WIP FPC-III support
[linux/fpc-iii.git] / arch / x86 / events / intel / core.c
blobd4569bfa83e3022d4d3486622bab7f145f1a21b9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
25 #include "../perf_event.h"
28 * Intel PerfMon, used on Core and later.
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
33 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
34 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
35 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
37 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
38 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
39 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 EVENT_CONSTRAINT_END
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 EVENT_CONSTRAINT_END
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 EVENT_CONSTRAINT_END
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 EVENT_EXTRA_END
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 EVENT_CONSTRAINT_END
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
123 * When HT is off these events can only run on the bottom 4 counters
124 * When HT is on, they are impacted by the HT bug and require EXCL access
126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131 EVENT_CONSTRAINT_END
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
151 * When HT is off these events can only run on the bottom 4 counters
152 * When HT is on, they are impacted by the HT bug and require EXCL access
154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159 EVENT_CONSTRAINT_END
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 EVENT_EXTRA_END
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 EVENT_CONSTRAINT_END
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 EVENT_CONSTRAINT_END
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 EVENT_CONSTRAINT_END
192 static struct event_constraint intel_skl_event_constraints[] = {
193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
199 * when HT is off, these can only run on the bottom 4 counters
201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
207 EVENT_CONSTRAINT_END
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 EVENT_EXTRA_END
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 EVENT_EXTRA_END
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 EVENT_EXTRA_END
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
237 * Note the low 8 bits eventsel code is not a continuous field, containing
238 * some #GPing bits. These are masked out.
240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 EVENT_EXTRA_END
244 static struct event_constraint intel_icl_event_constraints[] = {
245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
246 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* INST_RETIRED.PREC_DIST */
247 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
248 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
249 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
250 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
257 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
263 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
267 EVENT_CONSTRAINT_END
270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
272 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
273 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
275 EVENT_EXTRA_END
278 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
279 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
280 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
282 static struct attribute *nhm_mem_events_attrs[] = {
283 EVENT_PTR(mem_ld_nhm),
284 NULL,
288 * topdown events for Intel Core CPUs.
290 * The events are all in slots, which is a free slot in a 4 wide
291 * pipeline. Some events are already reported in slots, for cycle
292 * events we multiply by the pipeline width (4).
294 * With Hyper Threading on, topdown metrics are either summed or averaged
295 * between the threads of a core: (count_t0 + count_t1).
297 * For the average case the metric is always scaled to pipeline width,
298 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
301 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
302 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
303 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
304 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
305 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
306 "event=0xe,umask=0x1"); /* uops_issued.any */
307 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
308 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
309 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
310 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
311 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
312 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
313 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
314 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
315 "4", "2");
317 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
318 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
319 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
320 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
321 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
323 static struct attribute *snb_events_attrs[] = {
324 EVENT_PTR(td_slots_issued),
325 EVENT_PTR(td_slots_retired),
326 EVENT_PTR(td_fetch_bubbles),
327 EVENT_PTR(td_total_slots),
328 EVENT_PTR(td_total_slots_scale),
329 EVENT_PTR(td_recovery_bubbles),
330 EVENT_PTR(td_recovery_bubbles_scale),
331 NULL,
334 static struct attribute *snb_mem_events_attrs[] = {
335 EVENT_PTR(mem_ld_snb),
336 EVENT_PTR(mem_st_snb),
337 NULL,
340 static struct event_constraint intel_hsw_event_constraints[] = {
341 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
342 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
343 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
344 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
345 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
346 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
347 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
348 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
349 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
350 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
351 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
352 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
355 * When HT is off these events can only run on the bottom 4 counters
356 * When HT is on, they are impacted by the HT bug and require EXCL access
358 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
359 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
360 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
361 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
363 EVENT_CONSTRAINT_END
366 static struct event_constraint intel_bdw_event_constraints[] = {
367 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
368 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
369 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
370 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
371 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
373 * when HT is off, these can only run on the bottom 4 counters
375 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
376 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
377 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
378 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
379 EVENT_CONSTRAINT_END
382 static u64 intel_pmu_event_map(int hw_event)
384 return intel_perfmon_event_map[hw_event];
388 * Notes on the events:
389 * - data reads do not include code reads (comparable to earlier tables)
390 * - data counts include speculative execution (except L1 write, dtlb, bpu)
391 * - remote node access includes remote memory, remote cache, remote mmio.
392 * - prefetches are not included in the counts.
393 * - icache miss does not include decoded icache
396 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
397 #define SKL_DEMAND_RFO BIT_ULL(1)
398 #define SKL_ANY_RESPONSE BIT_ULL(16)
399 #define SKL_SUPPLIER_NONE BIT_ULL(17)
400 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
401 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
402 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
403 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
404 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
405 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
406 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
407 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
408 #define SKL_SPL_HIT BIT_ULL(30)
409 #define SKL_SNOOP_NONE BIT_ULL(31)
410 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
411 #define SKL_SNOOP_MISS BIT_ULL(33)
412 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
413 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
414 #define SKL_SNOOP_HITM BIT_ULL(36)
415 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
416 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
417 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
418 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
419 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
420 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
421 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
422 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
423 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
424 SKL_SNOOP_HITM|SKL_SPL_HIT)
425 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
426 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
427 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
428 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
429 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
431 static __initconst const u64 skl_hw_cache_event_ids
432 [PERF_COUNT_HW_CACHE_MAX]
433 [PERF_COUNT_HW_CACHE_OP_MAX]
434 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
436 [ C(L1D ) ] = {
437 [ C(OP_READ) ] = {
438 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
439 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
441 [ C(OP_WRITE) ] = {
442 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
443 [ C(RESULT_MISS) ] = 0x0,
445 [ C(OP_PREFETCH) ] = {
446 [ C(RESULT_ACCESS) ] = 0x0,
447 [ C(RESULT_MISS) ] = 0x0,
450 [ C(L1I ) ] = {
451 [ C(OP_READ) ] = {
452 [ C(RESULT_ACCESS) ] = 0x0,
453 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
455 [ C(OP_WRITE) ] = {
456 [ C(RESULT_ACCESS) ] = -1,
457 [ C(RESULT_MISS) ] = -1,
459 [ C(OP_PREFETCH) ] = {
460 [ C(RESULT_ACCESS) ] = 0x0,
461 [ C(RESULT_MISS) ] = 0x0,
464 [ C(LL ) ] = {
465 [ C(OP_READ) ] = {
466 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
467 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
469 [ C(OP_WRITE) ] = {
470 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
471 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
473 [ C(OP_PREFETCH) ] = {
474 [ C(RESULT_ACCESS) ] = 0x0,
475 [ C(RESULT_MISS) ] = 0x0,
478 [ C(DTLB) ] = {
479 [ C(OP_READ) ] = {
480 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
481 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
483 [ C(OP_WRITE) ] = {
484 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
485 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
487 [ C(OP_PREFETCH) ] = {
488 [ C(RESULT_ACCESS) ] = 0x0,
489 [ C(RESULT_MISS) ] = 0x0,
492 [ C(ITLB) ] = {
493 [ C(OP_READ) ] = {
494 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
495 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
497 [ C(OP_WRITE) ] = {
498 [ C(RESULT_ACCESS) ] = -1,
499 [ C(RESULT_MISS) ] = -1,
501 [ C(OP_PREFETCH) ] = {
502 [ C(RESULT_ACCESS) ] = -1,
503 [ C(RESULT_MISS) ] = -1,
506 [ C(BPU ) ] = {
507 [ C(OP_READ) ] = {
508 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
509 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
511 [ C(OP_WRITE) ] = {
512 [ C(RESULT_ACCESS) ] = -1,
513 [ C(RESULT_MISS) ] = -1,
515 [ C(OP_PREFETCH) ] = {
516 [ C(RESULT_ACCESS) ] = -1,
517 [ C(RESULT_MISS) ] = -1,
520 [ C(NODE) ] = {
521 [ C(OP_READ) ] = {
522 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
523 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
525 [ C(OP_WRITE) ] = {
526 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
527 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
529 [ C(OP_PREFETCH) ] = {
530 [ C(RESULT_ACCESS) ] = 0x0,
531 [ C(RESULT_MISS) ] = 0x0,
536 static __initconst const u64 skl_hw_cache_extra_regs
537 [PERF_COUNT_HW_CACHE_MAX]
538 [PERF_COUNT_HW_CACHE_OP_MAX]
539 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
541 [ C(LL ) ] = {
542 [ C(OP_READ) ] = {
543 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
544 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
545 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
546 SKL_L3_MISS|SKL_ANY_SNOOP|
547 SKL_SUPPLIER_NONE,
549 [ C(OP_WRITE) ] = {
550 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
551 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
552 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
553 SKL_L3_MISS|SKL_ANY_SNOOP|
554 SKL_SUPPLIER_NONE,
556 [ C(OP_PREFETCH) ] = {
557 [ C(RESULT_ACCESS) ] = 0x0,
558 [ C(RESULT_MISS) ] = 0x0,
561 [ C(NODE) ] = {
562 [ C(OP_READ) ] = {
563 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
564 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
565 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
566 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
568 [ C(OP_WRITE) ] = {
569 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
570 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
571 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
572 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
574 [ C(OP_PREFETCH) ] = {
575 [ C(RESULT_ACCESS) ] = 0x0,
576 [ C(RESULT_MISS) ] = 0x0,
581 #define SNB_DMND_DATA_RD (1ULL << 0)
582 #define SNB_DMND_RFO (1ULL << 1)
583 #define SNB_DMND_IFETCH (1ULL << 2)
584 #define SNB_DMND_WB (1ULL << 3)
585 #define SNB_PF_DATA_RD (1ULL << 4)
586 #define SNB_PF_RFO (1ULL << 5)
587 #define SNB_PF_IFETCH (1ULL << 6)
588 #define SNB_LLC_DATA_RD (1ULL << 7)
589 #define SNB_LLC_RFO (1ULL << 8)
590 #define SNB_LLC_IFETCH (1ULL << 9)
591 #define SNB_BUS_LOCKS (1ULL << 10)
592 #define SNB_STRM_ST (1ULL << 11)
593 #define SNB_OTHER (1ULL << 15)
594 #define SNB_RESP_ANY (1ULL << 16)
595 #define SNB_NO_SUPP (1ULL << 17)
596 #define SNB_LLC_HITM (1ULL << 18)
597 #define SNB_LLC_HITE (1ULL << 19)
598 #define SNB_LLC_HITS (1ULL << 20)
599 #define SNB_LLC_HITF (1ULL << 21)
600 #define SNB_LOCAL (1ULL << 22)
601 #define SNB_REMOTE (0xffULL << 23)
602 #define SNB_SNP_NONE (1ULL << 31)
603 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
604 #define SNB_SNP_MISS (1ULL << 33)
605 #define SNB_NO_FWD (1ULL << 34)
606 #define SNB_SNP_FWD (1ULL << 35)
607 #define SNB_HITM (1ULL << 36)
608 #define SNB_NON_DRAM (1ULL << 37)
610 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
611 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
612 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
614 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
615 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
616 SNB_HITM)
618 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
619 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
621 #define SNB_L3_ACCESS SNB_RESP_ANY
622 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
624 static __initconst const u64 snb_hw_cache_extra_regs
625 [PERF_COUNT_HW_CACHE_MAX]
626 [PERF_COUNT_HW_CACHE_OP_MAX]
627 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
629 [ C(LL ) ] = {
630 [ C(OP_READ) ] = {
631 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
632 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
634 [ C(OP_WRITE) ] = {
635 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
636 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
638 [ C(OP_PREFETCH) ] = {
639 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
640 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
643 [ C(NODE) ] = {
644 [ C(OP_READ) ] = {
645 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
646 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
648 [ C(OP_WRITE) ] = {
649 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
650 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
652 [ C(OP_PREFETCH) ] = {
653 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
654 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
659 static __initconst const u64 snb_hw_cache_event_ids
660 [PERF_COUNT_HW_CACHE_MAX]
661 [PERF_COUNT_HW_CACHE_OP_MAX]
662 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
664 [ C(L1D) ] = {
665 [ C(OP_READ) ] = {
666 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
667 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
669 [ C(OP_WRITE) ] = {
670 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
671 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
673 [ C(OP_PREFETCH) ] = {
674 [ C(RESULT_ACCESS) ] = 0x0,
675 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
678 [ C(L1I ) ] = {
679 [ C(OP_READ) ] = {
680 [ C(RESULT_ACCESS) ] = 0x0,
681 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
683 [ C(OP_WRITE) ] = {
684 [ C(RESULT_ACCESS) ] = -1,
685 [ C(RESULT_MISS) ] = -1,
687 [ C(OP_PREFETCH) ] = {
688 [ C(RESULT_ACCESS) ] = 0x0,
689 [ C(RESULT_MISS) ] = 0x0,
692 [ C(LL ) ] = {
693 [ C(OP_READ) ] = {
694 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
695 [ C(RESULT_ACCESS) ] = 0x01b7,
696 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
697 [ C(RESULT_MISS) ] = 0x01b7,
699 [ C(OP_WRITE) ] = {
700 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
701 [ C(RESULT_ACCESS) ] = 0x01b7,
702 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
703 [ C(RESULT_MISS) ] = 0x01b7,
705 [ C(OP_PREFETCH) ] = {
706 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
707 [ C(RESULT_ACCESS) ] = 0x01b7,
708 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
709 [ C(RESULT_MISS) ] = 0x01b7,
712 [ C(DTLB) ] = {
713 [ C(OP_READ) ] = {
714 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
715 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
717 [ C(OP_WRITE) ] = {
718 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
719 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
721 [ C(OP_PREFETCH) ] = {
722 [ C(RESULT_ACCESS) ] = 0x0,
723 [ C(RESULT_MISS) ] = 0x0,
726 [ C(ITLB) ] = {
727 [ C(OP_READ) ] = {
728 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
729 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
731 [ C(OP_WRITE) ] = {
732 [ C(RESULT_ACCESS) ] = -1,
733 [ C(RESULT_MISS) ] = -1,
735 [ C(OP_PREFETCH) ] = {
736 [ C(RESULT_ACCESS) ] = -1,
737 [ C(RESULT_MISS) ] = -1,
740 [ C(BPU ) ] = {
741 [ C(OP_READ) ] = {
742 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
743 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
745 [ C(OP_WRITE) ] = {
746 [ C(RESULT_ACCESS) ] = -1,
747 [ C(RESULT_MISS) ] = -1,
749 [ C(OP_PREFETCH) ] = {
750 [ C(RESULT_ACCESS) ] = -1,
751 [ C(RESULT_MISS) ] = -1,
754 [ C(NODE) ] = {
755 [ C(OP_READ) ] = {
756 [ C(RESULT_ACCESS) ] = 0x01b7,
757 [ C(RESULT_MISS) ] = 0x01b7,
759 [ C(OP_WRITE) ] = {
760 [ C(RESULT_ACCESS) ] = 0x01b7,
761 [ C(RESULT_MISS) ] = 0x01b7,
763 [ C(OP_PREFETCH) ] = {
764 [ C(RESULT_ACCESS) ] = 0x01b7,
765 [ C(RESULT_MISS) ] = 0x01b7,
772 * Notes on the events:
773 * - data reads do not include code reads (comparable to earlier tables)
774 * - data counts include speculative execution (except L1 write, dtlb, bpu)
775 * - remote node access includes remote memory, remote cache, remote mmio.
776 * - prefetches are not included in the counts because they are not
777 * reliably counted.
780 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
781 #define HSW_DEMAND_RFO BIT_ULL(1)
782 #define HSW_ANY_RESPONSE BIT_ULL(16)
783 #define HSW_SUPPLIER_NONE BIT_ULL(17)
784 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
785 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
786 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
787 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
788 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
789 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
790 HSW_L3_MISS_REMOTE_HOP2P)
791 #define HSW_SNOOP_NONE BIT_ULL(31)
792 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
793 #define HSW_SNOOP_MISS BIT_ULL(33)
794 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
795 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
796 #define HSW_SNOOP_HITM BIT_ULL(36)
797 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
798 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
799 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
800 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
801 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
802 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
803 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
804 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
805 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
806 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
807 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
809 #define BDW_L3_MISS_LOCAL BIT(26)
810 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
811 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
812 HSW_L3_MISS_REMOTE_HOP2P)
815 static __initconst const u64 hsw_hw_cache_event_ids
816 [PERF_COUNT_HW_CACHE_MAX]
817 [PERF_COUNT_HW_CACHE_OP_MAX]
818 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
820 [ C(L1D ) ] = {
821 [ C(OP_READ) ] = {
822 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
823 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
825 [ C(OP_WRITE) ] = {
826 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
827 [ C(RESULT_MISS) ] = 0x0,
829 [ C(OP_PREFETCH) ] = {
830 [ C(RESULT_ACCESS) ] = 0x0,
831 [ C(RESULT_MISS) ] = 0x0,
834 [ C(L1I ) ] = {
835 [ C(OP_READ) ] = {
836 [ C(RESULT_ACCESS) ] = 0x0,
837 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
839 [ C(OP_WRITE) ] = {
840 [ C(RESULT_ACCESS) ] = -1,
841 [ C(RESULT_MISS) ] = -1,
843 [ C(OP_PREFETCH) ] = {
844 [ C(RESULT_ACCESS) ] = 0x0,
845 [ C(RESULT_MISS) ] = 0x0,
848 [ C(LL ) ] = {
849 [ C(OP_READ) ] = {
850 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
851 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
853 [ C(OP_WRITE) ] = {
854 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
855 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
857 [ C(OP_PREFETCH) ] = {
858 [ C(RESULT_ACCESS) ] = 0x0,
859 [ C(RESULT_MISS) ] = 0x0,
862 [ C(DTLB) ] = {
863 [ C(OP_READ) ] = {
864 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
865 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
867 [ C(OP_WRITE) ] = {
868 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
869 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
871 [ C(OP_PREFETCH) ] = {
872 [ C(RESULT_ACCESS) ] = 0x0,
873 [ C(RESULT_MISS) ] = 0x0,
876 [ C(ITLB) ] = {
877 [ C(OP_READ) ] = {
878 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
879 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
881 [ C(OP_WRITE) ] = {
882 [ C(RESULT_ACCESS) ] = -1,
883 [ C(RESULT_MISS) ] = -1,
885 [ C(OP_PREFETCH) ] = {
886 [ C(RESULT_ACCESS) ] = -1,
887 [ C(RESULT_MISS) ] = -1,
890 [ C(BPU ) ] = {
891 [ C(OP_READ) ] = {
892 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
893 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
895 [ C(OP_WRITE) ] = {
896 [ C(RESULT_ACCESS) ] = -1,
897 [ C(RESULT_MISS) ] = -1,
899 [ C(OP_PREFETCH) ] = {
900 [ C(RESULT_ACCESS) ] = -1,
901 [ C(RESULT_MISS) ] = -1,
904 [ C(NODE) ] = {
905 [ C(OP_READ) ] = {
906 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
907 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
909 [ C(OP_WRITE) ] = {
910 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
911 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
913 [ C(OP_PREFETCH) ] = {
914 [ C(RESULT_ACCESS) ] = 0x0,
915 [ C(RESULT_MISS) ] = 0x0,
920 static __initconst const u64 hsw_hw_cache_extra_regs
921 [PERF_COUNT_HW_CACHE_MAX]
922 [PERF_COUNT_HW_CACHE_OP_MAX]
923 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
925 [ C(LL ) ] = {
926 [ C(OP_READ) ] = {
927 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
928 HSW_LLC_ACCESS,
929 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
930 HSW_L3_MISS|HSW_ANY_SNOOP,
932 [ C(OP_WRITE) ] = {
933 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
934 HSW_LLC_ACCESS,
935 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
936 HSW_L3_MISS|HSW_ANY_SNOOP,
938 [ C(OP_PREFETCH) ] = {
939 [ C(RESULT_ACCESS) ] = 0x0,
940 [ C(RESULT_MISS) ] = 0x0,
943 [ C(NODE) ] = {
944 [ C(OP_READ) ] = {
945 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
946 HSW_L3_MISS_LOCAL_DRAM|
947 HSW_SNOOP_DRAM,
948 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
949 HSW_L3_MISS_REMOTE|
950 HSW_SNOOP_DRAM,
952 [ C(OP_WRITE) ] = {
953 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
954 HSW_L3_MISS_LOCAL_DRAM|
955 HSW_SNOOP_DRAM,
956 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
957 HSW_L3_MISS_REMOTE|
958 HSW_SNOOP_DRAM,
960 [ C(OP_PREFETCH) ] = {
961 [ C(RESULT_ACCESS) ] = 0x0,
962 [ C(RESULT_MISS) ] = 0x0,
967 static __initconst const u64 westmere_hw_cache_event_ids
968 [PERF_COUNT_HW_CACHE_MAX]
969 [PERF_COUNT_HW_CACHE_OP_MAX]
970 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
972 [ C(L1D) ] = {
973 [ C(OP_READ) ] = {
974 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
975 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
977 [ C(OP_WRITE) ] = {
978 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
979 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
981 [ C(OP_PREFETCH) ] = {
982 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
983 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
986 [ C(L1I ) ] = {
987 [ C(OP_READ) ] = {
988 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
989 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
991 [ C(OP_WRITE) ] = {
992 [ C(RESULT_ACCESS) ] = -1,
993 [ C(RESULT_MISS) ] = -1,
995 [ C(OP_PREFETCH) ] = {
996 [ C(RESULT_ACCESS) ] = 0x0,
997 [ C(RESULT_MISS) ] = 0x0,
1000 [ C(LL ) ] = {
1001 [ C(OP_READ) ] = {
1002 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1003 [ C(RESULT_ACCESS) ] = 0x01b7,
1004 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1005 [ C(RESULT_MISS) ] = 0x01b7,
1008 * Use RFO, not WRITEBACK, because a write miss would typically occur
1009 * on RFO.
1011 [ C(OP_WRITE) ] = {
1012 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1013 [ C(RESULT_ACCESS) ] = 0x01b7,
1014 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1015 [ C(RESULT_MISS) ] = 0x01b7,
1017 [ C(OP_PREFETCH) ] = {
1018 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1019 [ C(RESULT_ACCESS) ] = 0x01b7,
1020 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1021 [ C(RESULT_MISS) ] = 0x01b7,
1024 [ C(DTLB) ] = {
1025 [ C(OP_READ) ] = {
1026 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1027 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1029 [ C(OP_WRITE) ] = {
1030 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1031 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1033 [ C(OP_PREFETCH) ] = {
1034 [ C(RESULT_ACCESS) ] = 0x0,
1035 [ C(RESULT_MISS) ] = 0x0,
1038 [ C(ITLB) ] = {
1039 [ C(OP_READ) ] = {
1040 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1041 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1043 [ C(OP_WRITE) ] = {
1044 [ C(RESULT_ACCESS) ] = -1,
1045 [ C(RESULT_MISS) ] = -1,
1047 [ C(OP_PREFETCH) ] = {
1048 [ C(RESULT_ACCESS) ] = -1,
1049 [ C(RESULT_MISS) ] = -1,
1052 [ C(BPU ) ] = {
1053 [ C(OP_READ) ] = {
1054 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1055 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1057 [ C(OP_WRITE) ] = {
1058 [ C(RESULT_ACCESS) ] = -1,
1059 [ C(RESULT_MISS) ] = -1,
1061 [ C(OP_PREFETCH) ] = {
1062 [ C(RESULT_ACCESS) ] = -1,
1063 [ C(RESULT_MISS) ] = -1,
1066 [ C(NODE) ] = {
1067 [ C(OP_READ) ] = {
1068 [ C(RESULT_ACCESS) ] = 0x01b7,
1069 [ C(RESULT_MISS) ] = 0x01b7,
1071 [ C(OP_WRITE) ] = {
1072 [ C(RESULT_ACCESS) ] = 0x01b7,
1073 [ C(RESULT_MISS) ] = 0x01b7,
1075 [ C(OP_PREFETCH) ] = {
1076 [ C(RESULT_ACCESS) ] = 0x01b7,
1077 [ C(RESULT_MISS) ] = 0x01b7,
1083 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1084 * See IA32 SDM Vol 3B 30.6.1.3
1087 #define NHM_DMND_DATA_RD (1 << 0)
1088 #define NHM_DMND_RFO (1 << 1)
1089 #define NHM_DMND_IFETCH (1 << 2)
1090 #define NHM_DMND_WB (1 << 3)
1091 #define NHM_PF_DATA_RD (1 << 4)
1092 #define NHM_PF_DATA_RFO (1 << 5)
1093 #define NHM_PF_IFETCH (1 << 6)
1094 #define NHM_OFFCORE_OTHER (1 << 7)
1095 #define NHM_UNCORE_HIT (1 << 8)
1096 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1097 #define NHM_OTHER_CORE_HITM (1 << 10)
1098 /* reserved */
1099 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1100 #define NHM_REMOTE_DRAM (1 << 13)
1101 #define NHM_LOCAL_DRAM (1 << 14)
1102 #define NHM_NON_DRAM (1 << 15)
1104 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1105 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1107 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1108 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1109 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1111 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1112 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1113 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1115 static __initconst const u64 nehalem_hw_cache_extra_regs
1116 [PERF_COUNT_HW_CACHE_MAX]
1117 [PERF_COUNT_HW_CACHE_OP_MAX]
1118 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1120 [ C(LL ) ] = {
1121 [ C(OP_READ) ] = {
1122 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1123 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1125 [ C(OP_WRITE) ] = {
1126 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1127 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1129 [ C(OP_PREFETCH) ] = {
1130 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1131 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1134 [ C(NODE) ] = {
1135 [ C(OP_READ) ] = {
1136 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1137 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1139 [ C(OP_WRITE) ] = {
1140 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1141 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1143 [ C(OP_PREFETCH) ] = {
1144 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1145 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1150 static __initconst const u64 nehalem_hw_cache_event_ids
1151 [PERF_COUNT_HW_CACHE_MAX]
1152 [PERF_COUNT_HW_CACHE_OP_MAX]
1153 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1155 [ C(L1D) ] = {
1156 [ C(OP_READ) ] = {
1157 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1158 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1160 [ C(OP_WRITE) ] = {
1161 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1162 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1164 [ C(OP_PREFETCH) ] = {
1165 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1166 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1169 [ C(L1I ) ] = {
1170 [ C(OP_READ) ] = {
1171 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1172 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1174 [ C(OP_WRITE) ] = {
1175 [ C(RESULT_ACCESS) ] = -1,
1176 [ C(RESULT_MISS) ] = -1,
1178 [ C(OP_PREFETCH) ] = {
1179 [ C(RESULT_ACCESS) ] = 0x0,
1180 [ C(RESULT_MISS) ] = 0x0,
1183 [ C(LL ) ] = {
1184 [ C(OP_READ) ] = {
1185 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186 [ C(RESULT_ACCESS) ] = 0x01b7,
1187 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1188 [ C(RESULT_MISS) ] = 0x01b7,
1191 * Use RFO, not WRITEBACK, because a write miss would typically occur
1192 * on RFO.
1194 [ C(OP_WRITE) ] = {
1195 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1196 [ C(RESULT_ACCESS) ] = 0x01b7,
1197 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1198 [ C(RESULT_MISS) ] = 0x01b7,
1200 [ C(OP_PREFETCH) ] = {
1201 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1202 [ C(RESULT_ACCESS) ] = 0x01b7,
1203 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1204 [ C(RESULT_MISS) ] = 0x01b7,
1207 [ C(DTLB) ] = {
1208 [ C(OP_READ) ] = {
1209 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1210 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1212 [ C(OP_WRITE) ] = {
1213 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1214 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1216 [ C(OP_PREFETCH) ] = {
1217 [ C(RESULT_ACCESS) ] = 0x0,
1218 [ C(RESULT_MISS) ] = 0x0,
1221 [ C(ITLB) ] = {
1222 [ C(OP_READ) ] = {
1223 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1224 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1226 [ C(OP_WRITE) ] = {
1227 [ C(RESULT_ACCESS) ] = -1,
1228 [ C(RESULT_MISS) ] = -1,
1230 [ C(OP_PREFETCH) ] = {
1231 [ C(RESULT_ACCESS) ] = -1,
1232 [ C(RESULT_MISS) ] = -1,
1235 [ C(BPU ) ] = {
1236 [ C(OP_READ) ] = {
1237 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1238 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1240 [ C(OP_WRITE) ] = {
1241 [ C(RESULT_ACCESS) ] = -1,
1242 [ C(RESULT_MISS) ] = -1,
1244 [ C(OP_PREFETCH) ] = {
1245 [ C(RESULT_ACCESS) ] = -1,
1246 [ C(RESULT_MISS) ] = -1,
1249 [ C(NODE) ] = {
1250 [ C(OP_READ) ] = {
1251 [ C(RESULT_ACCESS) ] = 0x01b7,
1252 [ C(RESULT_MISS) ] = 0x01b7,
1254 [ C(OP_WRITE) ] = {
1255 [ C(RESULT_ACCESS) ] = 0x01b7,
1256 [ C(RESULT_MISS) ] = 0x01b7,
1258 [ C(OP_PREFETCH) ] = {
1259 [ C(RESULT_ACCESS) ] = 0x01b7,
1260 [ C(RESULT_MISS) ] = 0x01b7,
1265 static __initconst const u64 core2_hw_cache_event_ids
1266 [PERF_COUNT_HW_CACHE_MAX]
1267 [PERF_COUNT_HW_CACHE_OP_MAX]
1268 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1270 [ C(L1D) ] = {
1271 [ C(OP_READ) ] = {
1272 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1273 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1275 [ C(OP_WRITE) ] = {
1276 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1277 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1279 [ C(OP_PREFETCH) ] = {
1280 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1281 [ C(RESULT_MISS) ] = 0,
1284 [ C(L1I ) ] = {
1285 [ C(OP_READ) ] = {
1286 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1287 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1289 [ C(OP_WRITE) ] = {
1290 [ C(RESULT_ACCESS) ] = -1,
1291 [ C(RESULT_MISS) ] = -1,
1293 [ C(OP_PREFETCH) ] = {
1294 [ C(RESULT_ACCESS) ] = 0,
1295 [ C(RESULT_MISS) ] = 0,
1298 [ C(LL ) ] = {
1299 [ C(OP_READ) ] = {
1300 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1301 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1303 [ C(OP_WRITE) ] = {
1304 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1305 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1307 [ C(OP_PREFETCH) ] = {
1308 [ C(RESULT_ACCESS) ] = 0,
1309 [ C(RESULT_MISS) ] = 0,
1312 [ C(DTLB) ] = {
1313 [ C(OP_READ) ] = {
1314 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1315 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1317 [ C(OP_WRITE) ] = {
1318 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1319 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1321 [ C(OP_PREFETCH) ] = {
1322 [ C(RESULT_ACCESS) ] = 0,
1323 [ C(RESULT_MISS) ] = 0,
1326 [ C(ITLB) ] = {
1327 [ C(OP_READ) ] = {
1328 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1329 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1331 [ C(OP_WRITE) ] = {
1332 [ C(RESULT_ACCESS) ] = -1,
1333 [ C(RESULT_MISS) ] = -1,
1335 [ C(OP_PREFETCH) ] = {
1336 [ C(RESULT_ACCESS) ] = -1,
1337 [ C(RESULT_MISS) ] = -1,
1340 [ C(BPU ) ] = {
1341 [ C(OP_READ) ] = {
1342 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1343 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1345 [ C(OP_WRITE) ] = {
1346 [ C(RESULT_ACCESS) ] = -1,
1347 [ C(RESULT_MISS) ] = -1,
1349 [ C(OP_PREFETCH) ] = {
1350 [ C(RESULT_ACCESS) ] = -1,
1351 [ C(RESULT_MISS) ] = -1,
1356 static __initconst const u64 atom_hw_cache_event_ids
1357 [PERF_COUNT_HW_CACHE_MAX]
1358 [PERF_COUNT_HW_CACHE_OP_MAX]
1359 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1361 [ C(L1D) ] = {
1362 [ C(OP_READ) ] = {
1363 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1364 [ C(RESULT_MISS) ] = 0,
1366 [ C(OP_WRITE) ] = {
1367 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1368 [ C(RESULT_MISS) ] = 0,
1370 [ C(OP_PREFETCH) ] = {
1371 [ C(RESULT_ACCESS) ] = 0x0,
1372 [ C(RESULT_MISS) ] = 0,
1375 [ C(L1I ) ] = {
1376 [ C(OP_READ) ] = {
1377 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1378 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1380 [ C(OP_WRITE) ] = {
1381 [ C(RESULT_ACCESS) ] = -1,
1382 [ C(RESULT_MISS) ] = -1,
1384 [ C(OP_PREFETCH) ] = {
1385 [ C(RESULT_ACCESS) ] = 0,
1386 [ C(RESULT_MISS) ] = 0,
1389 [ C(LL ) ] = {
1390 [ C(OP_READ) ] = {
1391 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1392 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1394 [ C(OP_WRITE) ] = {
1395 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1396 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1398 [ C(OP_PREFETCH) ] = {
1399 [ C(RESULT_ACCESS) ] = 0,
1400 [ C(RESULT_MISS) ] = 0,
1403 [ C(DTLB) ] = {
1404 [ C(OP_READ) ] = {
1405 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1406 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1408 [ C(OP_WRITE) ] = {
1409 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1410 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1412 [ C(OP_PREFETCH) ] = {
1413 [ C(RESULT_ACCESS) ] = 0,
1414 [ C(RESULT_MISS) ] = 0,
1417 [ C(ITLB) ] = {
1418 [ C(OP_READ) ] = {
1419 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1420 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1422 [ C(OP_WRITE) ] = {
1423 [ C(RESULT_ACCESS) ] = -1,
1424 [ C(RESULT_MISS) ] = -1,
1426 [ C(OP_PREFETCH) ] = {
1427 [ C(RESULT_ACCESS) ] = -1,
1428 [ C(RESULT_MISS) ] = -1,
1431 [ C(BPU ) ] = {
1432 [ C(OP_READ) ] = {
1433 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1434 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1436 [ C(OP_WRITE) ] = {
1437 [ C(RESULT_ACCESS) ] = -1,
1438 [ C(RESULT_MISS) ] = -1,
1440 [ C(OP_PREFETCH) ] = {
1441 [ C(RESULT_ACCESS) ] = -1,
1442 [ C(RESULT_MISS) ] = -1,
1447 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1448 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1449 /* no_alloc_cycles.not_delivered */
1450 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1451 "event=0xca,umask=0x50");
1452 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1453 /* uops_retired.all */
1454 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1455 "event=0xc2,umask=0x10");
1456 /* uops_retired.all */
1457 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1458 "event=0xc2,umask=0x10");
1460 static struct attribute *slm_events_attrs[] = {
1461 EVENT_PTR(td_total_slots_slm),
1462 EVENT_PTR(td_total_slots_scale_slm),
1463 EVENT_PTR(td_fetch_bubbles_slm),
1464 EVENT_PTR(td_fetch_bubbles_scale_slm),
1465 EVENT_PTR(td_slots_issued_slm),
1466 EVENT_PTR(td_slots_retired_slm),
1467 NULL
1470 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1472 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1473 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1474 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1475 EVENT_EXTRA_END
1478 #define SLM_DMND_READ SNB_DMND_DATA_RD
1479 #define SLM_DMND_WRITE SNB_DMND_RFO
1480 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1482 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1483 #define SLM_LLC_ACCESS SNB_RESP_ANY
1484 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1486 static __initconst const u64 slm_hw_cache_extra_regs
1487 [PERF_COUNT_HW_CACHE_MAX]
1488 [PERF_COUNT_HW_CACHE_OP_MAX]
1489 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1491 [ C(LL ) ] = {
1492 [ C(OP_READ) ] = {
1493 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1494 [ C(RESULT_MISS) ] = 0,
1496 [ C(OP_WRITE) ] = {
1497 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1498 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1500 [ C(OP_PREFETCH) ] = {
1501 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1502 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1507 static __initconst const u64 slm_hw_cache_event_ids
1508 [PERF_COUNT_HW_CACHE_MAX]
1509 [PERF_COUNT_HW_CACHE_OP_MAX]
1510 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1512 [ C(L1D) ] = {
1513 [ C(OP_READ) ] = {
1514 [ C(RESULT_ACCESS) ] = 0,
1515 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1517 [ C(OP_WRITE) ] = {
1518 [ C(RESULT_ACCESS) ] = 0,
1519 [ C(RESULT_MISS) ] = 0,
1521 [ C(OP_PREFETCH) ] = {
1522 [ C(RESULT_ACCESS) ] = 0,
1523 [ C(RESULT_MISS) ] = 0,
1526 [ C(L1I ) ] = {
1527 [ C(OP_READ) ] = {
1528 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1529 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1531 [ C(OP_WRITE) ] = {
1532 [ C(RESULT_ACCESS) ] = -1,
1533 [ C(RESULT_MISS) ] = -1,
1535 [ C(OP_PREFETCH) ] = {
1536 [ C(RESULT_ACCESS) ] = 0,
1537 [ C(RESULT_MISS) ] = 0,
1540 [ C(LL ) ] = {
1541 [ C(OP_READ) ] = {
1542 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1543 [ C(RESULT_ACCESS) ] = 0x01b7,
1544 [ C(RESULT_MISS) ] = 0,
1546 [ C(OP_WRITE) ] = {
1547 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1548 [ C(RESULT_ACCESS) ] = 0x01b7,
1549 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1550 [ C(RESULT_MISS) ] = 0x01b7,
1552 [ C(OP_PREFETCH) ] = {
1553 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1554 [ C(RESULT_ACCESS) ] = 0x01b7,
1555 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1556 [ C(RESULT_MISS) ] = 0x01b7,
1559 [ C(DTLB) ] = {
1560 [ C(OP_READ) ] = {
1561 [ C(RESULT_ACCESS) ] = 0,
1562 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1564 [ C(OP_WRITE) ] = {
1565 [ C(RESULT_ACCESS) ] = 0,
1566 [ C(RESULT_MISS) ] = 0,
1568 [ C(OP_PREFETCH) ] = {
1569 [ C(RESULT_ACCESS) ] = 0,
1570 [ C(RESULT_MISS) ] = 0,
1573 [ C(ITLB) ] = {
1574 [ C(OP_READ) ] = {
1575 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1576 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1578 [ C(OP_WRITE) ] = {
1579 [ C(RESULT_ACCESS) ] = -1,
1580 [ C(RESULT_MISS) ] = -1,
1582 [ C(OP_PREFETCH) ] = {
1583 [ C(RESULT_ACCESS) ] = -1,
1584 [ C(RESULT_MISS) ] = -1,
1587 [ C(BPU ) ] = {
1588 [ C(OP_READ) ] = {
1589 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1590 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1592 [ C(OP_WRITE) ] = {
1593 [ C(RESULT_ACCESS) ] = -1,
1594 [ C(RESULT_MISS) ] = -1,
1596 [ C(OP_PREFETCH) ] = {
1597 [ C(RESULT_ACCESS) ] = -1,
1598 [ C(RESULT_MISS) ] = -1,
1603 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1604 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1605 /* UOPS_NOT_DELIVERED.ANY */
1606 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1607 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1608 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1609 /* UOPS_RETIRED.ANY */
1610 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1611 /* UOPS_ISSUED.ANY */
1612 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1614 static struct attribute *glm_events_attrs[] = {
1615 EVENT_PTR(td_total_slots_glm),
1616 EVENT_PTR(td_total_slots_scale_glm),
1617 EVENT_PTR(td_fetch_bubbles_glm),
1618 EVENT_PTR(td_recovery_bubbles_glm),
1619 EVENT_PTR(td_slots_issued_glm),
1620 EVENT_PTR(td_slots_retired_glm),
1621 NULL
1624 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1625 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1626 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1627 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1628 EVENT_EXTRA_END
1631 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1632 #define GLM_DEMAND_RFO BIT_ULL(1)
1633 #define GLM_ANY_RESPONSE BIT_ULL(16)
1634 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1635 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1636 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1637 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1638 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1639 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1640 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1642 static __initconst const u64 glm_hw_cache_event_ids
1643 [PERF_COUNT_HW_CACHE_MAX]
1644 [PERF_COUNT_HW_CACHE_OP_MAX]
1645 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1646 [C(L1D)] = {
1647 [C(OP_READ)] = {
1648 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1649 [C(RESULT_MISS)] = 0x0,
1651 [C(OP_WRITE)] = {
1652 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1653 [C(RESULT_MISS)] = 0x0,
1655 [C(OP_PREFETCH)] = {
1656 [C(RESULT_ACCESS)] = 0x0,
1657 [C(RESULT_MISS)] = 0x0,
1660 [C(L1I)] = {
1661 [C(OP_READ)] = {
1662 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1663 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1665 [C(OP_WRITE)] = {
1666 [C(RESULT_ACCESS)] = -1,
1667 [C(RESULT_MISS)] = -1,
1669 [C(OP_PREFETCH)] = {
1670 [C(RESULT_ACCESS)] = 0x0,
1671 [C(RESULT_MISS)] = 0x0,
1674 [C(LL)] = {
1675 [C(OP_READ)] = {
1676 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1677 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1679 [C(OP_WRITE)] = {
1680 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1681 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1683 [C(OP_PREFETCH)] = {
1684 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1685 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1688 [C(DTLB)] = {
1689 [C(OP_READ)] = {
1690 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1691 [C(RESULT_MISS)] = 0x0,
1693 [C(OP_WRITE)] = {
1694 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1695 [C(RESULT_MISS)] = 0x0,
1697 [C(OP_PREFETCH)] = {
1698 [C(RESULT_ACCESS)] = 0x0,
1699 [C(RESULT_MISS)] = 0x0,
1702 [C(ITLB)] = {
1703 [C(OP_READ)] = {
1704 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1705 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1707 [C(OP_WRITE)] = {
1708 [C(RESULT_ACCESS)] = -1,
1709 [C(RESULT_MISS)] = -1,
1711 [C(OP_PREFETCH)] = {
1712 [C(RESULT_ACCESS)] = -1,
1713 [C(RESULT_MISS)] = -1,
1716 [C(BPU)] = {
1717 [C(OP_READ)] = {
1718 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1719 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1721 [C(OP_WRITE)] = {
1722 [C(RESULT_ACCESS)] = -1,
1723 [C(RESULT_MISS)] = -1,
1725 [C(OP_PREFETCH)] = {
1726 [C(RESULT_ACCESS)] = -1,
1727 [C(RESULT_MISS)] = -1,
1732 static __initconst const u64 glm_hw_cache_extra_regs
1733 [PERF_COUNT_HW_CACHE_MAX]
1734 [PERF_COUNT_HW_CACHE_OP_MAX]
1735 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1736 [C(LL)] = {
1737 [C(OP_READ)] = {
1738 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1739 GLM_LLC_ACCESS,
1740 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1741 GLM_LLC_MISS,
1743 [C(OP_WRITE)] = {
1744 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1745 GLM_LLC_ACCESS,
1746 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1747 GLM_LLC_MISS,
1749 [C(OP_PREFETCH)] = {
1750 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1751 GLM_LLC_ACCESS,
1752 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1753 GLM_LLC_MISS,
1758 static __initconst const u64 glp_hw_cache_event_ids
1759 [PERF_COUNT_HW_CACHE_MAX]
1760 [PERF_COUNT_HW_CACHE_OP_MAX]
1761 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1762 [C(L1D)] = {
1763 [C(OP_READ)] = {
1764 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1765 [C(RESULT_MISS)] = 0x0,
1767 [C(OP_WRITE)] = {
1768 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1769 [C(RESULT_MISS)] = 0x0,
1771 [C(OP_PREFETCH)] = {
1772 [C(RESULT_ACCESS)] = 0x0,
1773 [C(RESULT_MISS)] = 0x0,
1776 [C(L1I)] = {
1777 [C(OP_READ)] = {
1778 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1779 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1781 [C(OP_WRITE)] = {
1782 [C(RESULT_ACCESS)] = -1,
1783 [C(RESULT_MISS)] = -1,
1785 [C(OP_PREFETCH)] = {
1786 [C(RESULT_ACCESS)] = 0x0,
1787 [C(RESULT_MISS)] = 0x0,
1790 [C(LL)] = {
1791 [C(OP_READ)] = {
1792 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1793 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1795 [C(OP_WRITE)] = {
1796 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1797 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1799 [C(OP_PREFETCH)] = {
1800 [C(RESULT_ACCESS)] = 0x0,
1801 [C(RESULT_MISS)] = 0x0,
1804 [C(DTLB)] = {
1805 [C(OP_READ)] = {
1806 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1807 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1809 [C(OP_WRITE)] = {
1810 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1811 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1813 [C(OP_PREFETCH)] = {
1814 [C(RESULT_ACCESS)] = 0x0,
1815 [C(RESULT_MISS)] = 0x0,
1818 [C(ITLB)] = {
1819 [C(OP_READ)] = {
1820 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1821 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1823 [C(OP_WRITE)] = {
1824 [C(RESULT_ACCESS)] = -1,
1825 [C(RESULT_MISS)] = -1,
1827 [C(OP_PREFETCH)] = {
1828 [C(RESULT_ACCESS)] = -1,
1829 [C(RESULT_MISS)] = -1,
1832 [C(BPU)] = {
1833 [C(OP_READ)] = {
1834 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1835 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1837 [C(OP_WRITE)] = {
1838 [C(RESULT_ACCESS)] = -1,
1839 [C(RESULT_MISS)] = -1,
1841 [C(OP_PREFETCH)] = {
1842 [C(RESULT_ACCESS)] = -1,
1843 [C(RESULT_MISS)] = -1,
1848 static __initconst const u64 glp_hw_cache_extra_regs
1849 [PERF_COUNT_HW_CACHE_MAX]
1850 [PERF_COUNT_HW_CACHE_OP_MAX]
1851 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1852 [C(LL)] = {
1853 [C(OP_READ)] = {
1854 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1855 GLM_LLC_ACCESS,
1856 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1857 GLM_LLC_MISS,
1859 [C(OP_WRITE)] = {
1860 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1861 GLM_LLC_ACCESS,
1862 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1863 GLM_LLC_MISS,
1865 [C(OP_PREFETCH)] = {
1866 [C(RESULT_ACCESS)] = 0x0,
1867 [C(RESULT_MISS)] = 0x0,
1872 #define TNT_LOCAL_DRAM BIT_ULL(26)
1873 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
1874 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
1875 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
1876 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1877 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1878 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1880 static __initconst const u64 tnt_hw_cache_extra_regs
1881 [PERF_COUNT_HW_CACHE_MAX]
1882 [PERF_COUNT_HW_CACHE_OP_MAX]
1883 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1884 [C(LL)] = {
1885 [C(OP_READ)] = {
1886 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
1887 TNT_LLC_ACCESS,
1888 [C(RESULT_MISS)] = TNT_DEMAND_READ|
1889 TNT_LLC_MISS,
1891 [C(OP_WRITE)] = {
1892 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
1893 TNT_LLC_ACCESS,
1894 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
1895 TNT_LLC_MISS,
1897 [C(OP_PREFETCH)] = {
1898 [C(RESULT_ACCESS)] = 0x0,
1899 [C(RESULT_MISS)] = 0x0,
1904 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
1905 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
1906 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
1907 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
1909 static struct attribute *tnt_events_attrs[] = {
1910 EVENT_PTR(td_fe_bound_tnt),
1911 EVENT_PTR(td_retiring_tnt),
1912 EVENT_PTR(td_bad_spec_tnt),
1913 EVENT_PTR(td_be_bound_tnt),
1914 NULL,
1917 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1918 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1919 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
1920 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1921 EVENT_EXTRA_END
1924 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1925 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1926 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1927 #define KNL_MCDRAM_FAR BIT_ULL(22)
1928 #define KNL_DDR_LOCAL BIT_ULL(23)
1929 #define KNL_DDR_FAR BIT_ULL(24)
1930 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1931 KNL_DDR_LOCAL | KNL_DDR_FAR)
1932 #define KNL_L2_READ SLM_DMND_READ
1933 #define KNL_L2_WRITE SLM_DMND_WRITE
1934 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1935 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1936 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1937 KNL_DRAM_ANY | SNB_SNP_ANY | \
1938 SNB_NON_DRAM)
1940 static __initconst const u64 knl_hw_cache_extra_regs
1941 [PERF_COUNT_HW_CACHE_MAX]
1942 [PERF_COUNT_HW_CACHE_OP_MAX]
1943 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1944 [C(LL)] = {
1945 [C(OP_READ)] = {
1946 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1947 [C(RESULT_MISS)] = 0,
1949 [C(OP_WRITE)] = {
1950 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1951 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
1953 [C(OP_PREFETCH)] = {
1954 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1955 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
1961 * Used from PMIs where the LBRs are already disabled.
1963 * This function could be called consecutively. It is required to remain in
1964 * disabled state if called consecutively.
1966 * During consecutive calls, the same disable value will be written to related
1967 * registers, so the PMU state remains unchanged.
1969 * intel_bts events don't coexist with intel PMU's BTS events because of
1970 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1971 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1973 * Avoid PEBS_ENABLE MSR access in PMIs.
1974 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
1975 * It doesn't matter if the PEBS is enabled or not.
1976 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
1977 * access PEBS_ENABLE MSR in disable_all()/enable_all().
1978 * However, there are some cases which may change PEBS status, e.g. PMI
1979 * throttle. The PEBS_ENABLE should be updated where the status changes.
1981 static void __intel_pmu_disable_all(void)
1983 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1985 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1987 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1988 intel_pmu_disable_bts();
1991 static void intel_pmu_disable_all(void)
1993 __intel_pmu_disable_all();
1994 intel_pmu_pebs_disable_all();
1995 intel_pmu_lbr_disable_all();
1998 static void __intel_pmu_enable_all(int added, bool pmi)
2000 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2002 intel_pmu_lbr_enable_all(pmi);
2003 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2004 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2006 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2007 struct perf_event *event =
2008 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2010 if (WARN_ON_ONCE(!event))
2011 return;
2013 intel_pmu_enable_bts(event->hw.config);
2017 static void intel_pmu_enable_all(int added)
2019 intel_pmu_pebs_enable_all();
2020 __intel_pmu_enable_all(added, false);
2024 * Workaround for:
2025 * Intel Errata AAK100 (model 26)
2026 * Intel Errata AAP53 (model 30)
2027 * Intel Errata BD53 (model 44)
2029 * The official story:
2030 * These chips need to be 'reset' when adding counters by programming the
2031 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2032 * in sequence on the same PMC or on different PMCs.
2034 * In practise it appears some of these events do in fact count, and
2035 * we need to program all 4 events.
2037 static void intel_pmu_nhm_workaround(void)
2039 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2040 static const unsigned long nhm_magic[4] = {
2041 0x4300B5,
2042 0x4300D2,
2043 0x4300B1,
2044 0x4300B1
2046 struct perf_event *event;
2047 int i;
2050 * The Errata requires below steps:
2051 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2052 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2053 * the corresponding PMCx;
2054 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2055 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2056 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2060 * The real steps we choose are a little different from above.
2061 * A) To reduce MSR operations, we don't run step 1) as they
2062 * are already cleared before this function is called;
2063 * B) Call x86_perf_event_update to save PMCx before configuring
2064 * PERFEVTSELx with magic number;
2065 * C) With step 5), we do clear only when the PERFEVTSELx is
2066 * not used currently.
2067 * D) Call x86_perf_event_set_period to restore PMCx;
2070 /* We always operate 4 pairs of PERF Counters */
2071 for (i = 0; i < 4; i++) {
2072 event = cpuc->events[i];
2073 if (event)
2074 x86_perf_event_update(event);
2077 for (i = 0; i < 4; i++) {
2078 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2079 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2082 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2083 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2085 for (i = 0; i < 4; i++) {
2086 event = cpuc->events[i];
2088 if (event) {
2089 x86_perf_event_set_period(event);
2090 __x86_pmu_enable_event(&event->hw,
2091 ARCH_PERFMON_EVENTSEL_ENABLE);
2092 } else
2093 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2097 static void intel_pmu_nhm_enable_all(int added)
2099 if (added)
2100 intel_pmu_nhm_workaround();
2101 intel_pmu_enable_all(added);
2104 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2106 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2108 if (cpuc->tfa_shadow != val) {
2109 cpuc->tfa_shadow = val;
2110 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2114 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2117 * We're going to use PMC3, make sure TFA is set before we touch it.
2119 if (cntr == 3)
2120 intel_set_tfa(cpuc, true);
2123 static void intel_tfa_pmu_enable_all(int added)
2125 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2128 * If we find PMC3 is no longer used when we enable the PMU, we can
2129 * clear TFA.
2131 if (!test_bit(3, cpuc->active_mask))
2132 intel_set_tfa(cpuc, false);
2134 intel_pmu_enable_all(added);
2137 static void enable_counter_freeze(void)
2139 update_debugctlmsr(get_debugctlmsr() |
2140 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2143 static void disable_counter_freeze(void)
2145 update_debugctlmsr(get_debugctlmsr() &
2146 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2149 static inline u64 intel_pmu_get_status(void)
2151 u64 status;
2153 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2155 return status;
2158 static inline void intel_pmu_ack_status(u64 ack)
2160 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2163 static inline bool event_is_checkpointed(struct perf_event *event)
2165 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2168 static inline void intel_set_masks(struct perf_event *event, int idx)
2170 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2172 if (event->attr.exclude_host)
2173 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2174 if (event->attr.exclude_guest)
2175 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2176 if (event_is_checkpointed(event))
2177 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2180 static inline void intel_clear_masks(struct perf_event *event, int idx)
2182 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2184 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2185 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2186 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2189 static void intel_pmu_disable_fixed(struct perf_event *event)
2191 struct hw_perf_event *hwc = &event->hw;
2192 u64 ctrl_val, mask;
2193 int idx = hwc->idx;
2195 if (is_topdown_idx(idx)) {
2196 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2199 * When there are other active TopDown events,
2200 * don't disable the fixed counter 3.
2202 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2203 return;
2204 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2207 intel_clear_masks(event, idx);
2209 mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2210 rdmsrl(hwc->config_base, ctrl_val);
2211 ctrl_val &= ~mask;
2212 wrmsrl(hwc->config_base, ctrl_val);
2215 static void intel_pmu_disable_event(struct perf_event *event)
2217 struct hw_perf_event *hwc = &event->hw;
2218 int idx = hwc->idx;
2220 switch (idx) {
2221 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2222 intel_clear_masks(event, idx);
2223 x86_pmu_disable_event(event);
2224 break;
2225 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2226 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2227 intel_pmu_disable_fixed(event);
2228 break;
2229 case INTEL_PMC_IDX_FIXED_BTS:
2230 intel_pmu_disable_bts();
2231 intel_pmu_drain_bts_buffer();
2232 return;
2233 case INTEL_PMC_IDX_FIXED_VLBR:
2234 intel_clear_masks(event, idx);
2235 break;
2236 default:
2237 intel_clear_masks(event, idx);
2238 pr_warn("Failed to disable the event with invalid index %d\n",
2239 idx);
2240 return;
2244 * Needs to be called after x86_pmu_disable_event,
2245 * so we don't trigger the event without PEBS bit set.
2247 if (unlikely(event->attr.precise_ip))
2248 intel_pmu_pebs_disable(event);
2251 static void intel_pmu_del_event(struct perf_event *event)
2253 if (needs_branch_stack(event))
2254 intel_pmu_lbr_del(event);
2255 if (event->attr.precise_ip)
2256 intel_pmu_pebs_del(event);
2259 static int icl_set_topdown_event_period(struct perf_event *event)
2261 struct hw_perf_event *hwc = &event->hw;
2262 s64 left = local64_read(&hwc->period_left);
2265 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2266 * Software should start both registers, PERF_METRICS and fixed
2267 * counter 3, from zero.
2268 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2269 * After that, both MSRs will be cleared for each read.
2270 * Don't need to clear them again.
2272 if (left == x86_pmu.max_period) {
2273 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2274 wrmsrl(MSR_PERF_METRICS, 0);
2275 hwc->saved_slots = 0;
2276 hwc->saved_metric = 0;
2279 if ((hwc->saved_slots) && is_slots_event(event)) {
2280 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2281 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2284 perf_event_update_userpage(event);
2286 return 0;
2289 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2291 u32 val;
2294 * The metric is reported as an 8bit integer fraction
2295 * suming up to 0xff.
2296 * slots-in-metric = (Metric / 0xff) * slots
2298 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2299 return mul_u64_u32_div(slots, val, 0xff);
2302 static u64 icl_get_topdown_value(struct perf_event *event,
2303 u64 slots, u64 metrics)
2305 int idx = event->hw.idx;
2306 u64 delta;
2308 if (is_metric_idx(idx))
2309 delta = icl_get_metrics_event_value(metrics, slots, idx);
2310 else
2311 delta = slots;
2313 return delta;
2316 static void __icl_update_topdown_event(struct perf_event *event,
2317 u64 slots, u64 metrics,
2318 u64 last_slots, u64 last_metrics)
2320 u64 delta, last = 0;
2322 delta = icl_get_topdown_value(event, slots, metrics);
2323 if (last_slots)
2324 last = icl_get_topdown_value(event, last_slots, last_metrics);
2327 * The 8bit integer fraction of metric may be not accurate,
2328 * especially when the changes is very small.
2329 * For example, if only a few bad_spec happens, the fraction
2330 * may be reduced from 1 to 0. If so, the bad_spec event value
2331 * will be 0 which is definitely less than the last value.
2332 * Avoid update event->count for this case.
2334 if (delta > last) {
2335 delta -= last;
2336 local64_add(delta, &event->count);
2340 static void update_saved_topdown_regs(struct perf_event *event,
2341 u64 slots, u64 metrics)
2343 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2344 struct perf_event *other;
2345 int idx;
2347 event->hw.saved_slots = slots;
2348 event->hw.saved_metric = metrics;
2350 for_each_set_bit(idx, cpuc->active_mask, INTEL_PMC_IDX_TD_BE_BOUND + 1) {
2351 if (!is_topdown_idx(idx))
2352 continue;
2353 other = cpuc->events[idx];
2354 other->hw.saved_slots = slots;
2355 other->hw.saved_metric = metrics;
2360 * Update all active Topdown events.
2362 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2363 * modify by a NMI. PMU has to be disabled before calling this function.
2365 static u64 icl_update_topdown_event(struct perf_event *event)
2367 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2368 struct perf_event *other;
2369 u64 slots, metrics;
2370 bool reset = true;
2371 int idx;
2373 /* read Fixed counter 3 */
2374 rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2375 if (!slots)
2376 return 0;
2378 /* read PERF_METRICS */
2379 rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2381 for_each_set_bit(idx, cpuc->active_mask, INTEL_PMC_IDX_TD_BE_BOUND + 1) {
2382 if (!is_topdown_idx(idx))
2383 continue;
2384 other = cpuc->events[idx];
2385 __icl_update_topdown_event(other, slots, metrics,
2386 event ? event->hw.saved_slots : 0,
2387 event ? event->hw.saved_metric : 0);
2391 * Check and update this event, which may have been cleared
2392 * in active_mask e.g. x86_pmu_stop()
2394 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2395 __icl_update_topdown_event(event, slots, metrics,
2396 event->hw.saved_slots,
2397 event->hw.saved_metric);
2400 * In x86_pmu_stop(), the event is cleared in active_mask first,
2401 * then drain the delta, which indicates context switch for
2402 * counting.
2403 * Save metric and slots for context switch.
2404 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2405 * Because the values will be restored in next schedule in.
2407 update_saved_topdown_regs(event, slots, metrics);
2408 reset = false;
2411 if (reset) {
2412 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2413 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2414 wrmsrl(MSR_PERF_METRICS, 0);
2415 if (event)
2416 update_saved_topdown_regs(event, 0, 0);
2419 return slots;
2422 static void intel_pmu_read_topdown_event(struct perf_event *event)
2424 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2426 /* Only need to call update_topdown_event() once for group read. */
2427 if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2428 !is_slots_event(event))
2429 return;
2431 perf_pmu_disable(event->pmu);
2432 x86_pmu.update_topdown_event(event);
2433 perf_pmu_enable(event->pmu);
2436 static void intel_pmu_read_event(struct perf_event *event)
2438 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2439 intel_pmu_auto_reload_read(event);
2440 else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2441 intel_pmu_read_topdown_event(event);
2442 else
2443 x86_perf_event_update(event);
2446 static void intel_pmu_enable_fixed(struct perf_event *event)
2448 struct hw_perf_event *hwc = &event->hw;
2449 u64 ctrl_val, mask, bits = 0;
2450 int idx = hwc->idx;
2452 if (is_topdown_idx(idx)) {
2453 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2455 * When there are other active TopDown events,
2456 * don't enable the fixed counter 3 again.
2458 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2459 return;
2461 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2464 intel_set_masks(event, idx);
2467 * Enable IRQ generation (0x8), if not PEBS,
2468 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2469 * if requested:
2471 if (!event->attr.precise_ip)
2472 bits |= 0x8;
2473 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2474 bits |= 0x2;
2475 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2476 bits |= 0x1;
2479 * ANY bit is supported in v3 and up
2481 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2482 bits |= 0x4;
2484 idx -= INTEL_PMC_IDX_FIXED;
2485 bits <<= (idx * 4);
2486 mask = 0xfULL << (idx * 4);
2488 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2489 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2490 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2493 rdmsrl(hwc->config_base, ctrl_val);
2494 ctrl_val &= ~mask;
2495 ctrl_val |= bits;
2496 wrmsrl(hwc->config_base, ctrl_val);
2499 static void intel_pmu_enable_event(struct perf_event *event)
2501 struct hw_perf_event *hwc = &event->hw;
2502 int idx = hwc->idx;
2504 if (unlikely(event->attr.precise_ip))
2505 intel_pmu_pebs_enable(event);
2507 switch (idx) {
2508 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2509 intel_set_masks(event, idx);
2510 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2511 break;
2512 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2513 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2514 intel_pmu_enable_fixed(event);
2515 break;
2516 case INTEL_PMC_IDX_FIXED_BTS:
2517 if (!__this_cpu_read(cpu_hw_events.enabled))
2518 return;
2519 intel_pmu_enable_bts(hwc->config);
2520 break;
2521 case INTEL_PMC_IDX_FIXED_VLBR:
2522 intel_set_masks(event, idx);
2523 break;
2524 default:
2525 pr_warn("Failed to enable the event with invalid index %d\n",
2526 idx);
2530 static void intel_pmu_add_event(struct perf_event *event)
2532 if (event->attr.precise_ip)
2533 intel_pmu_pebs_add(event);
2534 if (needs_branch_stack(event))
2535 intel_pmu_lbr_add(event);
2539 * Save and restart an expired event. Called by NMI contexts,
2540 * so it has to be careful about preempting normal event ops:
2542 int intel_pmu_save_and_restart(struct perf_event *event)
2544 x86_perf_event_update(event);
2546 * For a checkpointed counter always reset back to 0. This
2547 * avoids a situation where the counter overflows, aborts the
2548 * transaction and is then set back to shortly before the
2549 * overflow, and overflows and aborts again.
2551 if (unlikely(event_is_checkpointed(event))) {
2552 /* No race with NMIs because the counter should not be armed */
2553 wrmsrl(event->hw.event_base, 0);
2554 local64_set(&event->hw.prev_count, 0);
2556 return x86_perf_event_set_period(event);
2559 static void intel_pmu_reset(void)
2561 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2562 unsigned long flags;
2563 int idx;
2565 if (!x86_pmu.num_counters)
2566 return;
2568 local_irq_save(flags);
2570 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2572 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2573 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2574 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2576 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2577 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2579 if (ds)
2580 ds->bts_index = ds->bts_buffer_base;
2582 /* Ack all overflows and disable fixed counters */
2583 if (x86_pmu.version >= 2) {
2584 intel_pmu_ack_status(intel_pmu_get_status());
2585 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2588 /* Reset LBRs and LBR freezing */
2589 if (x86_pmu.lbr_nr) {
2590 update_debugctlmsr(get_debugctlmsr() &
2591 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2594 local_irq_restore(flags);
2597 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2599 struct perf_sample_data data;
2600 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2601 int bit;
2602 int handled = 0;
2604 inc_irq_stat(apic_perf_irqs);
2607 * Ignore a range of extra bits in status that do not indicate
2608 * overflow by themselves.
2610 status &= ~(GLOBAL_STATUS_COND_CHG |
2611 GLOBAL_STATUS_ASIF |
2612 GLOBAL_STATUS_LBRS_FROZEN);
2613 if (!status)
2614 return 0;
2616 * In case multiple PEBS events are sampled at the same time,
2617 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2618 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2619 * having their bits set in the status register. This is a sign
2620 * that there was at least one PEBS record pending at the time
2621 * of the PMU interrupt. PEBS counters must only be processed
2622 * via the drain_pebs() calls and not via the regular sample
2623 * processing loop coming after that the function, otherwise
2624 * phony regular samples may be generated in the sampling buffer
2625 * not marked with the EXACT tag. Another possibility is to have
2626 * one PEBS event and at least one non-PEBS event whic hoverflows
2627 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2628 * not be set, yet the overflow status bit for the PEBS counter will
2629 * be on Skylake.
2631 * To avoid this problem, we systematically ignore the PEBS-enabled
2632 * counters from the GLOBAL_STATUS mask and we always process PEBS
2633 * events via drain_pebs().
2635 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2636 status &= ~cpuc->pebs_enabled;
2637 else
2638 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2641 * PEBS overflow sets bit 62 in the global status register
2643 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2644 u64 pebs_enabled = cpuc->pebs_enabled;
2646 handled++;
2647 x86_pmu.drain_pebs(regs, &data);
2648 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2651 * PMI throttle may be triggered, which stops the PEBS event.
2652 * Although cpuc->pebs_enabled is updated accordingly, the
2653 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2654 * cpuc->enabled has been forced to 0 in PMI.
2655 * Update the MSR if pebs_enabled is changed.
2657 if (pebs_enabled != cpuc->pebs_enabled)
2658 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2662 * Intel PT
2664 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2665 handled++;
2666 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2667 perf_guest_cbs->handle_intel_pt_intr))
2668 perf_guest_cbs->handle_intel_pt_intr();
2669 else
2670 intel_pt_interrupt();
2674 * Intel Perf mertrics
2676 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2677 handled++;
2678 if (x86_pmu.update_topdown_event)
2679 x86_pmu.update_topdown_event(NULL);
2683 * Checkpointed counters can lead to 'spurious' PMIs because the
2684 * rollback caused by the PMI will have cleared the overflow status
2685 * bit. Therefore always force probe these counters.
2687 status |= cpuc->intel_cp_status;
2689 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2690 struct perf_event *event = cpuc->events[bit];
2692 handled++;
2694 if (!test_bit(bit, cpuc->active_mask))
2695 continue;
2697 if (!intel_pmu_save_and_restart(event))
2698 continue;
2700 perf_sample_data_init(&data, 0, event->hw.last_period);
2702 if (has_branch_stack(event))
2703 data.br_stack = &cpuc->lbr_stack;
2705 if (perf_event_overflow(event, &data, regs))
2706 x86_pmu_stop(event, 0);
2709 return handled;
2712 static bool disable_counter_freezing = true;
2713 static int __init intel_perf_counter_freezing_setup(char *s)
2715 bool res;
2717 if (kstrtobool(s, &res))
2718 return -EINVAL;
2720 disable_counter_freezing = !res;
2721 return 1;
2723 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2726 * Simplified handler for Arch Perfmon v4:
2727 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2728 * This is done automatically on PMU ack.
2729 * - Ack the PMU only after the APIC.
2732 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2734 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2735 int handled = 0;
2736 bool bts = false;
2737 u64 status;
2738 int pmu_enabled = cpuc->enabled;
2739 int loops = 0;
2741 /* PMU has been disabled because of counter freezing */
2742 cpuc->enabled = 0;
2743 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2744 bts = true;
2745 intel_bts_disable_local();
2746 handled = intel_pmu_drain_bts_buffer();
2747 handled += intel_bts_interrupt();
2749 status = intel_pmu_get_status();
2750 if (!status)
2751 goto done;
2752 again:
2753 intel_pmu_lbr_read();
2754 if (++loops > 100) {
2755 static bool warned;
2757 if (!warned) {
2758 WARN(1, "perfevents: irq loop stuck!\n");
2759 perf_event_print_debug();
2760 warned = true;
2762 intel_pmu_reset();
2763 goto done;
2767 handled += handle_pmi_common(regs, status);
2768 done:
2769 /* Ack the PMI in the APIC */
2770 apic_write(APIC_LVTPC, APIC_DM_NMI);
2773 * The counters start counting immediately while ack the status.
2774 * Make it as close as possible to IRET. This avoids bogus
2775 * freezing on Skylake CPUs.
2777 if (status) {
2778 intel_pmu_ack_status(status);
2779 } else {
2781 * CPU may issues two PMIs very close to each other.
2782 * When the PMI handler services the first one, the
2783 * GLOBAL_STATUS is already updated to reflect both.
2784 * When it IRETs, the second PMI is immediately
2785 * handled and it sees clear status. At the meantime,
2786 * there may be a third PMI, because the freezing bit
2787 * isn't set since the ack in first PMI handlers.
2788 * Double check if there is more work to be done.
2790 status = intel_pmu_get_status();
2791 if (status)
2792 goto again;
2795 if (bts)
2796 intel_bts_enable_local();
2797 cpuc->enabled = pmu_enabled;
2798 return handled;
2802 * This handler is triggered by the local APIC, so the APIC IRQ handling
2803 * rules apply:
2805 static int intel_pmu_handle_irq(struct pt_regs *regs)
2807 struct cpu_hw_events *cpuc;
2808 int loops;
2809 u64 status;
2810 int handled;
2811 int pmu_enabled;
2813 cpuc = this_cpu_ptr(&cpu_hw_events);
2816 * Save the PMU state.
2817 * It needs to be restored when leaving the handler.
2819 pmu_enabled = cpuc->enabled;
2821 * No known reason to not always do late ACK,
2822 * but just in case do it opt-in.
2824 if (!x86_pmu.late_ack)
2825 apic_write(APIC_LVTPC, APIC_DM_NMI);
2826 intel_bts_disable_local();
2827 cpuc->enabled = 0;
2828 __intel_pmu_disable_all();
2829 handled = intel_pmu_drain_bts_buffer();
2830 handled += intel_bts_interrupt();
2831 status = intel_pmu_get_status();
2832 if (!status)
2833 goto done;
2835 loops = 0;
2836 again:
2837 intel_pmu_lbr_read();
2838 intel_pmu_ack_status(status);
2839 if (++loops > 100) {
2840 static bool warned;
2842 if (!warned) {
2843 WARN(1, "perfevents: irq loop stuck!\n");
2844 perf_event_print_debug();
2845 warned = true;
2847 intel_pmu_reset();
2848 goto done;
2851 handled += handle_pmi_common(regs, status);
2854 * Repeat if there is more work to be done:
2856 status = intel_pmu_get_status();
2857 if (status)
2858 goto again;
2860 done:
2861 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2862 cpuc->enabled = pmu_enabled;
2863 if (pmu_enabled)
2864 __intel_pmu_enable_all(0, true);
2865 intel_bts_enable_local();
2868 * Only unmask the NMI after the overflow counters
2869 * have been reset. This avoids spurious NMIs on
2870 * Haswell CPUs.
2872 if (x86_pmu.late_ack)
2873 apic_write(APIC_LVTPC, APIC_DM_NMI);
2874 return handled;
2877 static struct event_constraint *
2878 intel_bts_constraints(struct perf_event *event)
2880 if (unlikely(intel_pmu_has_bts(event)))
2881 return &bts_constraint;
2883 return NULL;
2887 * Note: matches a fake event, like Fixed2.
2889 static struct event_constraint *
2890 intel_vlbr_constraints(struct perf_event *event)
2892 struct event_constraint *c = &vlbr_constraint;
2894 if (unlikely(constraint_match(c, event->hw.config)))
2895 return c;
2897 return NULL;
2900 static int intel_alt_er(int idx, u64 config)
2902 int alt_idx = idx;
2904 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2905 return idx;
2907 if (idx == EXTRA_REG_RSP_0)
2908 alt_idx = EXTRA_REG_RSP_1;
2910 if (idx == EXTRA_REG_RSP_1)
2911 alt_idx = EXTRA_REG_RSP_0;
2913 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2914 return idx;
2916 return alt_idx;
2919 static void intel_fixup_er(struct perf_event *event, int idx)
2921 event->hw.extra_reg.idx = idx;
2923 if (idx == EXTRA_REG_RSP_0) {
2924 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2925 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2926 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2927 } else if (idx == EXTRA_REG_RSP_1) {
2928 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2929 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2930 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2935 * manage allocation of shared extra msr for certain events
2937 * sharing can be:
2938 * per-cpu: to be shared between the various events on a single PMU
2939 * per-core: per-cpu + shared by HT threads
2941 static struct event_constraint *
2942 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2943 struct perf_event *event,
2944 struct hw_perf_event_extra *reg)
2946 struct event_constraint *c = &emptyconstraint;
2947 struct er_account *era;
2948 unsigned long flags;
2949 int idx = reg->idx;
2952 * reg->alloc can be set due to existing state, so for fake cpuc we
2953 * need to ignore this, otherwise we might fail to allocate proper fake
2954 * state for this extra reg constraint. Also see the comment below.
2956 if (reg->alloc && !cpuc->is_fake)
2957 return NULL; /* call x86_get_event_constraint() */
2959 again:
2960 era = &cpuc->shared_regs->regs[idx];
2962 * we use spin_lock_irqsave() to avoid lockdep issues when
2963 * passing a fake cpuc
2965 raw_spin_lock_irqsave(&era->lock, flags);
2967 if (!atomic_read(&era->ref) || era->config == reg->config) {
2970 * If its a fake cpuc -- as per validate_{group,event}() we
2971 * shouldn't touch event state and we can avoid doing so
2972 * since both will only call get_event_constraints() once
2973 * on each event, this avoids the need for reg->alloc.
2975 * Not doing the ER fixup will only result in era->reg being
2976 * wrong, but since we won't actually try and program hardware
2977 * this isn't a problem either.
2979 if (!cpuc->is_fake) {
2980 if (idx != reg->idx)
2981 intel_fixup_er(event, idx);
2984 * x86_schedule_events() can call get_event_constraints()
2985 * multiple times on events in the case of incremental
2986 * scheduling(). reg->alloc ensures we only do the ER
2987 * allocation once.
2989 reg->alloc = 1;
2992 /* lock in msr value */
2993 era->config = reg->config;
2994 era->reg = reg->reg;
2996 /* one more user */
2997 atomic_inc(&era->ref);
3000 * need to call x86_get_event_constraint()
3001 * to check if associated event has constraints
3003 c = NULL;
3004 } else {
3005 idx = intel_alt_er(idx, reg->config);
3006 if (idx != reg->idx) {
3007 raw_spin_unlock_irqrestore(&era->lock, flags);
3008 goto again;
3011 raw_spin_unlock_irqrestore(&era->lock, flags);
3013 return c;
3016 static void
3017 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3018 struct hw_perf_event_extra *reg)
3020 struct er_account *era;
3023 * Only put constraint if extra reg was actually allocated. Also takes
3024 * care of event which do not use an extra shared reg.
3026 * Also, if this is a fake cpuc we shouldn't touch any event state
3027 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3028 * either since it'll be thrown out.
3030 if (!reg->alloc || cpuc->is_fake)
3031 return;
3033 era = &cpuc->shared_regs->regs[reg->idx];
3035 /* one fewer user */
3036 atomic_dec(&era->ref);
3038 /* allocate again next time */
3039 reg->alloc = 0;
3042 static struct event_constraint *
3043 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3044 struct perf_event *event)
3046 struct event_constraint *c = NULL, *d;
3047 struct hw_perf_event_extra *xreg, *breg;
3049 xreg = &event->hw.extra_reg;
3050 if (xreg->idx != EXTRA_REG_NONE) {
3051 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3052 if (c == &emptyconstraint)
3053 return c;
3055 breg = &event->hw.branch_reg;
3056 if (breg->idx != EXTRA_REG_NONE) {
3057 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3058 if (d == &emptyconstraint) {
3059 __intel_shared_reg_put_constraints(cpuc, xreg);
3060 c = d;
3063 return c;
3066 struct event_constraint *
3067 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3068 struct perf_event *event)
3070 struct event_constraint *c;
3072 if (x86_pmu.event_constraints) {
3073 for_each_event_constraint(c, x86_pmu.event_constraints) {
3074 if (constraint_match(c, event->hw.config)) {
3075 event->hw.flags |= c->flags;
3076 return c;
3081 return &unconstrained;
3084 static struct event_constraint *
3085 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3086 struct perf_event *event)
3088 struct event_constraint *c;
3090 c = intel_vlbr_constraints(event);
3091 if (c)
3092 return c;
3094 c = intel_bts_constraints(event);
3095 if (c)
3096 return c;
3098 c = intel_shared_regs_constraints(cpuc, event);
3099 if (c)
3100 return c;
3102 c = intel_pebs_constraints(event);
3103 if (c)
3104 return c;
3106 return x86_get_event_constraints(cpuc, idx, event);
3109 static void
3110 intel_start_scheduling(struct cpu_hw_events *cpuc)
3112 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3113 struct intel_excl_states *xl;
3114 int tid = cpuc->excl_thread_id;
3117 * nothing needed if in group validation mode
3119 if (cpuc->is_fake || !is_ht_workaround_enabled())
3120 return;
3123 * no exclusion needed
3125 if (WARN_ON_ONCE(!excl_cntrs))
3126 return;
3128 xl = &excl_cntrs->states[tid];
3130 xl->sched_started = true;
3132 * lock shared state until we are done scheduling
3133 * in stop_event_scheduling()
3134 * makes scheduling appear as a transaction
3136 raw_spin_lock(&excl_cntrs->lock);
3139 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3141 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3142 struct event_constraint *c = cpuc->event_constraint[idx];
3143 struct intel_excl_states *xl;
3144 int tid = cpuc->excl_thread_id;
3146 if (cpuc->is_fake || !is_ht_workaround_enabled())
3147 return;
3149 if (WARN_ON_ONCE(!excl_cntrs))
3150 return;
3152 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3153 return;
3155 xl = &excl_cntrs->states[tid];
3157 lockdep_assert_held(&excl_cntrs->lock);
3159 if (c->flags & PERF_X86_EVENT_EXCL)
3160 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3161 else
3162 xl->state[cntr] = INTEL_EXCL_SHARED;
3165 static void
3166 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3168 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3169 struct intel_excl_states *xl;
3170 int tid = cpuc->excl_thread_id;
3173 * nothing needed if in group validation mode
3175 if (cpuc->is_fake || !is_ht_workaround_enabled())
3176 return;
3178 * no exclusion needed
3180 if (WARN_ON_ONCE(!excl_cntrs))
3181 return;
3183 xl = &excl_cntrs->states[tid];
3185 xl->sched_started = false;
3187 * release shared state lock (acquired in intel_start_scheduling())
3189 raw_spin_unlock(&excl_cntrs->lock);
3192 static struct event_constraint *
3193 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3195 WARN_ON_ONCE(!cpuc->constraint_list);
3197 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3198 struct event_constraint *cx;
3201 * grab pre-allocated constraint entry
3203 cx = &cpuc->constraint_list[idx];
3206 * initialize dynamic constraint
3207 * with static constraint
3209 *cx = *c;
3212 * mark constraint as dynamic
3214 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3215 c = cx;
3218 return c;
3221 static struct event_constraint *
3222 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3223 int idx, struct event_constraint *c)
3225 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3226 struct intel_excl_states *xlo;
3227 int tid = cpuc->excl_thread_id;
3228 int is_excl, i, w;
3231 * validating a group does not require
3232 * enforcing cross-thread exclusion
3234 if (cpuc->is_fake || !is_ht_workaround_enabled())
3235 return c;
3238 * no exclusion needed
3240 if (WARN_ON_ONCE(!excl_cntrs))
3241 return c;
3244 * because we modify the constraint, we need
3245 * to make a copy. Static constraints come
3246 * from static const tables.
3248 * only needed when constraint has not yet
3249 * been cloned (marked dynamic)
3251 c = dyn_constraint(cpuc, c, idx);
3254 * From here on, the constraint is dynamic.
3255 * Either it was just allocated above, or it
3256 * was allocated during a earlier invocation
3257 * of this function
3261 * state of sibling HT
3263 xlo = &excl_cntrs->states[tid ^ 1];
3266 * event requires exclusive counter access
3267 * across HT threads
3269 is_excl = c->flags & PERF_X86_EVENT_EXCL;
3270 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3271 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3272 if (!cpuc->n_excl++)
3273 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3277 * Modify static constraint with current dynamic
3278 * state of thread
3280 * EXCLUSIVE: sibling counter measuring exclusive event
3281 * SHARED : sibling counter measuring non-exclusive event
3282 * UNUSED : sibling counter unused
3284 w = c->weight;
3285 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3287 * exclusive event in sibling counter
3288 * our corresponding counter cannot be used
3289 * regardless of our event
3291 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3292 __clear_bit(i, c->idxmsk);
3293 w--;
3294 continue;
3297 * if measuring an exclusive event, sibling
3298 * measuring non-exclusive, then counter cannot
3299 * be used
3301 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3302 __clear_bit(i, c->idxmsk);
3303 w--;
3304 continue;
3309 * if we return an empty mask, then switch
3310 * back to static empty constraint to avoid
3311 * the cost of freeing later on
3313 if (!w)
3314 c = &emptyconstraint;
3316 c->weight = w;
3318 return c;
3321 static struct event_constraint *
3322 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3323 struct perf_event *event)
3325 struct event_constraint *c1, *c2;
3327 c1 = cpuc->event_constraint[idx];
3330 * first time only
3331 * - static constraint: no change across incremental scheduling calls
3332 * - dynamic constraint: handled by intel_get_excl_constraints()
3334 c2 = __intel_get_event_constraints(cpuc, idx, event);
3335 if (c1) {
3336 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3337 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3338 c1->weight = c2->weight;
3339 c2 = c1;
3342 if (cpuc->excl_cntrs)
3343 return intel_get_excl_constraints(cpuc, event, idx, c2);
3345 return c2;
3348 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3349 struct perf_event *event)
3351 struct hw_perf_event *hwc = &event->hw;
3352 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3353 int tid = cpuc->excl_thread_id;
3354 struct intel_excl_states *xl;
3357 * nothing needed if in group validation mode
3359 if (cpuc->is_fake)
3360 return;
3362 if (WARN_ON_ONCE(!excl_cntrs))
3363 return;
3365 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3366 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3367 if (!--cpuc->n_excl)
3368 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3372 * If event was actually assigned, then mark the counter state as
3373 * unused now.
3375 if (hwc->idx >= 0) {
3376 xl = &excl_cntrs->states[tid];
3379 * put_constraint may be called from x86_schedule_events()
3380 * which already has the lock held so here make locking
3381 * conditional.
3383 if (!xl->sched_started)
3384 raw_spin_lock(&excl_cntrs->lock);
3386 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3388 if (!xl->sched_started)
3389 raw_spin_unlock(&excl_cntrs->lock);
3393 static void
3394 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3395 struct perf_event *event)
3397 struct hw_perf_event_extra *reg;
3399 reg = &event->hw.extra_reg;
3400 if (reg->idx != EXTRA_REG_NONE)
3401 __intel_shared_reg_put_constraints(cpuc, reg);
3403 reg = &event->hw.branch_reg;
3404 if (reg->idx != EXTRA_REG_NONE)
3405 __intel_shared_reg_put_constraints(cpuc, reg);
3408 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3409 struct perf_event *event)
3411 intel_put_shared_regs_event_constraints(cpuc, event);
3414 * is PMU has exclusive counter restrictions, then
3415 * all events are subject to and must call the
3416 * put_excl_constraints() routine
3418 if (cpuc->excl_cntrs)
3419 intel_put_excl_constraints(cpuc, event);
3422 static void intel_pebs_aliases_core2(struct perf_event *event)
3424 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3426 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3427 * (0x003c) so that we can use it with PEBS.
3429 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3430 * PEBS capable. However we can use INST_RETIRED.ANY_P
3431 * (0x00c0), which is a PEBS capable event, to get the same
3432 * count.
3434 * INST_RETIRED.ANY_P counts the number of cycles that retires
3435 * CNTMASK instructions. By setting CNTMASK to a value (16)
3436 * larger than the maximum number of instructions that can be
3437 * retired per cycle (4) and then inverting the condition, we
3438 * count all cycles that retire 16 or less instructions, which
3439 * is every cycle.
3441 * Thereby we gain a PEBS capable cycle counter.
3443 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3445 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3446 event->hw.config = alt_config;
3450 static void intel_pebs_aliases_snb(struct perf_event *event)
3452 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3454 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3455 * (0x003c) so that we can use it with PEBS.
3457 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3458 * PEBS capable. However we can use UOPS_RETIRED.ALL
3459 * (0x01c2), which is a PEBS capable event, to get the same
3460 * count.
3462 * UOPS_RETIRED.ALL counts the number of cycles that retires
3463 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3464 * larger than the maximum number of micro-ops that can be
3465 * retired per cycle (4) and then inverting the condition, we
3466 * count all cycles that retire 16 or less micro-ops, which
3467 * is every cycle.
3469 * Thereby we gain a PEBS capable cycle counter.
3471 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3473 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3474 event->hw.config = alt_config;
3478 static void intel_pebs_aliases_precdist(struct perf_event *event)
3480 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3482 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3483 * (0x003c) so that we can use it with PEBS.
3485 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3486 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3487 * (0x01c0), which is a PEBS capable event, to get the same
3488 * count.
3490 * The PREC_DIST event has special support to minimize sample
3491 * shadowing effects. One drawback is that it can be
3492 * only programmed on counter 1, but that seems like an
3493 * acceptable trade off.
3495 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3497 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3498 event->hw.config = alt_config;
3502 static void intel_pebs_aliases_ivb(struct perf_event *event)
3504 if (event->attr.precise_ip < 3)
3505 return intel_pebs_aliases_snb(event);
3506 return intel_pebs_aliases_precdist(event);
3509 static void intel_pebs_aliases_skl(struct perf_event *event)
3511 if (event->attr.precise_ip < 3)
3512 return intel_pebs_aliases_core2(event);
3513 return intel_pebs_aliases_precdist(event);
3516 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3518 unsigned long flags = x86_pmu.large_pebs_flags;
3520 if (event->attr.use_clockid)
3521 flags &= ~PERF_SAMPLE_TIME;
3522 if (!event->attr.exclude_kernel)
3523 flags &= ~PERF_SAMPLE_REGS_USER;
3524 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3525 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3526 return flags;
3529 static int intel_pmu_bts_config(struct perf_event *event)
3531 struct perf_event_attr *attr = &event->attr;
3533 if (unlikely(intel_pmu_has_bts(event))) {
3534 /* BTS is not supported by this architecture. */
3535 if (!x86_pmu.bts_active)
3536 return -EOPNOTSUPP;
3538 /* BTS is currently only allowed for user-mode. */
3539 if (!attr->exclude_kernel)
3540 return -EOPNOTSUPP;
3542 /* BTS is not allowed for precise events. */
3543 if (attr->precise_ip)
3544 return -EOPNOTSUPP;
3546 /* disallow bts if conflicting events are present */
3547 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3548 return -EBUSY;
3550 event->destroy = hw_perf_lbr_event_destroy;
3553 return 0;
3556 static int core_pmu_hw_config(struct perf_event *event)
3558 int ret = x86_pmu_hw_config(event);
3560 if (ret)
3561 return ret;
3563 return intel_pmu_bts_config(event);
3566 static int intel_pmu_hw_config(struct perf_event *event)
3568 int ret = x86_pmu_hw_config(event);
3570 if (ret)
3571 return ret;
3573 ret = intel_pmu_bts_config(event);
3574 if (ret)
3575 return ret;
3577 if (event->attr.precise_ip) {
3578 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3579 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3580 if (!(event->attr.sample_type &
3581 ~intel_pmu_large_pebs_flags(event)))
3582 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3584 if (x86_pmu.pebs_aliases)
3585 x86_pmu.pebs_aliases(event);
3587 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3588 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3591 if (needs_branch_stack(event)) {
3592 ret = intel_pmu_setup_lbr_filter(event);
3593 if (ret)
3594 return ret;
3597 * BTS is set up earlier in this path, so don't account twice
3599 if (!unlikely(intel_pmu_has_bts(event))) {
3600 /* disallow lbr if conflicting events are present */
3601 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3602 return -EBUSY;
3604 event->destroy = hw_perf_lbr_event_destroy;
3608 if (event->attr.aux_output) {
3609 if (!event->attr.precise_ip)
3610 return -EINVAL;
3612 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3615 if (event->attr.type != PERF_TYPE_RAW)
3616 return 0;
3619 * Config Topdown slots and metric events
3621 * The slots event on Fixed Counter 3 can support sampling,
3622 * which will be handled normally in x86_perf_event_update().
3624 * Metric events don't support sampling and require being paired
3625 * with a slots event as group leader. When the slots event
3626 * is used in a metrics group, it too cannot support sampling.
3628 if (x86_pmu.intel_cap.perf_metrics && is_topdown_event(event)) {
3629 if (event->attr.config1 || event->attr.config2)
3630 return -EINVAL;
3633 * The TopDown metrics events and slots event don't
3634 * support any filters.
3636 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3637 return -EINVAL;
3639 if (is_metric_event(event)) {
3640 struct perf_event *leader = event->group_leader;
3642 /* The metric events don't support sampling. */
3643 if (is_sampling_event(event))
3644 return -EINVAL;
3646 /* The metric events require a slots group leader. */
3647 if (!is_slots_event(leader))
3648 return -EINVAL;
3651 * The leader/SLOTS must not be a sampling event for
3652 * metric use; hardware requires it starts at 0 when used
3653 * in conjunction with MSR_PERF_METRICS.
3655 if (is_sampling_event(leader))
3656 return -EINVAL;
3658 event->event_caps |= PERF_EV_CAP_SIBLING;
3660 * Only once we have a METRICs sibling do we
3661 * need TopDown magic.
3663 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3664 event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3668 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3669 return 0;
3671 if (x86_pmu.version < 3)
3672 return -EINVAL;
3674 ret = perf_allow_cpu(&event->attr);
3675 if (ret)
3676 return ret;
3678 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3680 return 0;
3683 #ifdef CONFIG_RETPOLINE
3684 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
3685 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
3686 #endif
3688 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3690 #ifdef CONFIG_RETPOLINE
3691 if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
3692 return intel_guest_get_msrs(nr);
3693 else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
3694 return core_guest_get_msrs(nr);
3695 #endif
3696 if (x86_pmu.guest_get_msrs)
3697 return x86_pmu.guest_get_msrs(nr);
3698 *nr = 0;
3699 return NULL;
3701 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3703 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3705 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3706 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3708 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3709 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3710 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3711 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3712 arr[0].guest &= ~cpuc->pebs_enabled;
3713 else
3714 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3715 *nr = 1;
3717 if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3719 * If PMU counter has PEBS enabled it is not enough to
3720 * disable counter on a guest entry since PEBS memory
3721 * write can overshoot guest entry and corrupt guest
3722 * memory. Disabling PEBS solves the problem.
3724 * Don't do this if the CPU already enforces it.
3726 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3727 arr[1].host = cpuc->pebs_enabled;
3728 arr[1].guest = 0;
3729 *nr = 2;
3732 return arr;
3735 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3737 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3738 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3739 int idx;
3741 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3742 struct perf_event *event = cpuc->events[idx];
3744 arr[idx].msr = x86_pmu_config_addr(idx);
3745 arr[idx].host = arr[idx].guest = 0;
3747 if (!test_bit(idx, cpuc->active_mask))
3748 continue;
3750 arr[idx].host = arr[idx].guest =
3751 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3753 if (event->attr.exclude_host)
3754 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3755 else if (event->attr.exclude_guest)
3756 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3759 *nr = x86_pmu.num_counters;
3760 return arr;
3763 static void core_pmu_enable_event(struct perf_event *event)
3765 if (!event->attr.exclude_host)
3766 x86_pmu_enable_event(event);
3769 static void core_pmu_enable_all(int added)
3771 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3772 int idx;
3774 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3775 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3777 if (!test_bit(idx, cpuc->active_mask) ||
3778 cpuc->events[idx]->attr.exclude_host)
3779 continue;
3781 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3785 static int hsw_hw_config(struct perf_event *event)
3787 int ret = intel_pmu_hw_config(event);
3789 if (ret)
3790 return ret;
3791 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3792 return 0;
3793 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3796 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3797 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3798 * this combination.
3800 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3801 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3802 event->attr.precise_ip > 0))
3803 return -EOPNOTSUPP;
3805 if (event_is_checkpointed(event)) {
3807 * Sampling of checkpointed events can cause situations where
3808 * the CPU constantly aborts because of a overflow, which is
3809 * then checkpointed back and ignored. Forbid checkpointing
3810 * for sampling.
3812 * But still allow a long sampling period, so that perf stat
3813 * from KVM works.
3815 if (event->attr.sample_period > 0 &&
3816 event->attr.sample_period < 0x7fffffff)
3817 return -EOPNOTSUPP;
3819 return 0;
3822 static struct event_constraint counter0_constraint =
3823 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3825 static struct event_constraint counter2_constraint =
3826 EVENT_CONSTRAINT(0, 0x4, 0);
3828 static struct event_constraint fixed0_constraint =
3829 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3831 static struct event_constraint fixed0_counter0_constraint =
3832 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3834 static struct event_constraint *
3835 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3836 struct perf_event *event)
3838 struct event_constraint *c;
3840 c = intel_get_event_constraints(cpuc, idx, event);
3842 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3843 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3844 if (c->idxmsk64 & (1U << 2))
3845 return &counter2_constraint;
3846 return &emptyconstraint;
3849 return c;
3852 static struct event_constraint *
3853 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3854 struct perf_event *event)
3857 * Fixed counter 0 has less skid.
3858 * Force instruction:ppp in Fixed counter 0
3860 if ((event->attr.precise_ip == 3) &&
3861 constraint_match(&fixed0_constraint, event->hw.config))
3862 return &fixed0_constraint;
3864 return hsw_get_event_constraints(cpuc, idx, event);
3867 static struct event_constraint *
3868 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3869 struct perf_event *event)
3871 struct event_constraint *c;
3873 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3874 if (event->attr.precise_ip == 3)
3875 return &counter0_constraint;
3877 c = intel_get_event_constraints(cpuc, idx, event);
3879 return c;
3882 static struct event_constraint *
3883 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3884 struct perf_event *event)
3886 struct event_constraint *c;
3889 * :ppp means to do reduced skid PEBS,
3890 * which is available on PMC0 and fixed counter 0.
3892 if (event->attr.precise_ip == 3) {
3893 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3894 if (constraint_match(&fixed0_constraint, event->hw.config))
3895 return &fixed0_counter0_constraint;
3897 return &counter0_constraint;
3900 c = intel_get_event_constraints(cpuc, idx, event);
3902 return c;
3905 static bool allow_tsx_force_abort = true;
3907 static struct event_constraint *
3908 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3909 struct perf_event *event)
3911 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3914 * Without TFA we must not use PMC3.
3916 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3917 c = dyn_constraint(cpuc, c, idx);
3918 c->idxmsk64 &= ~(1ULL << 3);
3919 c->weight--;
3922 return c;
3926 * Broadwell:
3928 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3929 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3930 * the two to enforce a minimum period of 128 (the smallest value that has bits
3931 * 0-5 cleared and >= 100).
3933 * Because of how the code in x86_perf_event_set_period() works, the truncation
3934 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3935 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3937 * Therefore the effective (average) period matches the requested period,
3938 * despite coarser hardware granularity.
3940 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3942 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3943 X86_CONFIG(.event=0xc0, .umask=0x01)) {
3944 if (left < 128)
3945 left = 128;
3946 left &= ~0x3fULL;
3948 return left;
3951 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3953 return max(left, 32ULL);
3956 PMU_FORMAT_ATTR(event, "config:0-7" );
3957 PMU_FORMAT_ATTR(umask, "config:8-15" );
3958 PMU_FORMAT_ATTR(edge, "config:18" );
3959 PMU_FORMAT_ATTR(pc, "config:19" );
3960 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
3961 PMU_FORMAT_ATTR(inv, "config:23" );
3962 PMU_FORMAT_ATTR(cmask, "config:24-31" );
3963 PMU_FORMAT_ATTR(in_tx, "config:32");
3964 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3966 static struct attribute *intel_arch_formats_attr[] = {
3967 &format_attr_event.attr,
3968 &format_attr_umask.attr,
3969 &format_attr_edge.attr,
3970 &format_attr_pc.attr,
3971 &format_attr_inv.attr,
3972 &format_attr_cmask.attr,
3973 NULL,
3976 ssize_t intel_event_sysfs_show(char *page, u64 config)
3978 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3980 return x86_event_sysfs_show(page, config, event);
3983 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3985 struct intel_shared_regs *regs;
3986 int i;
3988 regs = kzalloc_node(sizeof(struct intel_shared_regs),
3989 GFP_KERNEL, cpu_to_node(cpu));
3990 if (regs) {
3992 * initialize the locks to keep lockdep happy
3994 for (i = 0; i < EXTRA_REG_MAX; i++)
3995 raw_spin_lock_init(&regs->regs[i].lock);
3997 regs->core_id = -1;
3999 return regs;
4002 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4004 struct intel_excl_cntrs *c;
4006 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4007 GFP_KERNEL, cpu_to_node(cpu));
4008 if (c) {
4009 raw_spin_lock_init(&c->lock);
4010 c->core_id = -1;
4012 return c;
4016 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4018 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4020 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4021 cpuc->shared_regs = allocate_shared_regs(cpu);
4022 if (!cpuc->shared_regs)
4023 goto err;
4026 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4027 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4029 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4030 if (!cpuc->constraint_list)
4031 goto err_shared_regs;
4034 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4035 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4036 if (!cpuc->excl_cntrs)
4037 goto err_constraint_list;
4039 cpuc->excl_thread_id = 0;
4042 return 0;
4044 err_constraint_list:
4045 kfree(cpuc->constraint_list);
4046 cpuc->constraint_list = NULL;
4048 err_shared_regs:
4049 kfree(cpuc->shared_regs);
4050 cpuc->shared_regs = NULL;
4052 err:
4053 return -ENOMEM;
4056 static int intel_pmu_cpu_prepare(int cpu)
4058 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4061 static void flip_smm_bit(void *data)
4063 unsigned long set = *(unsigned long *)data;
4065 if (set > 0) {
4066 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4067 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4068 } else {
4069 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4070 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4074 static void intel_pmu_cpu_starting(int cpu)
4076 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4077 int core_id = topology_core_id(cpu);
4078 int i;
4080 init_debug_store_on_cpu(cpu);
4082 * Deal with CPUs that don't clear their LBRs on power-up.
4084 intel_pmu_lbr_reset();
4086 cpuc->lbr_sel = NULL;
4088 if (x86_pmu.flags & PMU_FL_TFA) {
4089 WARN_ON_ONCE(cpuc->tfa_shadow);
4090 cpuc->tfa_shadow = ~0ULL;
4091 intel_set_tfa(cpuc, false);
4094 if (x86_pmu.version > 1)
4095 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4097 if (x86_pmu.counter_freezing)
4098 enable_counter_freeze();
4100 /* Disable perf metrics if any added CPU doesn't support it. */
4101 if (x86_pmu.intel_cap.perf_metrics) {
4102 union perf_capabilities perf_cap;
4104 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4105 if (!perf_cap.perf_metrics) {
4106 x86_pmu.intel_cap.perf_metrics = 0;
4107 x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4111 if (!cpuc->shared_regs)
4112 return;
4114 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4115 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4116 struct intel_shared_regs *pc;
4118 pc = per_cpu(cpu_hw_events, i).shared_regs;
4119 if (pc && pc->core_id == core_id) {
4120 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4121 cpuc->shared_regs = pc;
4122 break;
4125 cpuc->shared_regs->core_id = core_id;
4126 cpuc->shared_regs->refcnt++;
4129 if (x86_pmu.lbr_sel_map)
4130 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4132 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4133 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4134 struct cpu_hw_events *sibling;
4135 struct intel_excl_cntrs *c;
4137 sibling = &per_cpu(cpu_hw_events, i);
4138 c = sibling->excl_cntrs;
4139 if (c && c->core_id == core_id) {
4140 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4141 cpuc->excl_cntrs = c;
4142 if (!sibling->excl_thread_id)
4143 cpuc->excl_thread_id = 1;
4144 break;
4147 cpuc->excl_cntrs->core_id = core_id;
4148 cpuc->excl_cntrs->refcnt++;
4152 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4154 struct intel_excl_cntrs *c;
4156 c = cpuc->excl_cntrs;
4157 if (c) {
4158 if (c->core_id == -1 || --c->refcnt == 0)
4159 kfree(c);
4160 cpuc->excl_cntrs = NULL;
4163 kfree(cpuc->constraint_list);
4164 cpuc->constraint_list = NULL;
4167 static void intel_pmu_cpu_dying(int cpu)
4169 fini_debug_store_on_cpu(cpu);
4171 if (x86_pmu.counter_freezing)
4172 disable_counter_freeze();
4175 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4177 struct intel_shared_regs *pc;
4179 pc = cpuc->shared_regs;
4180 if (pc) {
4181 if (pc->core_id == -1 || --pc->refcnt == 0)
4182 kfree(pc);
4183 cpuc->shared_regs = NULL;
4186 free_excl_cntrs(cpuc);
4189 static void intel_pmu_cpu_dead(int cpu)
4191 intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
4194 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4195 bool sched_in)
4197 intel_pmu_pebs_sched_task(ctx, sched_in);
4198 intel_pmu_lbr_sched_task(ctx, sched_in);
4201 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4202 struct perf_event_context *next)
4204 intel_pmu_lbr_swap_task_ctx(prev, next);
4207 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4209 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4212 static int intel_pmu_aux_output_match(struct perf_event *event)
4214 if (!x86_pmu.intel_cap.pebs_output_pt_available)
4215 return 0;
4217 return is_intel_pt_event(event);
4220 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4222 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4224 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4226 static struct attribute *intel_arch3_formats_attr[] = {
4227 &format_attr_event.attr,
4228 &format_attr_umask.attr,
4229 &format_attr_edge.attr,
4230 &format_attr_pc.attr,
4231 &format_attr_any.attr,
4232 &format_attr_inv.attr,
4233 &format_attr_cmask.attr,
4234 NULL,
4237 static struct attribute *hsw_format_attr[] = {
4238 &format_attr_in_tx.attr,
4239 &format_attr_in_tx_cp.attr,
4240 &format_attr_offcore_rsp.attr,
4241 &format_attr_ldlat.attr,
4242 NULL
4245 static struct attribute *nhm_format_attr[] = {
4246 &format_attr_offcore_rsp.attr,
4247 &format_attr_ldlat.attr,
4248 NULL
4251 static struct attribute *slm_format_attr[] = {
4252 &format_attr_offcore_rsp.attr,
4253 NULL
4256 static struct attribute *skl_format_attr[] = {
4257 &format_attr_frontend.attr,
4258 NULL,
4261 static __initconst const struct x86_pmu core_pmu = {
4262 .name = "core",
4263 .handle_irq = x86_pmu_handle_irq,
4264 .disable_all = x86_pmu_disable_all,
4265 .enable_all = core_pmu_enable_all,
4266 .enable = core_pmu_enable_event,
4267 .disable = x86_pmu_disable_event,
4268 .hw_config = core_pmu_hw_config,
4269 .schedule_events = x86_schedule_events,
4270 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
4271 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
4272 .event_map = intel_pmu_event_map,
4273 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
4274 .apic = 1,
4275 .large_pebs_flags = LARGE_PEBS_FLAGS,
4278 * Intel PMCs cannot be accessed sanely above 32-bit width,
4279 * so we install an artificial 1<<31 period regardless of
4280 * the generic event period:
4282 .max_period = (1ULL<<31) - 1,
4283 .get_event_constraints = intel_get_event_constraints,
4284 .put_event_constraints = intel_put_event_constraints,
4285 .event_constraints = intel_core_event_constraints,
4286 .guest_get_msrs = core_guest_get_msrs,
4287 .format_attrs = intel_arch_formats_attr,
4288 .events_sysfs_show = intel_event_sysfs_show,
4291 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4292 * together with PMU version 1 and thus be using core_pmu with
4293 * shared_regs. We need following callbacks here to allocate
4294 * it properly.
4296 .cpu_prepare = intel_pmu_cpu_prepare,
4297 .cpu_starting = intel_pmu_cpu_starting,
4298 .cpu_dying = intel_pmu_cpu_dying,
4299 .cpu_dead = intel_pmu_cpu_dead,
4301 .check_period = intel_pmu_check_period,
4303 .lbr_reset = intel_pmu_lbr_reset_64,
4304 .lbr_read = intel_pmu_lbr_read_64,
4305 .lbr_save = intel_pmu_lbr_save,
4306 .lbr_restore = intel_pmu_lbr_restore,
4309 static __initconst const struct x86_pmu intel_pmu = {
4310 .name = "Intel",
4311 .handle_irq = intel_pmu_handle_irq,
4312 .disable_all = intel_pmu_disable_all,
4313 .enable_all = intel_pmu_enable_all,
4314 .enable = intel_pmu_enable_event,
4315 .disable = intel_pmu_disable_event,
4316 .add = intel_pmu_add_event,
4317 .del = intel_pmu_del_event,
4318 .read = intel_pmu_read_event,
4319 .hw_config = intel_pmu_hw_config,
4320 .schedule_events = x86_schedule_events,
4321 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
4322 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
4323 .event_map = intel_pmu_event_map,
4324 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
4325 .apic = 1,
4326 .large_pebs_flags = LARGE_PEBS_FLAGS,
4328 * Intel PMCs cannot be accessed sanely above 32 bit width,
4329 * so we install an artificial 1<<31 period regardless of
4330 * the generic event period:
4332 .max_period = (1ULL << 31) - 1,
4333 .get_event_constraints = intel_get_event_constraints,
4334 .put_event_constraints = intel_put_event_constraints,
4335 .pebs_aliases = intel_pebs_aliases_core2,
4337 .format_attrs = intel_arch3_formats_attr,
4338 .events_sysfs_show = intel_event_sysfs_show,
4340 .cpu_prepare = intel_pmu_cpu_prepare,
4341 .cpu_starting = intel_pmu_cpu_starting,
4342 .cpu_dying = intel_pmu_cpu_dying,
4343 .cpu_dead = intel_pmu_cpu_dead,
4345 .guest_get_msrs = intel_guest_get_msrs,
4346 .sched_task = intel_pmu_sched_task,
4347 .swap_task_ctx = intel_pmu_swap_task_ctx,
4349 .check_period = intel_pmu_check_period,
4351 .aux_output_match = intel_pmu_aux_output_match,
4353 .lbr_reset = intel_pmu_lbr_reset_64,
4354 .lbr_read = intel_pmu_lbr_read_64,
4355 .lbr_save = intel_pmu_lbr_save,
4356 .lbr_restore = intel_pmu_lbr_restore,
4359 static __init void intel_clovertown_quirk(void)
4362 * PEBS is unreliable due to:
4364 * AJ67 - PEBS may experience CPL leaks
4365 * AJ68 - PEBS PMI may be delayed by one event
4366 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4367 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4369 * AJ67 could be worked around by restricting the OS/USR flags.
4370 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4372 * AJ106 could possibly be worked around by not allowing LBR
4373 * usage from PEBS, including the fixup.
4374 * AJ68 could possibly be worked around by always programming
4375 * a pebs_event_reset[0] value and coping with the lost events.
4377 * But taken together it might just make sense to not enable PEBS on
4378 * these chips.
4380 pr_warn("PEBS disabled due to CPU errata\n");
4381 x86_pmu.pebs = 0;
4382 x86_pmu.pebs_constraints = NULL;
4385 static const struct x86_cpu_desc isolation_ucodes[] = {
4386 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f),
4387 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e),
4388 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015),
4389 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037),
4390 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a),
4391 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023),
4392 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014),
4393 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010),
4394 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
4395 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
4396 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
4397 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 2, 0x0b000014),
4398 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
4399 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
4400 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c),
4401 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c),
4402 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e),
4403 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e),
4404 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e),
4405 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e),
4406 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e),
4407 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e),
4408 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e),
4409 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e),
4410 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e),
4414 static void intel_check_pebs_isolation(void)
4416 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4419 static __init void intel_pebs_isolation_quirk(void)
4421 WARN_ON_ONCE(x86_pmu.check_microcode);
4422 x86_pmu.check_microcode = intel_check_pebs_isolation;
4423 intel_check_pebs_isolation();
4426 static const struct x86_cpu_desc pebs_ucodes[] = {
4427 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028),
4428 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618),
4429 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c),
4433 static bool intel_snb_pebs_broken(void)
4435 return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4438 static void intel_snb_check_microcode(void)
4440 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4441 return;
4444 * Serialized by the microcode lock..
4446 if (x86_pmu.pebs_broken) {
4447 pr_info("PEBS enabled due to microcode update\n");
4448 x86_pmu.pebs_broken = 0;
4449 } else {
4450 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4451 x86_pmu.pebs_broken = 1;
4455 static bool is_lbr_from(unsigned long msr)
4457 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4459 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4463 * Under certain circumstances, access certain MSR may cause #GP.
4464 * The function tests if the input MSR can be safely accessed.
4466 static bool check_msr(unsigned long msr, u64 mask)
4468 u64 val_old, val_new, val_tmp;
4471 * Disable the check for real HW, so we don't
4472 * mess with potentionaly enabled registers:
4474 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4475 return true;
4478 * Read the current value, change it and read it back to see if it
4479 * matches, this is needed to detect certain hardware emulators
4480 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4482 if (rdmsrl_safe(msr, &val_old))
4483 return false;
4486 * Only change the bits which can be updated by wrmsrl.
4488 val_tmp = val_old ^ mask;
4490 if (is_lbr_from(msr))
4491 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4493 if (wrmsrl_safe(msr, val_tmp) ||
4494 rdmsrl_safe(msr, &val_new))
4495 return false;
4498 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4499 * should equal rdmsrl()'s even with the quirk.
4501 if (val_new != val_tmp)
4502 return false;
4504 if (is_lbr_from(msr))
4505 val_old = lbr_from_signext_quirk_wr(val_old);
4507 /* Here it's sure that the MSR can be safely accessed.
4508 * Restore the old value and return.
4510 wrmsrl(msr, val_old);
4512 return true;
4515 static __init void intel_sandybridge_quirk(void)
4517 x86_pmu.check_microcode = intel_snb_check_microcode;
4518 cpus_read_lock();
4519 intel_snb_check_microcode();
4520 cpus_read_unlock();
4523 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4524 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4525 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4526 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4527 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4528 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4529 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4530 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4533 static __init void intel_arch_events_quirk(void)
4535 int bit;
4537 /* disable event that reported as not presend by cpuid */
4538 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4539 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4540 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4541 intel_arch_events_map[bit].name);
4545 static __init void intel_nehalem_quirk(void)
4547 union cpuid10_ebx ebx;
4549 ebx.full = x86_pmu.events_maskl;
4550 if (ebx.split.no_branch_misses_retired) {
4552 * Erratum AAJ80 detected, we work it around by using
4553 * the BR_MISP_EXEC.ANY event. This will over-count
4554 * branch-misses, but it's still much better than the
4555 * architectural event which is often completely bogus:
4557 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4558 ebx.split.no_branch_misses_retired = 0;
4559 x86_pmu.events_maskl = ebx.full;
4560 pr_info("CPU erratum AAJ80 worked around\n");
4564 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4565 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 2, 0x0000000e),
4566 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 9, 0x0000002e),
4567 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 10, 0x00000008),
4568 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D, 1, 0x00000028),
4569 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 1, 0x00000028),
4570 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 8, 0x00000006),
4574 static bool intel_counter_freezing_broken(void)
4576 return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4579 static __init void intel_counter_freezing_quirk(void)
4581 /* Check if it's already disabled */
4582 if (disable_counter_freezing)
4583 return;
4586 * If the system starts with the wrong ucode, leave the
4587 * counter-freezing feature permanently disabled.
4589 if (intel_counter_freezing_broken()) {
4590 pr_info("PMU counter freezing disabled due to CPU errata,"
4591 "please upgrade microcode\n");
4592 x86_pmu.counter_freezing = false;
4593 x86_pmu.handle_irq = intel_pmu_handle_irq;
4598 * enable software workaround for errata:
4599 * SNB: BJ122
4600 * IVB: BV98
4601 * HSW: HSD29
4603 * Only needed when HT is enabled. However detecting
4604 * if HT is enabled is difficult (model specific). So instead,
4605 * we enable the workaround in the early boot, and verify if
4606 * it is needed in a later initcall phase once we have valid
4607 * topology information to check if HT is actually enabled
4609 static __init void intel_ht_bug(void)
4611 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4613 x86_pmu.start_scheduling = intel_start_scheduling;
4614 x86_pmu.commit_scheduling = intel_commit_scheduling;
4615 x86_pmu.stop_scheduling = intel_stop_scheduling;
4618 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
4619 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
4621 /* Haswell special events */
4622 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
4623 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
4624 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
4625 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
4626 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
4627 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
4628 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
4629 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
4630 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
4631 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
4632 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
4633 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4635 static struct attribute *hsw_events_attrs[] = {
4636 EVENT_PTR(td_slots_issued),
4637 EVENT_PTR(td_slots_retired),
4638 EVENT_PTR(td_fetch_bubbles),
4639 EVENT_PTR(td_total_slots),
4640 EVENT_PTR(td_total_slots_scale),
4641 EVENT_PTR(td_recovery_bubbles),
4642 EVENT_PTR(td_recovery_bubbles_scale),
4643 NULL
4646 static struct attribute *hsw_mem_events_attrs[] = {
4647 EVENT_PTR(mem_ld_hsw),
4648 EVENT_PTR(mem_st_hsw),
4649 NULL,
4652 static struct attribute *hsw_tsx_events_attrs[] = {
4653 EVENT_PTR(tx_start),
4654 EVENT_PTR(tx_commit),
4655 EVENT_PTR(tx_abort),
4656 EVENT_PTR(tx_capacity),
4657 EVENT_PTR(tx_conflict),
4658 EVENT_PTR(el_start),
4659 EVENT_PTR(el_commit),
4660 EVENT_PTR(el_abort),
4661 EVENT_PTR(el_capacity),
4662 EVENT_PTR(el_conflict),
4663 EVENT_PTR(cycles_t),
4664 EVENT_PTR(cycles_ct),
4665 NULL
4668 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
4669 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4670 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
4671 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4673 static struct attribute *icl_events_attrs[] = {
4674 EVENT_PTR(mem_ld_hsw),
4675 EVENT_PTR(mem_st_hsw),
4676 NULL,
4679 static struct attribute *icl_td_events_attrs[] = {
4680 EVENT_PTR(slots),
4681 EVENT_PTR(td_retiring),
4682 EVENT_PTR(td_bad_spec),
4683 EVENT_PTR(td_fe_bound),
4684 EVENT_PTR(td_be_bound),
4685 NULL,
4688 static struct attribute *icl_tsx_events_attrs[] = {
4689 EVENT_PTR(tx_start),
4690 EVENT_PTR(tx_abort),
4691 EVENT_PTR(tx_commit),
4692 EVENT_PTR(tx_capacity_read),
4693 EVENT_PTR(tx_capacity_write),
4694 EVENT_PTR(tx_conflict),
4695 EVENT_PTR(el_start),
4696 EVENT_PTR(el_abort),
4697 EVENT_PTR(el_commit),
4698 EVENT_PTR(el_capacity_read),
4699 EVENT_PTR(el_capacity_write),
4700 EVENT_PTR(el_conflict),
4701 EVENT_PTR(cycles_t),
4702 EVENT_PTR(cycles_ct),
4703 NULL,
4706 static ssize_t freeze_on_smi_show(struct device *cdev,
4707 struct device_attribute *attr,
4708 char *buf)
4710 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4713 static DEFINE_MUTEX(freeze_on_smi_mutex);
4715 static ssize_t freeze_on_smi_store(struct device *cdev,
4716 struct device_attribute *attr,
4717 const char *buf, size_t count)
4719 unsigned long val;
4720 ssize_t ret;
4722 ret = kstrtoul(buf, 0, &val);
4723 if (ret)
4724 return ret;
4726 if (val > 1)
4727 return -EINVAL;
4729 mutex_lock(&freeze_on_smi_mutex);
4731 if (x86_pmu.attr_freeze_on_smi == val)
4732 goto done;
4734 x86_pmu.attr_freeze_on_smi = val;
4736 get_online_cpus();
4737 on_each_cpu(flip_smm_bit, &val, 1);
4738 put_online_cpus();
4739 done:
4740 mutex_unlock(&freeze_on_smi_mutex);
4742 return count;
4745 static void update_tfa_sched(void *ignored)
4747 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4750 * check if PMC3 is used
4751 * and if so force schedule out for all event types all contexts
4753 if (test_bit(3, cpuc->active_mask))
4754 perf_pmu_resched(x86_get_pmu());
4757 static ssize_t show_sysctl_tfa(struct device *cdev,
4758 struct device_attribute *attr,
4759 char *buf)
4761 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4764 static ssize_t set_sysctl_tfa(struct device *cdev,
4765 struct device_attribute *attr,
4766 const char *buf, size_t count)
4768 bool val;
4769 ssize_t ret;
4771 ret = kstrtobool(buf, &val);
4772 if (ret)
4773 return ret;
4775 /* no change */
4776 if (val == allow_tsx_force_abort)
4777 return count;
4779 allow_tsx_force_abort = val;
4781 get_online_cpus();
4782 on_each_cpu(update_tfa_sched, NULL, 1);
4783 put_online_cpus();
4785 return count;
4789 static DEVICE_ATTR_RW(freeze_on_smi);
4791 static ssize_t branches_show(struct device *cdev,
4792 struct device_attribute *attr,
4793 char *buf)
4795 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4798 static DEVICE_ATTR_RO(branches);
4800 static struct attribute *lbr_attrs[] = {
4801 &dev_attr_branches.attr,
4802 NULL
4805 static char pmu_name_str[30];
4807 static ssize_t pmu_name_show(struct device *cdev,
4808 struct device_attribute *attr,
4809 char *buf)
4811 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4814 static DEVICE_ATTR_RO(pmu_name);
4816 static struct attribute *intel_pmu_caps_attrs[] = {
4817 &dev_attr_pmu_name.attr,
4818 NULL
4821 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4822 show_sysctl_tfa,
4823 set_sysctl_tfa);
4825 static struct attribute *intel_pmu_attrs[] = {
4826 &dev_attr_freeze_on_smi.attr,
4827 &dev_attr_allow_tsx_force_abort.attr,
4828 NULL,
4831 static umode_t
4832 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4834 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4837 static umode_t
4838 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4840 return x86_pmu.pebs ? attr->mode : 0;
4843 static umode_t
4844 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4846 return x86_pmu.lbr_nr ? attr->mode : 0;
4849 static umode_t
4850 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4852 return x86_pmu.version >= 2 ? attr->mode : 0;
4855 static umode_t
4856 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4858 if (attr == &dev_attr_allow_tsx_force_abort.attr)
4859 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4861 return attr->mode;
4864 static struct attribute_group group_events_td = {
4865 .name = "events",
4868 static struct attribute_group group_events_mem = {
4869 .name = "events",
4870 .is_visible = pebs_is_visible,
4873 static struct attribute_group group_events_tsx = {
4874 .name = "events",
4875 .is_visible = tsx_is_visible,
4878 static struct attribute_group group_caps_gen = {
4879 .name = "caps",
4880 .attrs = intel_pmu_caps_attrs,
4883 static struct attribute_group group_caps_lbr = {
4884 .name = "caps",
4885 .attrs = lbr_attrs,
4886 .is_visible = lbr_is_visible,
4889 static struct attribute_group group_format_extra = {
4890 .name = "format",
4891 .is_visible = exra_is_visible,
4894 static struct attribute_group group_format_extra_skl = {
4895 .name = "format",
4896 .is_visible = exra_is_visible,
4899 static struct attribute_group group_default = {
4900 .attrs = intel_pmu_attrs,
4901 .is_visible = default_is_visible,
4904 static const struct attribute_group *attr_update[] = {
4905 &group_events_td,
4906 &group_events_mem,
4907 &group_events_tsx,
4908 &group_caps_gen,
4909 &group_caps_lbr,
4910 &group_format_extra,
4911 &group_format_extra_skl,
4912 &group_default,
4913 NULL,
4916 static struct attribute *empty_attrs;
4918 __init int intel_pmu_init(void)
4920 struct attribute **extra_skl_attr = &empty_attrs;
4921 struct attribute **extra_attr = &empty_attrs;
4922 struct attribute **td_attr = &empty_attrs;
4923 struct attribute **mem_attr = &empty_attrs;
4924 struct attribute **tsx_attr = &empty_attrs;
4925 union cpuid10_edx edx;
4926 union cpuid10_eax eax;
4927 union cpuid10_ebx ebx;
4928 struct event_constraint *c;
4929 unsigned int unused;
4930 struct extra_reg *er;
4931 bool pmem = false;
4932 int version, i;
4933 char *name;
4935 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4936 switch (boot_cpu_data.x86) {
4937 case 0x6:
4938 return p6_pmu_init();
4939 case 0xb:
4940 return knc_pmu_init();
4941 case 0xf:
4942 return p4_pmu_init();
4944 return -ENODEV;
4948 * Check whether the Architectural PerfMon supports
4949 * Branch Misses Retired hw_event or not.
4951 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4952 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4953 return -ENODEV;
4955 version = eax.split.version_id;
4956 if (version < 2)
4957 x86_pmu = core_pmu;
4958 else
4959 x86_pmu = intel_pmu;
4961 x86_pmu.version = version;
4962 x86_pmu.num_counters = eax.split.num_counters;
4963 x86_pmu.cntval_bits = eax.split.bit_width;
4964 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
4966 x86_pmu.events_maskl = ebx.full;
4967 x86_pmu.events_mask_len = eax.split.mask_length;
4969 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4972 * Quirk: v2 perfmon does not report fixed-purpose events, so
4973 * assume at least 3 events, when not running in a hypervisor:
4975 if (version > 1) {
4976 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4978 x86_pmu.num_counters_fixed =
4979 max((int)edx.split.num_counters_fixed, assume);
4982 if (version >= 4)
4983 x86_pmu.counter_freezing = !disable_counter_freezing;
4985 if (boot_cpu_has(X86_FEATURE_PDCM)) {
4986 u64 capabilities;
4988 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4989 x86_pmu.intel_cap.capabilities = capabilities;
4992 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
4993 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
4994 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
4997 if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
4998 intel_pmu_arch_lbr_init();
5000 intel_ds_init();
5002 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5004 if (version >= 5) {
5005 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5006 if (x86_pmu.intel_cap.anythread_deprecated)
5007 pr_cont(" AnyThread deprecated, ");
5011 * Install the hw-cache-events table:
5013 switch (boot_cpu_data.x86_model) {
5014 case INTEL_FAM6_CORE_YONAH:
5015 pr_cont("Core events, ");
5016 name = "core";
5017 break;
5019 case INTEL_FAM6_CORE2_MEROM:
5020 x86_add_quirk(intel_clovertown_quirk);
5021 fallthrough;
5023 case INTEL_FAM6_CORE2_MEROM_L:
5024 case INTEL_FAM6_CORE2_PENRYN:
5025 case INTEL_FAM6_CORE2_DUNNINGTON:
5026 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5027 sizeof(hw_cache_event_ids));
5029 intel_pmu_lbr_init_core();
5031 x86_pmu.event_constraints = intel_core2_event_constraints;
5032 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5033 pr_cont("Core2 events, ");
5034 name = "core2";
5035 break;
5037 case INTEL_FAM6_NEHALEM:
5038 case INTEL_FAM6_NEHALEM_EP:
5039 case INTEL_FAM6_NEHALEM_EX:
5040 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5041 sizeof(hw_cache_event_ids));
5042 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5043 sizeof(hw_cache_extra_regs));
5045 intel_pmu_lbr_init_nhm();
5047 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5048 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5049 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5050 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5051 x86_pmu.limit_period = nhm_limit_period;
5053 mem_attr = nhm_mem_events_attrs;
5055 /* UOPS_ISSUED.STALLED_CYCLES */
5056 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5057 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5058 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5059 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5060 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5062 intel_pmu_pebs_data_source_nhm();
5063 x86_add_quirk(intel_nehalem_quirk);
5064 x86_pmu.pebs_no_tlb = 1;
5065 extra_attr = nhm_format_attr;
5067 pr_cont("Nehalem events, ");
5068 name = "nehalem";
5069 break;
5071 case INTEL_FAM6_ATOM_BONNELL:
5072 case INTEL_FAM6_ATOM_BONNELL_MID:
5073 case INTEL_FAM6_ATOM_SALTWELL:
5074 case INTEL_FAM6_ATOM_SALTWELL_MID:
5075 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5076 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5077 sizeof(hw_cache_event_ids));
5079 intel_pmu_lbr_init_atom();
5081 x86_pmu.event_constraints = intel_gen_event_constraints;
5082 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5083 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5084 pr_cont("Atom events, ");
5085 name = "bonnell";
5086 break;
5088 case INTEL_FAM6_ATOM_SILVERMONT:
5089 case INTEL_FAM6_ATOM_SILVERMONT_D:
5090 case INTEL_FAM6_ATOM_SILVERMONT_MID:
5091 case INTEL_FAM6_ATOM_AIRMONT:
5092 case INTEL_FAM6_ATOM_AIRMONT_MID:
5093 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5094 sizeof(hw_cache_event_ids));
5095 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5096 sizeof(hw_cache_extra_regs));
5098 intel_pmu_lbr_init_slm();
5100 x86_pmu.event_constraints = intel_slm_event_constraints;
5101 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5102 x86_pmu.extra_regs = intel_slm_extra_regs;
5103 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5104 td_attr = slm_events_attrs;
5105 extra_attr = slm_format_attr;
5106 pr_cont("Silvermont events, ");
5107 name = "silvermont";
5108 break;
5110 case INTEL_FAM6_ATOM_GOLDMONT:
5111 case INTEL_FAM6_ATOM_GOLDMONT_D:
5112 x86_add_quirk(intel_counter_freezing_quirk);
5113 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5114 sizeof(hw_cache_event_ids));
5115 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5116 sizeof(hw_cache_extra_regs));
5118 intel_pmu_lbr_init_skl();
5120 x86_pmu.event_constraints = intel_slm_event_constraints;
5121 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5122 x86_pmu.extra_regs = intel_glm_extra_regs;
5124 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5125 * for precise cycles.
5126 * :pp is identical to :ppp
5128 x86_pmu.pebs_aliases = NULL;
5129 x86_pmu.pebs_prec_dist = true;
5130 x86_pmu.lbr_pt_coexist = true;
5131 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5132 td_attr = glm_events_attrs;
5133 extra_attr = slm_format_attr;
5134 pr_cont("Goldmont events, ");
5135 name = "goldmont";
5136 break;
5138 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5139 x86_add_quirk(intel_counter_freezing_quirk);
5140 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5141 sizeof(hw_cache_event_ids));
5142 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5143 sizeof(hw_cache_extra_regs));
5145 intel_pmu_lbr_init_skl();
5147 x86_pmu.event_constraints = intel_slm_event_constraints;
5148 x86_pmu.extra_regs = intel_glm_extra_regs;
5150 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5151 * for precise cycles.
5153 x86_pmu.pebs_aliases = NULL;
5154 x86_pmu.pebs_prec_dist = true;
5155 x86_pmu.lbr_pt_coexist = true;
5156 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5157 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5158 x86_pmu.get_event_constraints = glp_get_event_constraints;
5159 td_attr = glm_events_attrs;
5160 /* Goldmont Plus has 4-wide pipeline */
5161 event_attr_td_total_slots_scale_glm.event_str = "4";
5162 extra_attr = slm_format_attr;
5163 pr_cont("Goldmont plus events, ");
5164 name = "goldmont_plus";
5165 break;
5167 case INTEL_FAM6_ATOM_TREMONT_D:
5168 case INTEL_FAM6_ATOM_TREMONT:
5169 case INTEL_FAM6_ATOM_TREMONT_L:
5170 x86_pmu.late_ack = true;
5171 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5172 sizeof(hw_cache_event_ids));
5173 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5174 sizeof(hw_cache_extra_regs));
5175 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5177 intel_pmu_lbr_init_skl();
5179 x86_pmu.event_constraints = intel_slm_event_constraints;
5180 x86_pmu.extra_regs = intel_tnt_extra_regs;
5182 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5183 * for precise cycles.
5185 x86_pmu.pebs_aliases = NULL;
5186 x86_pmu.pebs_prec_dist = true;
5187 x86_pmu.lbr_pt_coexist = true;
5188 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5189 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5190 td_attr = tnt_events_attrs;
5191 extra_attr = slm_format_attr;
5192 pr_cont("Tremont events, ");
5193 name = "Tremont";
5194 break;
5196 case INTEL_FAM6_WESTMERE:
5197 case INTEL_FAM6_WESTMERE_EP:
5198 case INTEL_FAM6_WESTMERE_EX:
5199 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5200 sizeof(hw_cache_event_ids));
5201 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5202 sizeof(hw_cache_extra_regs));
5204 intel_pmu_lbr_init_nhm();
5206 x86_pmu.event_constraints = intel_westmere_event_constraints;
5207 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5208 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5209 x86_pmu.extra_regs = intel_westmere_extra_regs;
5210 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5212 mem_attr = nhm_mem_events_attrs;
5214 /* UOPS_ISSUED.STALLED_CYCLES */
5215 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5216 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5217 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5218 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5219 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5221 intel_pmu_pebs_data_source_nhm();
5222 extra_attr = nhm_format_attr;
5223 pr_cont("Westmere events, ");
5224 name = "westmere";
5225 break;
5227 case INTEL_FAM6_SANDYBRIDGE:
5228 case INTEL_FAM6_SANDYBRIDGE_X:
5229 x86_add_quirk(intel_sandybridge_quirk);
5230 x86_add_quirk(intel_ht_bug);
5231 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5232 sizeof(hw_cache_event_ids));
5233 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5234 sizeof(hw_cache_extra_regs));
5236 intel_pmu_lbr_init_snb();
5238 x86_pmu.event_constraints = intel_snb_event_constraints;
5239 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5240 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5241 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5242 x86_pmu.extra_regs = intel_snbep_extra_regs;
5243 else
5244 x86_pmu.extra_regs = intel_snb_extra_regs;
5247 /* all extra regs are per-cpu when HT is on */
5248 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5249 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5251 td_attr = snb_events_attrs;
5252 mem_attr = snb_mem_events_attrs;
5254 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5255 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5256 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5257 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5258 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5259 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5261 extra_attr = nhm_format_attr;
5263 pr_cont("SandyBridge events, ");
5264 name = "sandybridge";
5265 break;
5267 case INTEL_FAM6_IVYBRIDGE:
5268 case INTEL_FAM6_IVYBRIDGE_X:
5269 x86_add_quirk(intel_ht_bug);
5270 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5271 sizeof(hw_cache_event_ids));
5272 /* dTLB-load-misses on IVB is different than SNB */
5273 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5275 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5276 sizeof(hw_cache_extra_regs));
5278 intel_pmu_lbr_init_snb();
5280 x86_pmu.event_constraints = intel_ivb_event_constraints;
5281 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5282 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5283 x86_pmu.pebs_prec_dist = true;
5284 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5285 x86_pmu.extra_regs = intel_snbep_extra_regs;
5286 else
5287 x86_pmu.extra_regs = intel_snb_extra_regs;
5288 /* all extra regs are per-cpu when HT is on */
5289 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5290 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5292 td_attr = snb_events_attrs;
5293 mem_attr = snb_mem_events_attrs;
5295 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5296 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5297 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5299 extra_attr = nhm_format_attr;
5301 pr_cont("IvyBridge events, ");
5302 name = "ivybridge";
5303 break;
5306 case INTEL_FAM6_HASWELL:
5307 case INTEL_FAM6_HASWELL_X:
5308 case INTEL_FAM6_HASWELL_L:
5309 case INTEL_FAM6_HASWELL_G:
5310 x86_add_quirk(intel_ht_bug);
5311 x86_add_quirk(intel_pebs_isolation_quirk);
5312 x86_pmu.late_ack = true;
5313 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5314 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5316 intel_pmu_lbr_init_hsw();
5318 x86_pmu.event_constraints = intel_hsw_event_constraints;
5319 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5320 x86_pmu.extra_regs = intel_snbep_extra_regs;
5321 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5322 x86_pmu.pebs_prec_dist = true;
5323 /* all extra regs are per-cpu when HT is on */
5324 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5325 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5327 x86_pmu.hw_config = hsw_hw_config;
5328 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5329 x86_pmu.lbr_double_abort = true;
5330 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5331 hsw_format_attr : nhm_format_attr;
5332 td_attr = hsw_events_attrs;
5333 mem_attr = hsw_mem_events_attrs;
5334 tsx_attr = hsw_tsx_events_attrs;
5335 pr_cont("Haswell events, ");
5336 name = "haswell";
5337 break;
5339 case INTEL_FAM6_BROADWELL:
5340 case INTEL_FAM6_BROADWELL_D:
5341 case INTEL_FAM6_BROADWELL_G:
5342 case INTEL_FAM6_BROADWELL_X:
5343 x86_add_quirk(intel_pebs_isolation_quirk);
5344 x86_pmu.late_ack = true;
5345 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5346 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5348 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5349 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5350 BDW_L3_MISS|HSW_SNOOP_DRAM;
5351 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5352 HSW_SNOOP_DRAM;
5353 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5354 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5355 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5356 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5358 intel_pmu_lbr_init_hsw();
5360 x86_pmu.event_constraints = intel_bdw_event_constraints;
5361 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5362 x86_pmu.extra_regs = intel_snbep_extra_regs;
5363 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5364 x86_pmu.pebs_prec_dist = true;
5365 /* all extra regs are per-cpu when HT is on */
5366 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5367 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5369 x86_pmu.hw_config = hsw_hw_config;
5370 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5371 x86_pmu.limit_period = bdw_limit_period;
5372 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5373 hsw_format_attr : nhm_format_attr;
5374 td_attr = hsw_events_attrs;
5375 mem_attr = hsw_mem_events_attrs;
5376 tsx_attr = hsw_tsx_events_attrs;
5377 pr_cont("Broadwell events, ");
5378 name = "broadwell";
5379 break;
5381 case INTEL_FAM6_XEON_PHI_KNL:
5382 case INTEL_FAM6_XEON_PHI_KNM:
5383 memcpy(hw_cache_event_ids,
5384 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5385 memcpy(hw_cache_extra_regs,
5386 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5387 intel_pmu_lbr_init_knl();
5389 x86_pmu.event_constraints = intel_slm_event_constraints;
5390 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5391 x86_pmu.extra_regs = intel_knl_extra_regs;
5393 /* all extra regs are per-cpu when HT is on */
5394 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5395 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5396 extra_attr = slm_format_attr;
5397 pr_cont("Knights Landing/Mill events, ");
5398 name = "knights-landing";
5399 break;
5401 case INTEL_FAM6_SKYLAKE_X:
5402 pmem = true;
5403 fallthrough;
5404 case INTEL_FAM6_SKYLAKE_L:
5405 case INTEL_FAM6_SKYLAKE:
5406 case INTEL_FAM6_KABYLAKE_L:
5407 case INTEL_FAM6_KABYLAKE:
5408 case INTEL_FAM6_COMETLAKE_L:
5409 case INTEL_FAM6_COMETLAKE:
5410 x86_add_quirk(intel_pebs_isolation_quirk);
5411 x86_pmu.late_ack = true;
5412 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5413 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5414 intel_pmu_lbr_init_skl();
5416 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5417 event_attr_td_recovery_bubbles.event_str_noht =
5418 "event=0xd,umask=0x1,cmask=1";
5419 event_attr_td_recovery_bubbles.event_str_ht =
5420 "event=0xd,umask=0x1,cmask=1,any=1";
5422 x86_pmu.event_constraints = intel_skl_event_constraints;
5423 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5424 x86_pmu.extra_regs = intel_skl_extra_regs;
5425 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5426 x86_pmu.pebs_prec_dist = true;
5427 /* all extra regs are per-cpu when HT is on */
5428 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5429 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5431 x86_pmu.hw_config = hsw_hw_config;
5432 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5433 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5434 hsw_format_attr : nhm_format_attr;
5435 extra_skl_attr = skl_format_attr;
5436 td_attr = hsw_events_attrs;
5437 mem_attr = hsw_mem_events_attrs;
5438 tsx_attr = hsw_tsx_events_attrs;
5439 intel_pmu_pebs_data_source_skl(pmem);
5441 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5442 x86_pmu.flags |= PMU_FL_TFA;
5443 x86_pmu.get_event_constraints = tfa_get_event_constraints;
5444 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5445 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5448 pr_cont("Skylake events, ");
5449 name = "skylake";
5450 break;
5452 case INTEL_FAM6_ICELAKE_X:
5453 case INTEL_FAM6_ICELAKE_D:
5454 pmem = true;
5455 fallthrough;
5456 case INTEL_FAM6_ICELAKE_L:
5457 case INTEL_FAM6_ICELAKE:
5458 case INTEL_FAM6_TIGERLAKE_L:
5459 case INTEL_FAM6_TIGERLAKE:
5460 case INTEL_FAM6_ROCKETLAKE:
5461 x86_pmu.late_ack = true;
5462 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5463 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5464 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5465 intel_pmu_lbr_init_skl();
5467 x86_pmu.event_constraints = intel_icl_event_constraints;
5468 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5469 x86_pmu.extra_regs = intel_icl_extra_regs;
5470 x86_pmu.pebs_aliases = NULL;
5471 x86_pmu.pebs_prec_dist = true;
5472 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5473 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5475 x86_pmu.hw_config = hsw_hw_config;
5476 x86_pmu.get_event_constraints = icl_get_event_constraints;
5477 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5478 hsw_format_attr : nhm_format_attr;
5479 extra_skl_attr = skl_format_attr;
5480 mem_attr = icl_events_attrs;
5481 td_attr = icl_td_events_attrs;
5482 tsx_attr = icl_tsx_events_attrs;
5483 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
5484 x86_pmu.lbr_pt_coexist = true;
5485 intel_pmu_pebs_data_source_skl(pmem);
5486 x86_pmu.update_topdown_event = icl_update_topdown_event;
5487 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
5488 pr_cont("Icelake events, ");
5489 name = "icelake";
5490 break;
5492 default:
5493 switch (x86_pmu.version) {
5494 case 1:
5495 x86_pmu.event_constraints = intel_v1_event_constraints;
5496 pr_cont("generic architected perfmon v1, ");
5497 name = "generic_arch_v1";
5498 break;
5499 default:
5501 * default constraints for v2 and up
5503 x86_pmu.event_constraints = intel_gen_event_constraints;
5504 pr_cont("generic architected perfmon, ");
5505 name = "generic_arch_v2+";
5506 break;
5510 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5513 group_events_td.attrs = td_attr;
5514 group_events_mem.attrs = mem_attr;
5515 group_events_tsx.attrs = tsx_attr;
5516 group_format_extra.attrs = extra_attr;
5517 group_format_extra_skl.attrs = extra_skl_attr;
5519 x86_pmu.attr_update = attr_update;
5521 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5522 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5523 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5524 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5526 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5528 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5529 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5530 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5531 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5534 x86_pmu.intel_ctrl |=
5535 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5537 /* AnyThread may be deprecated on arch perfmon v5 or later */
5538 if (x86_pmu.intel_cap.anythread_deprecated)
5539 x86_pmu.format_attrs = intel_arch_formats_attr;
5541 if (x86_pmu.event_constraints) {
5543 * event on fixed counter2 (REF_CYCLES) only works on this
5544 * counter, so do not extend mask to generic counters
5546 for_each_event_constraint(c, x86_pmu.event_constraints) {
5548 * Don't extend the topdown slots and metrics
5549 * events to the generic counters.
5551 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5552 c->weight = hweight64(c->idxmsk64);
5553 continue;
5556 if (c->cmask == FIXED_EVENT_FLAGS
5557 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5558 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5560 c->idxmsk64 &=
5561 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5562 c->weight = hweight64(c->idxmsk64);
5567 * Access LBR MSR may cause #GP under certain circumstances.
5568 * E.g. KVM doesn't support LBR MSR
5569 * Check all LBT MSR here.
5570 * Disable LBR access if any LBR MSRs can not be accessed.
5572 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5573 x86_pmu.lbr_nr = 0;
5574 for (i = 0; i < x86_pmu.lbr_nr; i++) {
5575 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5576 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5577 x86_pmu.lbr_nr = 0;
5580 if (x86_pmu.lbr_nr)
5581 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5584 * Access extra MSR may cause #GP under certain circumstances.
5585 * E.g. KVM doesn't support offcore event
5586 * Check all extra_regs here.
5588 if (x86_pmu.extra_regs) {
5589 for (er = x86_pmu.extra_regs; er->msr; er++) {
5590 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5591 /* Disable LBR select mapping */
5592 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5593 x86_pmu.lbr_sel_map = NULL;
5597 /* Support full width counters using alternative MSR range */
5598 if (x86_pmu.intel_cap.full_width_write) {
5599 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5600 x86_pmu.perfctr = MSR_IA32_PMC0;
5601 pr_cont("full-width counters, ");
5605 * For arch perfmon 4 use counter freezing to avoid
5606 * several MSR accesses in the PMI.
5608 if (x86_pmu.counter_freezing)
5609 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5611 if (x86_pmu.intel_cap.perf_metrics)
5612 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5614 return 0;
5618 * HT bug: phase 2 init
5619 * Called once we have valid topology information to check
5620 * whether or not HT is enabled
5621 * If HT is off, then we disable the workaround
5623 static __init int fixup_ht_bug(void)
5625 int c;
5627 * problem not present on this CPU model, nothing to do
5629 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5630 return 0;
5632 if (topology_max_smt_threads() > 1) {
5633 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5634 return 0;
5637 cpus_read_lock();
5639 hardlockup_detector_perf_stop();
5641 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5643 x86_pmu.start_scheduling = NULL;
5644 x86_pmu.commit_scheduling = NULL;
5645 x86_pmu.stop_scheduling = NULL;
5647 hardlockup_detector_perf_restart();
5649 for_each_online_cpu(c)
5650 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5652 cpus_read_unlock();
5653 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5654 return 0;
5656 subsys_initcall(fixup_ht_bug)