WIP FPC-III support
[linux/fpc-iii.git] / arch / x86 / kernel / machine_kexec_64.c
bloba29a44a98e5bef10751af769bd198d783e23b9fd
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 */
7 #define pr_fmt(fmt) "kexec: " fmt
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
21 #include <asm/init.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/io_apic.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27 #include <asm/setup.h>
28 #include <asm/set_memory.h>
30 #ifdef CONFIG_ACPI
32 * Used while adding mapping for ACPI tables.
33 * Can be reused when other iomem regions need be mapped
35 struct init_pgtable_data {
36 struct x86_mapping_info *info;
37 pgd_t *level4p;
40 static int mem_region_callback(struct resource *res, void *arg)
42 struct init_pgtable_data *data = arg;
43 unsigned long mstart, mend;
45 mstart = res->start;
46 mend = mstart + resource_size(res) - 1;
48 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
51 static int
52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
54 struct init_pgtable_data data;
55 unsigned long flags;
56 int ret;
58 data.info = info;
59 data.level4p = level4p;
60 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63 &data, mem_region_callback);
64 if (ret && ret != -EINVAL)
65 return ret;
67 /* ACPI tables could be located in ACPI Non-volatile Storage region */
68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69 &data, mem_region_callback);
70 if (ret && ret != -EINVAL)
71 return ret;
73 return 0;
75 #else
76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81 &kexec_bzImage64_ops,
82 NULL
84 #endif
86 static int
87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
89 #ifdef CONFIG_EFI
90 unsigned long mstart, mend;
92 if (!efi_enabled(EFI_BOOT))
93 return 0;
95 mstart = (boot_params.efi_info.efi_systab |
96 ((u64)boot_params.efi_info.efi_systab_hi<<32));
98 if (efi_enabled(EFI_64BIT))
99 mend = mstart + sizeof(efi_system_table_64_t);
100 else
101 mend = mstart + sizeof(efi_system_table_32_t);
103 if (!mstart)
104 return 0;
106 return kernel_ident_mapping_init(info, level4p, mstart, mend);
107 #endif
108 return 0;
111 static void free_transition_pgtable(struct kimage *image)
113 free_page((unsigned long)image->arch.p4d);
114 image->arch.p4d = NULL;
115 free_page((unsigned long)image->arch.pud);
116 image->arch.pud = NULL;
117 free_page((unsigned long)image->arch.pmd);
118 image->arch.pmd = NULL;
119 free_page((unsigned long)image->arch.pte);
120 image->arch.pte = NULL;
123 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
125 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126 unsigned long vaddr, paddr;
127 int result = -ENOMEM;
128 p4d_t *p4d;
129 pud_t *pud;
130 pmd_t *pmd;
131 pte_t *pte;
133 vaddr = (unsigned long)relocate_kernel;
134 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135 pgd += pgd_index(vaddr);
136 if (!pgd_present(*pgd)) {
137 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138 if (!p4d)
139 goto err;
140 image->arch.p4d = p4d;
141 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
143 p4d = p4d_offset(pgd, vaddr);
144 if (!p4d_present(*p4d)) {
145 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146 if (!pud)
147 goto err;
148 image->arch.pud = pud;
149 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
151 pud = pud_offset(p4d, vaddr);
152 if (!pud_present(*pud)) {
153 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154 if (!pmd)
155 goto err;
156 image->arch.pmd = pmd;
157 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
159 pmd = pmd_offset(pud, vaddr);
160 if (!pmd_present(*pmd)) {
161 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162 if (!pte)
163 goto err;
164 image->arch.pte = pte;
165 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
167 pte = pte_offset_kernel(pmd, vaddr);
169 if (sev_active())
170 prot = PAGE_KERNEL_EXEC;
172 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173 return 0;
174 err:
175 return result;
178 static void *alloc_pgt_page(void *data)
180 struct kimage *image = (struct kimage *)data;
181 struct page *page;
182 void *p = NULL;
184 page = kimage_alloc_control_pages(image, 0);
185 if (page) {
186 p = page_address(page);
187 clear_page(p);
190 return p;
193 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
195 struct x86_mapping_info info = {
196 .alloc_pgt_page = alloc_pgt_page,
197 .context = image,
198 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
199 .kernpg_flag = _KERNPG_TABLE_NOENC,
201 unsigned long mstart, mend;
202 pgd_t *level4p;
203 int result;
204 int i;
206 level4p = (pgd_t *)__va(start_pgtable);
207 clear_page(level4p);
209 if (sev_active()) {
210 info.page_flag |= _PAGE_ENC;
211 info.kernpg_flag |= _PAGE_ENC;
214 if (direct_gbpages)
215 info.direct_gbpages = true;
217 for (i = 0; i < nr_pfn_mapped; i++) {
218 mstart = pfn_mapped[i].start << PAGE_SHIFT;
219 mend = pfn_mapped[i].end << PAGE_SHIFT;
221 result = kernel_ident_mapping_init(&info,
222 level4p, mstart, mend);
223 if (result)
224 return result;
228 * segments's mem ranges could be outside 0 ~ max_pfn,
229 * for example when jump back to original kernel from kexeced kernel.
230 * or first kernel is booted with user mem map, and second kernel
231 * could be loaded out of that range.
233 for (i = 0; i < image->nr_segments; i++) {
234 mstart = image->segment[i].mem;
235 mend = mstart + image->segment[i].memsz;
237 result = kernel_ident_mapping_init(&info,
238 level4p, mstart, mend);
240 if (result)
241 return result;
245 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246 * not covered by pfn_mapped.
248 result = map_efi_systab(&info, level4p);
249 if (result)
250 return result;
252 result = map_acpi_tables(&info, level4p);
253 if (result)
254 return result;
256 return init_transition_pgtable(image, level4p);
259 static void set_idt(void *newidt, u16 limit)
261 struct desc_ptr curidt;
263 /* x86-64 supports unaliged loads & stores */
264 curidt.size = limit;
265 curidt.address = (unsigned long)newidt;
267 __asm__ __volatile__ (
268 "lidtq %0\n"
269 : : "m" (curidt)
274 static void set_gdt(void *newgdt, u16 limit)
276 struct desc_ptr curgdt;
278 /* x86-64 supports unaligned loads & stores */
279 curgdt.size = limit;
280 curgdt.address = (unsigned long)newgdt;
282 __asm__ __volatile__ (
283 "lgdtq %0\n"
284 : : "m" (curgdt)
288 static void load_segments(void)
290 __asm__ __volatile__ (
291 "\tmovl %0,%%ds\n"
292 "\tmovl %0,%%es\n"
293 "\tmovl %0,%%ss\n"
294 "\tmovl %0,%%fs\n"
295 "\tmovl %0,%%gs\n"
296 : : "a" (__KERNEL_DS) : "memory"
300 int machine_kexec_prepare(struct kimage *image)
302 unsigned long start_pgtable;
303 int result;
305 /* Calculate the offsets */
306 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
308 /* Setup the identity mapped 64bit page table */
309 result = init_pgtable(image, start_pgtable);
310 if (result)
311 return result;
313 return 0;
316 void machine_kexec_cleanup(struct kimage *image)
318 free_transition_pgtable(image);
322 * Do not allocate memory (or fail in any way) in machine_kexec().
323 * We are past the point of no return, committed to rebooting now.
325 void machine_kexec(struct kimage *image)
327 unsigned long page_list[PAGES_NR];
328 void *control_page;
329 int save_ftrace_enabled;
331 #ifdef CONFIG_KEXEC_JUMP
332 if (image->preserve_context)
333 save_processor_state();
334 #endif
336 save_ftrace_enabled = __ftrace_enabled_save();
338 /* Interrupts aren't acceptable while we reboot */
339 local_irq_disable();
340 hw_breakpoint_disable();
342 if (image->preserve_context) {
343 #ifdef CONFIG_X86_IO_APIC
345 * We need to put APICs in legacy mode so that we can
346 * get timer interrupts in second kernel. kexec/kdump
347 * paths already have calls to restore_boot_irq_mode()
348 * in one form or other. kexec jump path also need one.
350 clear_IO_APIC();
351 restore_boot_irq_mode();
352 #endif
355 control_page = page_address(image->control_code_page) + PAGE_SIZE;
356 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
358 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
359 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
360 page_list[PA_TABLE_PAGE] =
361 (unsigned long)__pa(page_address(image->control_code_page));
363 if (image->type == KEXEC_TYPE_DEFAULT)
364 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
365 << PAGE_SHIFT);
368 * The segment registers are funny things, they have both a
369 * visible and an invisible part. Whenever the visible part is
370 * set to a specific selector, the invisible part is loaded
371 * with from a table in memory. At no other time is the
372 * descriptor table in memory accessed.
374 * I take advantage of this here by force loading the
375 * segments, before I zap the gdt with an invalid value.
377 load_segments();
379 * The gdt & idt are now invalid.
380 * If you want to load them you must set up your own idt & gdt.
382 set_gdt(phys_to_virt(0), 0);
383 set_idt(phys_to_virt(0), 0);
385 /* now call it */
386 image->start = relocate_kernel((unsigned long)image->head,
387 (unsigned long)page_list,
388 image->start,
389 image->preserve_context,
390 sme_active());
392 #ifdef CONFIG_KEXEC_JUMP
393 if (image->preserve_context)
394 restore_processor_state();
395 #endif
397 __ftrace_enabled_restore(save_ftrace_enabled);
400 /* arch-dependent functionality related to kexec file-based syscall */
402 #ifdef CONFIG_KEXEC_FILE
403 void *arch_kexec_kernel_image_load(struct kimage *image)
405 vfree(image->arch.elf_headers);
406 image->arch.elf_headers = NULL;
408 if (!image->fops || !image->fops->load)
409 return ERR_PTR(-ENOEXEC);
411 return image->fops->load(image, image->kernel_buf,
412 image->kernel_buf_len, image->initrd_buf,
413 image->initrd_buf_len, image->cmdline_buf,
414 image->cmdline_buf_len);
418 * Apply purgatory relocations.
420 * @pi: Purgatory to be relocated.
421 * @section: Section relocations applying to.
422 * @relsec: Section containing RELAs.
423 * @symtabsec: Corresponding symtab.
425 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
427 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
428 Elf_Shdr *section, const Elf_Shdr *relsec,
429 const Elf_Shdr *symtabsec)
431 unsigned int i;
432 Elf64_Rela *rel;
433 Elf64_Sym *sym;
434 void *location;
435 unsigned long address, sec_base, value;
436 const char *strtab, *name, *shstrtab;
437 const Elf_Shdr *sechdrs;
439 /* String & section header string table */
440 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
441 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
442 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
444 rel = (void *)pi->ehdr + relsec->sh_offset;
446 pr_debug("Applying relocate section %s to %u\n",
447 shstrtab + relsec->sh_name, relsec->sh_info);
449 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
452 * rel[i].r_offset contains byte offset from beginning
453 * of section to the storage unit affected.
455 * This is location to update. This is temporary buffer
456 * where section is currently loaded. This will finally be
457 * loaded to a different address later, pointed to by
458 * ->sh_addr. kexec takes care of moving it
459 * (kexec_load_segment()).
461 location = pi->purgatory_buf;
462 location += section->sh_offset;
463 location += rel[i].r_offset;
465 /* Final address of the location */
466 address = section->sh_addr + rel[i].r_offset;
469 * rel[i].r_info contains information about symbol table index
470 * w.r.t which relocation must be made and type of relocation
471 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
472 * these respectively.
474 sym = (void *)pi->ehdr + symtabsec->sh_offset;
475 sym += ELF64_R_SYM(rel[i].r_info);
477 if (sym->st_name)
478 name = strtab + sym->st_name;
479 else
480 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
482 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
483 name, sym->st_info, sym->st_shndx, sym->st_value,
484 sym->st_size);
486 if (sym->st_shndx == SHN_UNDEF) {
487 pr_err("Undefined symbol: %s\n", name);
488 return -ENOEXEC;
491 if (sym->st_shndx == SHN_COMMON) {
492 pr_err("symbol '%s' in common section\n", name);
493 return -ENOEXEC;
496 if (sym->st_shndx == SHN_ABS)
497 sec_base = 0;
498 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
499 pr_err("Invalid section %d for symbol %s\n",
500 sym->st_shndx, name);
501 return -ENOEXEC;
502 } else
503 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
505 value = sym->st_value;
506 value += sec_base;
507 value += rel[i].r_addend;
509 switch (ELF64_R_TYPE(rel[i].r_info)) {
510 case R_X86_64_NONE:
511 break;
512 case R_X86_64_64:
513 *(u64 *)location = value;
514 break;
515 case R_X86_64_32:
516 *(u32 *)location = value;
517 if (value != *(u32 *)location)
518 goto overflow;
519 break;
520 case R_X86_64_32S:
521 *(s32 *)location = value;
522 if ((s64)value != *(s32 *)location)
523 goto overflow;
524 break;
525 case R_X86_64_PC32:
526 case R_X86_64_PLT32:
527 value -= (u64)address;
528 *(u32 *)location = value;
529 break;
530 default:
531 pr_err("Unknown rela relocation: %llu\n",
532 ELF64_R_TYPE(rel[i].r_info));
533 return -ENOEXEC;
536 return 0;
538 overflow:
539 pr_err("Overflow in relocation type %d value 0x%lx\n",
540 (int)ELF64_R_TYPE(rel[i].r_info), value);
541 return -ENOEXEC;
543 #endif /* CONFIG_KEXEC_FILE */
545 static int
546 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
548 struct page *page;
549 unsigned int nr_pages;
552 * For physical range: [start, end]. We must skip the unassigned
553 * crashk resource with zero-valued "end" member.
555 if (!end || start > end)
556 return 0;
558 page = pfn_to_page(start >> PAGE_SHIFT);
559 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
560 if (protect)
561 return set_pages_ro(page, nr_pages);
562 else
563 return set_pages_rw(page, nr_pages);
566 static void kexec_mark_crashkres(bool protect)
568 unsigned long control;
570 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
572 /* Don't touch the control code page used in crash_kexec().*/
573 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
574 /* Control code page is located in the 2nd page. */
575 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
576 control += KEXEC_CONTROL_PAGE_SIZE;
577 kexec_mark_range(control, crashk_res.end, protect);
580 void arch_kexec_protect_crashkres(void)
582 kexec_mark_crashkres(true);
585 void arch_kexec_unprotect_crashkres(void)
587 kexec_mark_crashkres(false);
591 * During a traditional boot under SME, SME will encrypt the kernel,
592 * so the SME kexec kernel also needs to be un-encrypted in order to
593 * replicate a normal SME boot.
595 * During a traditional boot under SEV, the kernel has already been
596 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
597 * order to replicate a normal SEV boot.
599 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
601 if (sev_active())
602 return 0;
605 * If SME is active we need to be sure that kexec pages are
606 * not encrypted because when we boot to the new kernel the
607 * pages won't be accessed encrypted (initially).
609 return set_memory_decrypted((unsigned long)vaddr, pages);
612 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
614 if (sev_active())
615 return;
618 * If SME is active we need to reset the pages back to being
619 * an encrypted mapping before freeing them.
621 set_memory_encrypted((unsigned long)vaddr, pages);