROADWELL_D
:
5341 case INTEL_FAM6_BROADWELL_G
:
5342 case INTEL_FAM6_BROADWELL_X
:
5343 x86_add_quirk(intel_pebs_isolation_quirk
);
5344 x86_pmu
.late_ack
= true;
5345 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
5346 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
5348 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5349 hw_cache_extra_regs
[C(LL
)][C(OP_READ
)][C(RESULT_MISS
)] = HSW_DEMAND_READ
|
5350 BDW_L3_MISS
|HSW_SNOOP_DRAM
;
5351 hw_cache_extra_regs
[C(LL
)][C(OP_WRITE
)][C(RESULT_MISS
)] = HSW_DEMAND_WRITE
|BDW_L3_MISS
|
5353 hw_cache_extra_regs
[C(NODE
)][C(OP_READ
)][C(RESULT_ACCESS
)] = HSW_DEMAND_READ
|
5354 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
5355 hw_cache_extra_regs
[C(NODE
)][C(OP_WRITE
)][C(RESULT_ACCESS
)] = HSW_DEMAND_WRITE
|
5356 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
5358 intel_pmu_lbr_init_hsw();
5360 x86_pmu
.event_constraints
= intel_bdw_event_constraints
;
5361 x86_pmu
.pebs_constraints
= intel_bdw_pebs_event_constraints
;
5362 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
5363 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
5364 x86_pmu
.pebs_prec_dist
= true;
5365 /* all extra regs are per-cpu when HT is on */
5366 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5367 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5369 x86_pmu
.hw_config
= hsw_hw_config
;
5370 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
5371 x86_pmu
.limit_period
= bdw_limit_period
;
5372 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
5373 hsw_format_attr
: nhm_format_attr
;
5374 td_attr
= hsw_events_attrs
;
5375 mem_attr
= hsw_mem_events_attrs
;
5376 tsx_attr
= hsw_tsx_events_attrs
;
5377 pr_cont("Broadwell events, ");
5381 case INTEL_FAM6_XEON_PHI_KNL
:
5382 case INTEL_FAM6_XEON_PHI_KNM
:
5383 memcpy(hw_cache_event_ids
,
5384 slm_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
5385 memcpy(hw_cache_extra_regs
,
5386 knl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
5387 intel_pmu_lbr_init_knl();
5389 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
5390 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
5391 x86_pmu
.extra_regs
= intel_knl_extra_regs
;
5393 /* all extra regs are per-cpu when HT is on */
5394 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5395 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5396 extra_attr
= slm_format_attr
;
5397 pr_cont("Knights Landing/Mill events, ");
5398 name
= "knights-landing";
5401 case INTEL_FAM6_SKYLAKE_X
:
5404 case INTEL_FAM6_SKYLAKE_L
:
5405 case INTEL_FAM6_SKYLAKE
:
5406 case INTEL_FAM6_KABYLAKE_L
:
5407 case INTEL_FAM6_KABYLAKE
:
5408 case INTEL_FAM6_COMETLAKE_L
:
5409 case INTEL_FAM6_COMETLAKE
:
5410 x86_add_quirk(intel_pebs_isolation_quirk
);
5411 x86_pmu
.late_ack
= true;
5412 memcpy(hw_cache_event_ids
, skl_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
5413 memcpy(hw_cache_extra_regs
, skl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
5414 intel_pmu_lbr_init_skl();
5416 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5417 event_attr_td_recovery_bubbles
.event_str_noht
=
5418 "event=0xd,umask=0x1,cmask=1";
5419 event_attr_td_recovery_bubbles
.event_str_ht
=
5420 "event=0xd,umask=0x1,cmask=1,any=1";
5422 x86_pmu
.event_constraints
= intel_skl_event_constraints
;
5423 x86_pmu
.pebs_constraints
= intel_skl_pebs_event_constraints
;
5424 x86_pmu
.extra_regs
= intel_skl_extra_regs
;
5425 x86_pmu
.pebs_aliases
= intel_pebs_aliases_skl
;
5426 x86_pmu
.pebs_prec_dist
= true;
5427 /* all extra regs are per-cpu when HT is on */
5428 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5429 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5431 x86_pmu
.hw_config
= hsw_hw_config
;
5432 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
5433 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
5434 hsw_format_attr
: nhm_format_attr
;
5435 extra_skl_attr
= skl_format_attr
;
5436 td_attr
= hsw_events_attrs
;
5437 mem_attr
= hsw_mem_events_attrs
;
5438 tsx_attr
= hsw_tsx_events_attrs
;
5439 intel_pmu_pebs_data_source_skl(pmem
);
5441 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT
)) {
5442 x86_pmu
.flags
|= PMU_FL_TFA
;
5443 x86_pmu
.get_event_constraints
= tfa_get_event_constraints
;
5444 x86_pmu
.enable_all
= intel_tfa_pmu_enable_all
;
5445 x86_pmu
.commit_scheduling
= intel_tfa_commit_scheduling
;
5448 pr_cont("Skylake events, ");
5452 case INTEL_FAM6_ICELAKE_X
:
5453 case INTEL_FAM6_ICELAKE_D
:
5456 case INTEL_FAM6_ICELAKE_L
:
5457 case INTEL_FAM6_ICELAKE
:
5458 case INTEL_FAM6_TIGERLAKE_L
:
5459 case INTEL_FAM6_TIGERLAKE
:
5460 case INTEL_FAM6_ROCKETLAKE
:
5461 x86_pmu
.late_ack
= true;
5462 memcpy(hw_cache_event_ids
, skl_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
5463 memcpy(hw_cache_extra_regs
, skl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
5464 hw_cache_event_ids
[C(ITLB
)][C(OP_READ
)][C(RESULT_ACCESS
)] = -1;
5465 intel_pmu_lbr_init_skl();
5467 x86_pmu
.event_constraints
= intel_icl_event_constraints
;
5468 x86_pmu
.pebs_constraints
= intel_icl_pebs_event_constraints
;
5469 x86_pmu
.extra_regs
= intel_icl_extra_regs
;
5470 x86_pmu
.pebs_aliases
= NULL
;
5471 x86_pmu
.pebs_prec_dist
= true;
5472 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5473 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5475 x86_pmu
.hw_config
= hsw_hw_config
;
5476 x86_pmu
.get_event_constraints
= icl_get_event_constraints
;
5477 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
5478 hsw_format_attr
: nhm_format_attr
;
5479 extra_skl_attr
= skl_format_attr
;
5480 mem_attr
= icl_events_attrs
;
5481 td_attr
= icl_td_events_attrs
;
5482 tsx_attr
= icl_tsx_events_attrs
;
5483 x86_pmu
.rtm_abort_event
= X86_CONFIG(.event
=0xc9, .umask
=0x04);
5484 x86_pmu
.lbr_pt_coexist
= true;
5485 intel_pmu_pebs_data_source_skl(pmem
);
5486 x86_pmu
.update_topdown_event
= icl_update_topdown_event
;
5487 x86_pmu
.set_topdown_event_period
= icl_set_topdown_event_period
;
5488 pr_cont("Icelake events, ");
5493 switch (x86_pmu
.version
) {
5495 x86_pmu
.event_constraints
= intel_v1_event_constraints
;
5496 pr_cont("generic architected perfmon v1, ");
5497 name
= "generic_arch_v1";
5501 * default constraints for v2 and up
5503 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
5504 pr_cont("generic architected perfmon, ");
5505 name
= "generic_arch_v2+";
5510 snprintf(pmu_name_str
, sizeof(pmu_name_str
), "%s", name
);
5513 group_events_td
.attrs
= td_attr
;
5514 group_events_mem
.attrs
= mem_attr
;
5515 group_events_tsx
.attrs
= tsx_attr
;
5516 group_format_extra
.attrs
= extra_attr
;
5517 group_format_extra_skl
.attrs
= extra_skl_attr
;
5519 x86_pmu
.attr_update
= attr_update
;
5521 if (x86_pmu
.num_counters
> INTEL_PMC_MAX_GENERIC
) {
5522 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
5523 x86_pmu
.num_counters
, INTEL_PMC_MAX_GENERIC
);
5524 x86_pmu
.num_counters
= INTEL_PMC_MAX_GENERIC
;
5526 x86_pmu
.intel_ctrl
= (1ULL << x86_pmu
.num_counters
) - 1;
5528 if (x86_pmu
.num_counters_fixed
> INTEL_PMC_MAX_FIXED
) {
5529 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
5530 x86_pmu
.num_counters_fixed
, INTEL_PMC_MAX_FIXED
);
5531 x86_pmu
.num_counters_fixed
= INTEL_PMC_MAX_FIXED
;
5534 x86_pmu
.intel_ctrl
|=
5535 ((1LL << x86_pmu
.num_counters_fixed
)-1) << INTEL_PMC_IDX_FIXED
;
5537 /* AnyThread may be deprecated on arch perfmon v5 or later */
5538 if (x86_pmu
.intel_cap
.anythread_deprecated
)
5539 x86_pmu
.format_attrs
= intel_arch_formats_attr
;
5541 if (x86_pmu
.event_constraints
) {
5543 * event on fixed counter2 (REF_CYCLES) only works on this
5544 * counter, so do not extend mask to generic counters
5546 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
5548 * Don't extend the topdown slots and metrics
5549 * events to the generic counters.
5551 if (c
->idxmsk64
& INTEL_PMC_MSK_TOPDOWN
) {
5552 c
->weight
= hweight64(c
->idxmsk64
);
5556 if (c
->cmask
== FIXED_EVENT_FLAGS
5557 && c
->idxmsk64
!= INTEL_PMC_MSK_FIXED_REF_CYCLES
) {
5558 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
5561 ~(~0ULL << (INTEL_PMC_IDX_FIXED
+ x86_pmu
.num_counters_fixed
));
5562 c
->weight
= hweight64(c
->idxmsk64
);
5567 * Access LBR MSR may cause #GP under certain circumstances.
5568 * E.g. KVM doesn't support LBR MSR
5569 * Check all LBT MSR here.
5570 * Disable LBR access if any LBR MSRs can not be accessed.
5572 if (x86_pmu
.lbr_nr
&& !check_msr(x86_pmu
.lbr_tos
, 0x3UL
))
5574 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
5575 if (!(check_msr(x86_pmu
.lbr_from
+ i
, 0xffffUL
) &&
5576 check_msr(x86_pmu
.lbr_to
+ i
, 0xffffUL
)))
5581 pr_cont("%d-deep LBR, ", x86_pmu
.lbr_nr
);
5584 * Access extra MSR may cause #GP under certain circumstances.
5585 * E.g. KVM doesn't support offcore event
5586 * Check all extra_regs here.
5588 if (x86_pmu
.extra_regs
) {
5589 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
5590 er
->extra_msr_access
= check_msr(er
->msr
, 0x11UL
);
5591 /* Disable LBR select mapping */
5592 if ((er
->idx
== EXTRA_REG_LBR
) && !er
->extra_msr_access
)
5593 x86_pmu
.lbr_sel_map
= NULL
;
5597 /* Support full width counters using alternative MSR range */
5598 if (x86_pmu
.intel_cap
.full_width_write
) {
5599 x86_pmu
.max_period
= x86_pmu
.cntval_mask
>> 1;
5600 x86_pmu
.perfctr
= MSR_IA32_PMC0
;
5601 pr_cont("full-width counters, ");
5605 * For arch perfmon 4 use counter freezing to avoid
5606 * several MSR accesses in the PMI.
5608 if (x86_pmu
.counter_freezing
)
5609 x86_pmu
.handle_irq
= intel_pmu_handle_irq_v4
;
5611 if (x86_pmu
.intel_cap
.perf_metrics
)
5612 x86_pmu
.intel_ctrl
|= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS
;
5618 * HT bug: phase 2 init
5619 * Called once we have valid topology information to check
5620 * whether or not HT is enabled
5621 * If HT is off, then we disable the workaround
5623 static __init
int fixup_ht_bug(void)
5627 * problem not present on this CPU model, nothing to do
5629 if (!(x86_pmu
.flags
& PMU_FL_EXCL_ENABLED
))
5632 if (topology_max_smt_threads() > 1) {
5633 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5639 hardlockup_detector_perf_stop();
5641 x86_pmu
.flags
&= ~(PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
);
5643 x86_pmu
.start_scheduling
= NULL
;
5644 x86_pmu
.commit_scheduling
= NULL
;
5645 x86_pmu
.stop_scheduling
= NULL
;
5647 hardlockup_detector_perf_restart();
5649 for_each_online_cpu(c
)
5650 free_excl_cntrs(&per_cpu(cpu_hw_events
, c
));
5653 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5656 subsys_initcall(fixup_ht_bug
)