1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
10 #include <asm/irq_remapping.h>
15 #define pr_fmt(fmt) "hpet: " fmt
25 struct clock_event_device evt
;
31 unsigned int boot_cfg
;
36 unsigned int nr_channels
;
37 unsigned int nr_clockevents
;
38 unsigned int boot_cfg
;
39 struct hpet_channel
*channels
;
42 #define HPET_MASK CLOCKSOURCE_MASK(32)
44 #define HPET_MIN_CYCLES 128
45 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
48 * HPET address is set in acpi/boot.c, when an ACPI entry exists
50 unsigned long hpet_address
;
51 u8 hpet_blockid
; /* OS timer block num */
52 bool hpet_msi_disable
;
54 #ifdef CONFIG_GENERIC_MSI_IRQ
55 static DEFINE_PER_CPU(struct hpet_channel
*, cpu_hpet_channel
);
56 static struct irq_domain
*hpet_domain
;
59 static void __iomem
*hpet_virt_address
;
61 static struct hpet_base hpet_base
;
63 static bool hpet_legacy_int_enabled
;
64 static unsigned long hpet_freq
;
66 bool boot_hpet_disable
;
68 static bool hpet_verbose
;
71 struct hpet_channel
*clockevent_to_channel(struct clock_event_device
*evt
)
73 return container_of(evt
, struct hpet_channel
, evt
);
76 inline unsigned int hpet_readl(unsigned int a
)
78 return readl(hpet_virt_address
+ a
);
81 static inline void hpet_writel(unsigned int d
, unsigned int a
)
83 writel(d
, hpet_virt_address
+ a
);
86 static inline void hpet_set_mapping(void)
88 hpet_virt_address
= ioremap(hpet_address
, HPET_MMAP_SIZE
);
91 static inline void hpet_clear_mapping(void)
93 iounmap(hpet_virt_address
);
94 hpet_virt_address
= NULL
;
98 * HPET command line enable / disable
100 static int __init
hpet_setup(char *str
)
103 char *next
= strchr(str
, ',');
107 if (!strncmp("disable", str
, 7))
108 boot_hpet_disable
= true;
109 if (!strncmp("force", str
, 5))
110 hpet_force_user
= true;
111 if (!strncmp("verbose", str
, 7))
117 __setup("hpet=", hpet_setup
);
119 static int __init
disable_hpet(char *str
)
121 boot_hpet_disable
= true;
124 __setup("nohpet", disable_hpet
);
126 static inline int is_hpet_capable(void)
128 return !boot_hpet_disable
&& hpet_address
;
132 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
134 int is_hpet_enabled(void)
136 return is_hpet_capable() && hpet_legacy_int_enabled
;
138 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
140 static void _hpet_print_config(const char *function
, int line
)
142 u32 i
, id
, period
, cfg
, status
, channels
, l
, h
;
144 pr_info("%s(%d):\n", function
, line
);
146 id
= hpet_readl(HPET_ID
);
147 period
= hpet_readl(HPET_PERIOD
);
148 pr_info("ID: 0x%x, PERIOD: 0x%x\n", id
, period
);
150 cfg
= hpet_readl(HPET_CFG
);
151 status
= hpet_readl(HPET_STATUS
);
152 pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg
, status
);
154 l
= hpet_readl(HPET_COUNTER
);
155 h
= hpet_readl(HPET_COUNTER
+4);
156 pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
158 channels
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
160 for (i
= 0; i
< channels
; i
++) {
161 l
= hpet_readl(HPET_Tn_CFG(i
));
162 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
163 pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i
, l
, h
);
165 l
= hpet_readl(HPET_Tn_CMP(i
));
166 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
167 pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i
, l
, h
);
169 l
= hpet_readl(HPET_Tn_ROUTE(i
));
170 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
171 pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i
, l
, h
);
175 #define hpet_print_config() \
178 _hpet_print_config(__func__, __LINE__); \
182 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
183 * timer 0 and timer 1 in case of RTC emulation.
187 static void __init
hpet_reserve_platform_timers(void)
192 memset(&hd
, 0, sizeof(hd
));
193 hd
.hd_phys_address
= hpet_address
;
194 hd
.hd_address
= hpet_virt_address
;
195 hd
.hd_nirqs
= hpet_base
.nr_channels
;
198 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
199 * is wrong for i8259!) not the output IRQ. Many BIOS writers
200 * don't bother configuring *any* comparator interrupts.
202 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
203 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
205 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
206 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
209 hd
.hd_irq
[i
] = hc
->irq
;
212 case HPET_MODE_UNUSED
:
213 case HPET_MODE_DEVICE
:
214 hc
->mode
= HPET_MODE_DEVICE
;
216 case HPET_MODE_CLOCKEVT
:
217 case HPET_MODE_LEGACY
:
218 hpet_reserve_timer(&hd
, hc
->num
);
226 static void __init
hpet_select_device_channel(void)
230 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
231 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
233 /* Associate the first unused channel to /dev/hpet */
234 if (hc
->mode
== HPET_MODE_UNUSED
) {
235 hc
->mode
= HPET_MODE_DEVICE
;
242 static inline void hpet_reserve_platform_timers(void) { }
243 static inline void hpet_select_device_channel(void) {}
246 /* Common HPET functions */
247 static void hpet_stop_counter(void)
249 u32 cfg
= hpet_readl(HPET_CFG
);
251 cfg
&= ~HPET_CFG_ENABLE
;
252 hpet_writel(cfg
, HPET_CFG
);
255 static void hpet_reset_counter(void)
257 hpet_writel(0, HPET_COUNTER
);
258 hpet_writel(0, HPET_COUNTER
+ 4);
261 static void hpet_start_counter(void)
263 unsigned int cfg
= hpet_readl(HPET_CFG
);
265 cfg
|= HPET_CFG_ENABLE
;
266 hpet_writel(cfg
, HPET_CFG
);
269 static void hpet_restart_counter(void)
272 hpet_reset_counter();
273 hpet_start_counter();
276 static void hpet_resume_device(void)
281 static void hpet_resume_counter(struct clocksource
*cs
)
283 hpet_resume_device();
284 hpet_restart_counter();
287 static void hpet_enable_legacy_int(void)
289 unsigned int cfg
= hpet_readl(HPET_CFG
);
291 cfg
|= HPET_CFG_LEGACY
;
292 hpet_writel(cfg
, HPET_CFG
);
293 hpet_legacy_int_enabled
= true;
296 static int hpet_clkevt_set_state_periodic(struct clock_event_device
*evt
)
298 unsigned int channel
= clockevent_to_channel(evt
)->num
;
299 unsigned int cfg
, cmp
, now
;
303 delta
= ((uint64_t)(NSEC_PER_SEC
/ HZ
)) * evt
->mult
;
304 delta
>>= evt
->shift
;
305 now
= hpet_readl(HPET_COUNTER
);
306 cmp
= now
+ (unsigned int)delta
;
307 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
308 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
| HPET_TN_SETVAL
|
310 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
311 hpet_writel(cmp
, HPET_Tn_CMP(channel
));
314 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
315 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
316 * bit is automatically cleared after the first write.
317 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
318 * Publication # 24674)
320 hpet_writel((unsigned int)delta
, HPET_Tn_CMP(channel
));
321 hpet_start_counter();
327 static int hpet_clkevt_set_state_oneshot(struct clock_event_device
*evt
)
329 unsigned int channel
= clockevent_to_channel(evt
)->num
;
332 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
333 cfg
&= ~HPET_TN_PERIODIC
;
334 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
335 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
340 static int hpet_clkevt_set_state_shutdown(struct clock_event_device
*evt
)
342 unsigned int channel
= clockevent_to_channel(evt
)->num
;
345 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
346 cfg
&= ~HPET_TN_ENABLE
;
347 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
352 static int hpet_clkevt_legacy_resume(struct clock_event_device
*evt
)
354 hpet_enable_legacy_int();
360 hpet_clkevt_set_next_event(unsigned long delta
, struct clock_event_device
*evt
)
362 unsigned int channel
= clockevent_to_channel(evt
)->num
;
366 cnt
= hpet_readl(HPET_COUNTER
);
368 hpet_writel(cnt
, HPET_Tn_CMP(channel
));
371 * HPETs are a complete disaster. The compare register is
372 * based on a equal comparison and neither provides a less
373 * than or equal functionality (which would require to take
374 * the wraparound into account) nor a simple count down event
375 * mode. Further the write to the comparator register is
376 * delayed internally up to two HPET clock cycles in certain
377 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
378 * longer delays. We worked around that by reading back the
379 * compare register, but that required another workaround for
380 * ICH9,10 chips where the first readout after write can
381 * return the old stale value. We already had a minimum
382 * programming delta of 5us enforced, but a NMI or SMI hitting
383 * between the counter readout and the comparator write can
384 * move us behind that point easily. Now instead of reading
385 * the compare register back several times, we make the ETIME
386 * decision based on the following: Return ETIME if the
387 * counter value after the write is less than HPET_MIN_CYCLES
388 * away from the event or if the counter is already ahead of
389 * the event. The minimum programming delta for the generic
390 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
392 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
394 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
397 static void hpet_init_clockevent(struct hpet_channel
*hc
, unsigned int rating
)
399 struct clock_event_device
*evt
= &hc
->evt
;
401 evt
->rating
= rating
;
403 evt
->name
= hc
->name
;
404 evt
->cpumask
= cpumask_of(hc
->cpu
);
405 evt
->set_state_oneshot
= hpet_clkevt_set_state_oneshot
;
406 evt
->set_next_event
= hpet_clkevt_set_next_event
;
407 evt
->set_state_shutdown
= hpet_clkevt_set_state_shutdown
;
409 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
410 if (hc
->boot_cfg
& HPET_TN_PERIODIC
) {
411 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
412 evt
->set_state_periodic
= hpet_clkevt_set_state_periodic
;
416 static void __init
hpet_legacy_clockevent_register(struct hpet_channel
*hc
)
419 * Start HPET with the boot CPU's cpumask and make it global after
420 * the IO_APIC has been initialized.
422 hc
->cpu
= boot_cpu_data
.cpu_index
;
423 strncpy(hc
->name
, "hpet", sizeof(hc
->name
));
424 hpet_init_clockevent(hc
, 50);
426 hc
->evt
.tick_resume
= hpet_clkevt_legacy_resume
;
429 * Legacy horrors and sins from the past. HPET used periodic mode
430 * unconditionally forever on the legacy channel 0. Removing the
431 * below hack and using the conditional in hpet_init_clockevent()
432 * makes at least Qemu and one hardware machine fail to boot.
433 * There are two issues which cause the boot failure:
435 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
436 * the next interrupt is not delivered despite the HPET channel
437 * being programmed correctly. Reprogramming the HPET after
438 * switching to IOAPIC makes it work again. After fixing this,
439 * the next issue surfaces:
441 * #2 Due to the unconditional periodic mode availability the Local
442 * APIC timer calibration can hijack the global clockevents
443 * event handler without causing damage. Using oneshot at this
444 * stage makes if hang because the HPET does not get
445 * reprogrammed due to the handler hijacking. Duh, stupid me!
447 * Both issues require major surgery and especially the kick HPET
448 * again after enabling IOAPIC results in really nasty hackery.
449 * This 'assume periodic works' magic has survived since HPET
450 * support got added, so it's questionable whether this should be
451 * fixed. Both Qemu and the failing hardware machine support
452 * periodic mode despite the fact that both don't advertise it in
453 * the configuration register and both need that extra kick after
454 * switching to IOAPIC. Seems to be a feature...
456 hc
->evt
.features
|= CLOCK_EVT_FEAT_PERIODIC
;
457 hc
->evt
.set_state_periodic
= hpet_clkevt_set_state_periodic
;
459 /* Start HPET legacy interrupts */
460 hpet_enable_legacy_int();
462 clockevents_config_and_register(&hc
->evt
, hpet_freq
,
463 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
464 global_clock_event
= &hc
->evt
;
465 pr_debug("Clockevent registered\n");
471 #ifdef CONFIG_GENERIC_MSI_IRQ
472 static void hpet_msi_unmask(struct irq_data
*data
)
474 struct hpet_channel
*hc
= irq_data_get_irq_handler_data(data
);
477 cfg
= hpet_readl(HPET_Tn_CFG(hc
->num
));
478 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
479 hpet_writel(cfg
, HPET_Tn_CFG(hc
->num
));
482 static void hpet_msi_mask(struct irq_data
*data
)
484 struct hpet_channel
*hc
= irq_data_get_irq_handler_data(data
);
487 cfg
= hpet_readl(HPET_Tn_CFG(hc
->num
));
488 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
489 hpet_writel(cfg
, HPET_Tn_CFG(hc
->num
));
492 static void hpet_msi_write(struct hpet_channel
*hc
, struct msi_msg
*msg
)
494 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hc
->num
));
495 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hc
->num
) + 4);
498 static void hpet_msi_write_msg(struct irq_data
*data
, struct msi_msg
*msg
)
500 hpet_msi_write(irq_data_get_irq_handler_data(data
), msg
);
503 static struct irq_chip hpet_msi_controller __ro_after_init
= {
505 .irq_unmask
= hpet_msi_unmask
,
506 .irq_mask
= hpet_msi_mask
,
507 .irq_ack
= irq_chip_ack_parent
,
508 .irq_set_affinity
= msi_domain_set_affinity
,
509 .irq_retrigger
= irq_chip_retrigger_hierarchy
,
510 .irq_write_msi_msg
= hpet_msi_write_msg
,
511 .flags
= IRQCHIP_SKIP_SET_WAKE
,
514 static int hpet_msi_init(struct irq_domain
*domain
,
515 struct msi_domain_info
*info
, unsigned int virq
,
516 irq_hw_number_t hwirq
, msi_alloc_info_t
*arg
)
518 irq_set_status_flags(virq
, IRQ_MOVE_PCNTXT
);
519 irq_domain_set_info(domain
, virq
, arg
->hwirq
, info
->chip
, NULL
,
520 handle_edge_irq
, arg
->data
, "edge");
525 static void hpet_msi_free(struct irq_domain
*domain
,
526 struct msi_domain_info
*info
, unsigned int virq
)
528 irq_clear_status_flags(virq
, IRQ_MOVE_PCNTXT
);
531 static struct msi_domain_ops hpet_msi_domain_ops
= {
532 .msi_init
= hpet_msi_init
,
533 .msi_free
= hpet_msi_free
,
536 static struct msi_domain_info hpet_msi_domain_info
= {
537 .ops
= &hpet_msi_domain_ops
,
538 .chip
= &hpet_msi_controller
,
539 .flags
= MSI_FLAG_USE_DEF_DOM_OPS
,
542 static struct irq_domain
*hpet_create_irq_domain(int hpet_id
)
544 struct msi_domain_info
*domain_info
;
545 struct irq_domain
*parent
, *d
;
546 struct fwnode_handle
*fn
;
547 struct irq_fwspec fwspec
;
549 if (x86_vector_domain
== NULL
)
552 domain_info
= kzalloc(sizeof(*domain_info
), GFP_KERNEL
);
556 *domain_info
= hpet_msi_domain_info
;
557 domain_info
->data
= (void *)(long)hpet_id
;
559 fn
= irq_domain_alloc_named_id_fwnode(hpet_msi_controller
.name
,
567 fwspec
.param_count
= 1;
568 fwspec
.param
[0] = hpet_id
;
570 parent
= irq_find_matching_fwspec(&fwspec
, DOMAIN_BUS_ANY
);
572 irq_domain_free_fwnode(fn
);
576 if (parent
!= x86_vector_domain
)
577 hpet_msi_controller
.name
= "IR-HPET-MSI";
579 d
= msi_create_irq_domain(fn
, domain_info
, parent
);
581 irq_domain_free_fwnode(fn
);
587 static inline int hpet_dev_id(struct irq_domain
*domain
)
589 struct msi_domain_info
*info
= msi_get_domain_info(domain
);
591 return (int)(long)info
->data
;
594 static int hpet_assign_irq(struct irq_domain
*domain
, struct hpet_channel
*hc
,
597 struct irq_alloc_info info
;
599 init_irq_alloc_info(&info
, NULL
);
600 info
.type
= X86_IRQ_ALLOC_TYPE_HPET
;
602 info
.devid
= hpet_dev_id(domain
);
603 info
.hwirq
= dev_num
;
605 return irq_domain_alloc_irqs(domain
, 1, NUMA_NO_NODE
, &info
);
608 static int hpet_clkevt_msi_resume(struct clock_event_device
*evt
)
610 struct hpet_channel
*hc
= clockevent_to_channel(evt
);
611 struct irq_data
*data
= irq_get_irq_data(hc
->irq
);
614 /* Restore the MSI msg and unmask the interrupt */
615 irq_chip_compose_msi_msg(data
, &msg
);
616 hpet_msi_write(hc
, &msg
);
617 hpet_msi_unmask(data
);
621 static irqreturn_t
hpet_msi_interrupt_handler(int irq
, void *data
)
623 struct hpet_channel
*hc
= data
;
624 struct clock_event_device
*evt
= &hc
->evt
;
626 if (!evt
->event_handler
) {
627 pr_info("Spurious interrupt HPET channel %d\n", hc
->num
);
631 evt
->event_handler(evt
);
635 static int hpet_setup_msi_irq(struct hpet_channel
*hc
)
637 if (request_irq(hc
->irq
, hpet_msi_interrupt_handler
,
638 IRQF_TIMER
| IRQF_NOBALANCING
,
642 disable_irq(hc
->irq
);
643 irq_set_affinity(hc
->irq
, cpumask_of(hc
->cpu
));
646 pr_debug("%s irq %u for MSI\n", hc
->name
, hc
->irq
);
651 /* Invoked from the hotplug callback on @cpu */
652 static void init_one_hpet_msi_clockevent(struct hpet_channel
*hc
, int cpu
)
654 struct clock_event_device
*evt
= &hc
->evt
;
657 per_cpu(cpu_hpet_channel
, cpu
) = hc
;
658 hpet_setup_msi_irq(hc
);
660 hpet_init_clockevent(hc
, 110);
661 evt
->tick_resume
= hpet_clkevt_msi_resume
;
663 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
667 static struct hpet_channel
*hpet_get_unused_clockevent(void)
671 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
672 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
674 if (hc
->mode
!= HPET_MODE_CLOCKEVT
|| hc
->in_use
)
682 static int hpet_cpuhp_online(unsigned int cpu
)
684 struct hpet_channel
*hc
= hpet_get_unused_clockevent();
687 init_one_hpet_msi_clockevent(hc
, cpu
);
691 static int hpet_cpuhp_dead(unsigned int cpu
)
693 struct hpet_channel
*hc
= per_cpu(cpu_hpet_channel
, cpu
);
697 free_irq(hc
->irq
, hc
);
699 per_cpu(cpu_hpet_channel
, cpu
) = NULL
;
703 static void __init
hpet_select_clockevents(void)
707 hpet_base
.nr_clockevents
= 0;
709 /* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
710 if (hpet_msi_disable
|| boot_cpu_has(X86_FEATURE_ARAT
))
715 hpet_domain
= hpet_create_irq_domain(hpet_blockid
);
719 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
720 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
723 if (hc
->mode
!= HPET_MODE_UNUSED
)
726 /* Only consider HPET channel with MSI support */
727 if (!(hc
->boot_cfg
& HPET_TN_FSB_CAP
))
730 sprintf(hc
->name
, "hpet%d", i
);
732 irq
= hpet_assign_irq(hpet_domain
, hc
, hc
->num
);
737 hc
->mode
= HPET_MODE_CLOCKEVT
;
739 if (++hpet_base
.nr_clockevents
== num_possible_cpus())
743 pr_info("%d channels of %d reserved for per-cpu timers\n",
744 hpet_base
.nr_channels
, hpet_base
.nr_clockevents
);
749 static inline void hpet_select_clockevents(void) { }
751 #define hpet_cpuhp_online NULL
752 #define hpet_cpuhp_dead NULL
757 * Clock source related code
759 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
761 * Reading the HPET counter is a very slow operation. If a large number of
762 * CPUs are trying to access the HPET counter simultaneously, it can cause
763 * massive delays and slow down system performance dramatically. This may
764 * happen when HPET is the default clock source instead of TSC. For a
765 * really large system with hundreds of CPUs, the slowdown may be so
766 * severe, that it can actually crash the system because of a NMI watchdog
767 * soft lockup, for example.
769 * If multiple CPUs are trying to access the HPET counter at the same time,
770 * we don't actually need to read the counter multiple times. Instead, the
771 * other CPUs can use the counter value read by the first CPU in the group.
773 * This special feature is only enabled on x86-64 systems. It is unlikely
774 * that 32-bit x86 systems will have enough CPUs to require this feature
775 * with its associated locking overhead. We also need 64-bit atomic read.
777 * The lock and the HPET value are stored together and can be read in a
778 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
779 * is 32 bits in size.
783 arch_spinlock_t lock
;
789 static union hpet_lock hpet __cacheline_aligned
= {
790 { .lock
= __ARCH_SPIN_LOCK_UNLOCKED
, },
793 static u64
read_hpet(struct clocksource
*cs
)
796 union hpet_lock old
, new;
798 BUILD_BUG_ON(sizeof(union hpet_lock
) != 8);
801 * Read HPET directly if in NMI.
804 return (u64
)hpet_readl(HPET_COUNTER
);
807 * Read the current state of the lock and HPET value atomically.
809 old
.lockval
= READ_ONCE(hpet
.lockval
);
811 if (arch_spin_is_locked(&old
.lock
))
814 local_irq_save(flags
);
815 if (arch_spin_trylock(&hpet
.lock
)) {
816 new.value
= hpet_readl(HPET_COUNTER
);
818 * Use WRITE_ONCE() to prevent store tearing.
820 WRITE_ONCE(hpet
.value
, new.value
);
821 arch_spin_unlock(&hpet
.lock
);
822 local_irq_restore(flags
);
823 return (u64
)new.value
;
825 local_irq_restore(flags
);
831 * Wait until the HPET value change or the lock is free to indicate
832 * its value is up-to-date.
834 * It is possible that old.value has already contained the latest
835 * HPET value while the lock holder was in the process of releasing
836 * the lock. Checking for lock state change will enable us to return
837 * the value immediately instead of waiting for the next HPET reader
842 new.lockval
= READ_ONCE(hpet
.lockval
);
843 } while ((new.value
== old
.value
) && arch_spin_is_locked(&new.lock
));
845 return (u64
)new.value
;
851 static u64
read_hpet(struct clocksource
*cs
)
853 return (u64
)hpet_readl(HPET_COUNTER
);
857 static struct clocksource clocksource_hpet
= {
862 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
863 .resume
= hpet_resume_counter
,
867 * AMD SB700 based systems with spread spectrum enabled use a SMM based
868 * HPET emulation to provide proper frequency setting.
870 * On such systems the SMM code is initialized with the first HPET register
871 * access and takes some time to complete. During this time the config
872 * register reads 0xffffffff. We check for max 1000 loops whether the
873 * config register reads a non-0xffffffff value to make sure that the
874 * HPET is up and running before we proceed any further.
876 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
878 * On non-SB700 based machines this check is only done once and has no
881 static bool __init
hpet_cfg_working(void)
885 for (i
= 0; i
< 1000; i
++) {
886 if (hpet_readl(HPET_CFG
) != 0xFFFFFFFF)
890 pr_warn("Config register invalid. Disabling HPET\n");
894 static bool __init
hpet_counting(void)
898 hpet_restart_counter();
900 t1
= hpet_readl(HPET_COUNTER
);
904 * We don't know the TSC frequency yet, but waiting for
905 * 200000 TSC cycles is safe:
910 if (t1
!= hpet_readl(HPET_COUNTER
))
913 } while ((now
- start
) < 200000UL);
915 pr_warn("Counter not counting. HPET disabled\n");
920 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
922 int __init
hpet_enable(void)
924 u32 hpet_period
, cfg
, id
, irq
;
925 unsigned int i
, channels
;
926 struct hpet_channel
*hc
;
929 if (!is_hpet_capable())
933 if (!hpet_virt_address
)
936 /* Validate that the config register is working */
937 if (!hpet_cfg_working())
941 * Read the period and check for a sane value:
943 hpet_period
= hpet_readl(HPET_PERIOD
);
944 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
947 /* The period is a femtoseconds value. Convert it to a frequency. */
949 do_div(freq
, hpet_period
);
953 * Read the HPET ID register to retrieve the IRQ routing
954 * information and the number of channels
956 id
= hpet_readl(HPET_ID
);
959 /* This is the HPET channel number which is zero based */
960 channels
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
963 * The legacy routing mode needs at least two channels, tick timer
964 * and the rtc emulation channel.
966 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC
) && channels
< 2)
969 hc
= kcalloc(channels
, sizeof(*hc
), GFP_KERNEL
);
971 pr_warn("Disabling HPET.\n");
974 hpet_base
.channels
= hc
;
975 hpet_base
.nr_channels
= channels
;
977 /* Read, store and sanitize the global configuration */
978 cfg
= hpet_readl(HPET_CFG
);
979 hpet_base
.boot_cfg
= cfg
;
980 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
981 hpet_writel(cfg
, HPET_CFG
);
983 pr_warn("Global config: Unknown bits %#x\n", cfg
);
985 /* Read, store and sanitize the per channel configuration */
986 for (i
= 0; i
< channels
; i
++, hc
++) {
989 cfg
= hpet_readl(HPET_Tn_CFG(i
));
991 irq
= (cfg
& Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
994 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
995 hpet_writel(cfg
, HPET_Tn_CFG(i
));
997 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
998 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
999 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
1001 pr_warn("Channel #%u config: Unknown bits %#x\n", i
, cfg
);
1003 hpet_print_config();
1006 * Validate that the counter is counting. This needs to be done
1007 * after sanitizing the config registers to properly deal with
1008 * force enabled HPETs.
1010 if (!hpet_counting())
1013 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
1015 if (id
& HPET_ID_LEGSUP
) {
1016 hpet_legacy_clockevent_register(&hpet_base
.channels
[0]);
1017 hpet_base
.channels
[0].mode
= HPET_MODE_LEGACY
;
1018 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC
))
1019 hpet_base
.channels
[1].mode
= HPET_MODE_LEGACY
;
1025 kfree(hpet_base
.channels
);
1026 hpet_base
.channels
= NULL
;
1027 hpet_base
.nr_channels
= 0;
1028 hpet_clear_mapping();
1034 * The late initialization runs after the PCI quirks have been invoked
1035 * which might have detected a system on which the HPET can be enforced.
1037 * Also, the MSI machinery is not working yet when the HPET is initialized
1040 * If the HPET is enabled, then:
1042 * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1043 * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1044 * 3) Setup /dev/hpet if CONFIG_HPET=y
1045 * 4) Register hotplug callbacks when clockevents are available
1047 static __init
int hpet_late_init(void)
1051 if (!hpet_address
) {
1052 if (!force_hpet_address
)
1055 hpet_address
= force_hpet_address
;
1059 if (!hpet_virt_address
)
1062 hpet_select_device_channel();
1063 hpet_select_clockevents();
1064 hpet_reserve_platform_timers();
1065 hpet_print_config();
1067 if (!hpet_base
.nr_clockevents
)
1070 ret
= cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE
, "x86/hpet:online",
1071 hpet_cpuhp_online
, NULL
);
1074 ret
= cpuhp_setup_state(CPUHP_X86_HPET_DEAD
, "x86/hpet:dead", NULL
,
1081 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE
);
1084 fs_initcall(hpet_late_init
);
1086 void hpet_disable(void)
1091 if (!is_hpet_capable() || !hpet_virt_address
)
1094 /* Restore boot configuration with the enable bit cleared */
1095 cfg
= hpet_base
.boot_cfg
;
1096 cfg
&= ~HPET_CFG_ENABLE
;
1097 hpet_writel(cfg
, HPET_CFG
);
1099 /* Restore the channel boot configuration */
1100 for (i
= 0; i
< hpet_base
.nr_channels
; i
++)
1101 hpet_writel(hpet_base
.channels
[i
].boot_cfg
, HPET_Tn_CFG(i
));
1103 /* If the HPET was enabled at boot time, reenable it */
1104 if (hpet_base
.boot_cfg
& HPET_CFG_ENABLE
)
1105 hpet_writel(hpet_base
.boot_cfg
, HPET_CFG
);
1108 #ifdef CONFIG_HPET_EMULATE_RTC
1111 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1112 * is enabled, we support RTC interrupt functionality in software.
1114 * RTC has 3 kinds of interrupts:
1116 * 1) Update Interrupt - generate an interrupt, every second, when the
1117 * RTC clock is updated
1118 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1119 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1120 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1122 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1123 * DEFAULT_RTC_INT_FREQ.
1125 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1127 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1130 #include <linux/mc146818rtc.h>
1131 #include <linux/rtc.h>
1133 #define DEFAULT_RTC_INT_FREQ 64
1134 #define DEFAULT_RTC_SHIFT 6
1135 #define RTC_NUM_INTS 1
1137 static unsigned long hpet_rtc_flags
;
1138 static int hpet_prev_update_sec
;
1139 static struct rtc_time hpet_alarm_time
;
1140 static unsigned long hpet_pie_count
;
1141 static u32 hpet_t1_cmp
;
1142 static u32 hpet_default_delta
;
1143 static u32 hpet_pie_delta
;
1144 static unsigned long hpet_pie_limit
;
1146 static rtc_irq_handler irq_handler
;
1149 * Check that the HPET counter c1 is ahead of c2
1151 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1153 return (s32
)(c2
- c1
) < 0;
1157 * Registers a IRQ handler.
1159 int hpet_register_irq_handler(rtc_irq_handler handler
)
1161 if (!is_hpet_enabled())
1166 irq_handler
= handler
;
1170 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1173 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1176 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1178 if (!is_hpet_enabled())
1184 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1187 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1188 * is not supported by all HPET implementations for channel 1.
1190 * hpet_rtc_timer_init() is called when the rtc is initialized.
1192 int hpet_rtc_timer_init(void)
1194 unsigned int cfg
, cnt
, delta
;
1195 unsigned long flags
;
1197 if (!is_hpet_enabled())
1200 if (!hpet_default_delta
) {
1201 struct clock_event_device
*evt
= &hpet_base
.channels
[0].evt
;
1204 clc
= (uint64_t) evt
->mult
* NSEC_PER_SEC
;
1205 clc
>>= evt
->shift
+ DEFAULT_RTC_SHIFT
;
1206 hpet_default_delta
= clc
;
1209 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1210 delta
= hpet_default_delta
;
1212 delta
= hpet_pie_delta
;
1214 local_irq_save(flags
);
1216 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1217 hpet_writel(cnt
, HPET_T1_CMP
);
1220 cfg
= hpet_readl(HPET_T1_CFG
);
1221 cfg
&= ~HPET_TN_PERIODIC
;
1222 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1223 hpet_writel(cfg
, HPET_T1_CFG
);
1225 local_irq_restore(flags
);
1229 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1231 static void hpet_disable_rtc_channel(void)
1233 u32 cfg
= hpet_readl(HPET_T1_CFG
);
1235 cfg
&= ~HPET_TN_ENABLE
;
1236 hpet_writel(cfg
, HPET_T1_CFG
);
1240 * The functions below are called from rtc driver.
1241 * Return 0 if HPET is not being used.
1242 * Otherwise do the necessary changes and return 1.
1244 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1246 if (!is_hpet_enabled())
1249 hpet_rtc_flags
&= ~bit_mask
;
1250 if (unlikely(!hpet_rtc_flags
))
1251 hpet_disable_rtc_channel();
1255 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1257 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1259 unsigned long oldbits
= hpet_rtc_flags
;
1261 if (!is_hpet_enabled())
1264 hpet_rtc_flags
|= bit_mask
;
1266 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1267 hpet_prev_update_sec
= -1;
1270 hpet_rtc_timer_init();
1274 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1276 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
1278 if (!is_hpet_enabled())
1281 hpet_alarm_time
.tm_hour
= hrs
;
1282 hpet_alarm_time
.tm_min
= min
;
1283 hpet_alarm_time
.tm_sec
= sec
;
1287 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1289 int hpet_set_periodic_freq(unsigned long freq
)
1293 if (!is_hpet_enabled())
1296 if (freq
<= DEFAULT_RTC_INT_FREQ
) {
1297 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1299 struct clock_event_device
*evt
= &hpet_base
.channels
[0].evt
;
1301 clc
= (uint64_t) evt
->mult
* NSEC_PER_SEC
;
1304 hpet_pie_delta
= clc
;
1310 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1312 int hpet_rtc_dropped_irq(void)
1314 return is_hpet_enabled();
1316 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1318 static void hpet_rtc_timer_reinit(void)
1323 if (unlikely(!hpet_rtc_flags
))
1324 hpet_disable_rtc_channel();
1326 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1327 delta
= hpet_default_delta
;
1329 delta
= hpet_pie_delta
;
1332 * Increment the comparator value until we are ahead of the
1336 hpet_t1_cmp
+= delta
;
1337 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1339 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1342 if (hpet_rtc_flags
& RTC_PIE
)
1343 hpet_pie_count
+= lost_ints
;
1344 if (printk_ratelimit())
1345 pr_warn("Lost %d RTC interrupts\n", lost_ints
);
1349 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1351 struct rtc_time curr_time
;
1352 unsigned long rtc_int_flag
= 0;
1354 hpet_rtc_timer_reinit();
1355 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1357 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1358 mc146818_get_time(&curr_time
);
1360 if (hpet_rtc_flags
& RTC_UIE
&&
1361 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1362 if (hpet_prev_update_sec
>= 0)
1363 rtc_int_flag
= RTC_UF
;
1364 hpet_prev_update_sec
= curr_time
.tm_sec
;
1367 if (hpet_rtc_flags
& RTC_PIE
&& ++hpet_pie_count
>= hpet_pie_limit
) {
1368 rtc_int_flag
|= RTC_PF
;
1372 if (hpet_rtc_flags
& RTC_AIE
&&
1373 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1374 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1375 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1376 rtc_int_flag
|= RTC_AF
;
1379 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1381 irq_handler(rtc_int_flag
, dev_id
);
1385 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);