1 // SPDX-License-Identifier: GPL-2.0-only
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
7 #define pr_fmt(fmt) "kexec: " fmt
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/io_apic.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27 #include <asm/setup.h>
28 #include <asm/set_memory.h>
32 * Used while adding mapping for ACPI tables.
33 * Can be reused when other iomem regions need be mapped
35 struct init_pgtable_data
{
36 struct x86_mapping_info
*info
;
40 static int mem_region_callback(struct resource
*res
, void *arg
)
42 struct init_pgtable_data
*data
= arg
;
43 unsigned long mstart
, mend
;
46 mend
= mstart
+ resource_size(res
) - 1;
48 return kernel_ident_mapping_init(data
->info
, data
->level4p
, mstart
, mend
);
52 map_acpi_tables(struct x86_mapping_info
*info
, pgd_t
*level4p
)
54 struct init_pgtable_data data
;
59 data
.level4p
= level4p
;
60 flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
62 ret
= walk_iomem_res_desc(IORES_DESC_ACPI_TABLES
, flags
, 0, -1,
63 &data
, mem_region_callback
);
64 if (ret
&& ret
!= -EINVAL
)
67 /* ACPI tables could be located in ACPI Non-volatile Storage region */
68 ret
= walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE
, flags
, 0, -1,
69 &data
, mem_region_callback
);
70 if (ret
&& ret
!= -EINVAL
)
76 static int map_acpi_tables(struct x86_mapping_info
*info
, pgd_t
*level4p
) { return 0; }
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops
* const kexec_file_loaders
[] = {
87 map_efi_systab(struct x86_mapping_info
*info
, pgd_t
*level4p
)
90 unsigned long mstart
, mend
;
92 if (!efi_enabled(EFI_BOOT
))
95 mstart
= (boot_params
.efi_info
.efi_systab
|
96 ((u64
)boot_params
.efi_info
.efi_systab_hi
<<32));
98 if (efi_enabled(EFI_64BIT
))
99 mend
= mstart
+ sizeof(efi_system_table_64_t
);
101 mend
= mstart
+ sizeof(efi_system_table_32_t
);
106 return kernel_ident_mapping_init(info
, level4p
, mstart
, mend
);
111 static void free_transition_pgtable(struct kimage
*image
)
113 free_page((unsigned long)image
->arch
.p4d
);
114 image
->arch
.p4d
= NULL
;
115 free_page((unsigned long)image
->arch
.pud
);
116 image
->arch
.pud
= NULL
;
117 free_page((unsigned long)image
->arch
.pmd
);
118 image
->arch
.pmd
= NULL
;
119 free_page((unsigned long)image
->arch
.pte
);
120 image
->arch
.pte
= NULL
;
123 static int init_transition_pgtable(struct kimage
*image
, pgd_t
*pgd
)
125 pgprot_t prot
= PAGE_KERNEL_EXEC_NOENC
;
126 unsigned long vaddr
, paddr
;
127 int result
= -ENOMEM
;
133 vaddr
= (unsigned long)relocate_kernel
;
134 paddr
= __pa(page_address(image
->control_code_page
)+PAGE_SIZE
);
135 pgd
+= pgd_index(vaddr
);
136 if (!pgd_present(*pgd
)) {
137 p4d
= (p4d_t
*)get_zeroed_page(GFP_KERNEL
);
140 image
->arch
.p4d
= p4d
;
141 set_pgd(pgd
, __pgd(__pa(p4d
) | _KERNPG_TABLE
));
143 p4d
= p4d_offset(pgd
, vaddr
);
144 if (!p4d_present(*p4d
)) {
145 pud
= (pud_t
*)get_zeroed_page(GFP_KERNEL
);
148 image
->arch
.pud
= pud
;
149 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
));
151 pud
= pud_offset(p4d
, vaddr
);
152 if (!pud_present(*pud
)) {
153 pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
);
156 image
->arch
.pmd
= pmd
;
157 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
159 pmd
= pmd_offset(pud
, vaddr
);
160 if (!pmd_present(*pmd
)) {
161 pte
= (pte_t
*)get_zeroed_page(GFP_KERNEL
);
164 image
->arch
.pte
= pte
;
165 set_pmd(pmd
, __pmd(__pa(pte
) | _KERNPG_TABLE
));
167 pte
= pte_offset_kernel(pmd
, vaddr
);
170 prot
= PAGE_KERNEL_EXEC
;
172 set_pte(pte
, pfn_pte(paddr
>> PAGE_SHIFT
, prot
));
178 static void *alloc_pgt_page(void *data
)
180 struct kimage
*image
= (struct kimage
*)data
;
184 page
= kimage_alloc_control_pages(image
, 0);
186 p
= page_address(page
);
193 static int init_pgtable(struct kimage
*image
, unsigned long start_pgtable
)
195 struct x86_mapping_info info
= {
196 .alloc_pgt_page
= alloc_pgt_page
,
198 .page_flag
= __PAGE_KERNEL_LARGE_EXEC
,
199 .kernpg_flag
= _KERNPG_TABLE_NOENC
,
201 unsigned long mstart
, mend
;
206 level4p
= (pgd_t
*)__va(start_pgtable
);
210 info
.page_flag
|= _PAGE_ENC
;
211 info
.kernpg_flag
|= _PAGE_ENC
;
215 info
.direct_gbpages
= true;
217 for (i
= 0; i
< nr_pfn_mapped
; i
++) {
218 mstart
= pfn_mapped
[i
].start
<< PAGE_SHIFT
;
219 mend
= pfn_mapped
[i
].end
<< PAGE_SHIFT
;
221 result
= kernel_ident_mapping_init(&info
,
222 level4p
, mstart
, mend
);
228 * segments's mem ranges could be outside 0 ~ max_pfn,
229 * for example when jump back to original kernel from kexeced kernel.
230 * or first kernel is booted with user mem map, and second kernel
231 * could be loaded out of that range.
233 for (i
= 0; i
< image
->nr_segments
; i
++) {
234 mstart
= image
->segment
[i
].mem
;
235 mend
= mstart
+ image
->segment
[i
].memsz
;
237 result
= kernel_ident_mapping_init(&info
,
238 level4p
, mstart
, mend
);
245 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246 * not covered by pfn_mapped.
248 result
= map_efi_systab(&info
, level4p
);
252 result
= map_acpi_tables(&info
, level4p
);
256 return init_transition_pgtable(image
, level4p
);
259 static void set_idt(void *newidt
, u16 limit
)
261 struct desc_ptr curidt
;
263 /* x86-64 supports unaliged loads & stores */
265 curidt
.address
= (unsigned long)newidt
;
267 __asm__
__volatile__ (
274 static void set_gdt(void *newgdt
, u16 limit
)
276 struct desc_ptr curgdt
;
278 /* x86-64 supports unaligned loads & stores */
280 curgdt
.address
= (unsigned long)newgdt
;
282 __asm__
__volatile__ (
288 static void load_segments(void)
290 __asm__
__volatile__ (
296 : : "a" (__KERNEL_DS
) : "memory"
300 int machine_kexec_prepare(struct kimage
*image
)
302 unsigned long start_pgtable
;
305 /* Calculate the offsets */
306 start_pgtable
= page_to_pfn(image
->control_code_page
) << PAGE_SHIFT
;
308 /* Setup the identity mapped 64bit page table */
309 result
= init_pgtable(image
, start_pgtable
);
316 void machine_kexec_cleanup(struct kimage
*image
)
318 free_transition_pgtable(image
);
322 * Do not allocate memory (or fail in any way) in machine_kexec().
323 * We are past the point of no return, committed to rebooting now.
325 void machine_kexec(struct kimage
*image
)
327 unsigned long page_list
[PAGES_NR
];
329 int save_ftrace_enabled
;
331 #ifdef CONFIG_KEXEC_JUMP
332 if (image
->preserve_context
)
333 save_processor_state();
336 save_ftrace_enabled
= __ftrace_enabled_save();
338 /* Interrupts aren't acceptable while we reboot */
340 hw_breakpoint_disable();
342 if (image
->preserve_context
) {
343 #ifdef CONFIG_X86_IO_APIC
345 * We need to put APICs in legacy mode so that we can
346 * get timer interrupts in second kernel. kexec/kdump
347 * paths already have calls to restore_boot_irq_mode()
348 * in one form or other. kexec jump path also need one.
351 restore_boot_irq_mode();
355 control_page
= page_address(image
->control_code_page
) + PAGE_SIZE
;
356 memcpy(control_page
, relocate_kernel
, KEXEC_CONTROL_CODE_MAX_SIZE
);
358 page_list
[PA_CONTROL_PAGE
] = virt_to_phys(control_page
);
359 page_list
[VA_CONTROL_PAGE
] = (unsigned long)control_page
;
360 page_list
[PA_TABLE_PAGE
] =
361 (unsigned long)__pa(page_address(image
->control_code_page
));
363 if (image
->type
== KEXEC_TYPE_DEFAULT
)
364 page_list
[PA_SWAP_PAGE
] = (page_to_pfn(image
->swap_page
)
368 * The segment registers are funny things, they have both a
369 * visible and an invisible part. Whenever the visible part is
370 * set to a specific selector, the invisible part is loaded
371 * with from a table in memory. At no other time is the
372 * descriptor table in memory accessed.
374 * I take advantage of this here by force loading the
375 * segments, before I zap the gdt with an invalid value.
379 * The gdt & idt are now invalid.
380 * If you want to load them you must set up your own idt & gdt.
382 set_gdt(phys_to_virt(0), 0);
383 set_idt(phys_to_virt(0), 0);
386 image
->start
= relocate_kernel((unsigned long)image
->head
,
387 (unsigned long)page_list
,
389 image
->preserve_context
,
392 #ifdef CONFIG_KEXEC_JUMP
393 if (image
->preserve_context
)
394 restore_processor_state();
397 __ftrace_enabled_restore(save_ftrace_enabled
);
400 /* arch-dependent functionality related to kexec file-based syscall */
402 #ifdef CONFIG_KEXEC_FILE
403 void *arch_kexec_kernel_image_load(struct kimage
*image
)
405 vfree(image
->arch
.elf_headers
);
406 image
->arch
.elf_headers
= NULL
;
408 if (!image
->fops
|| !image
->fops
->load
)
409 return ERR_PTR(-ENOEXEC
);
411 return image
->fops
->load(image
, image
->kernel_buf
,
412 image
->kernel_buf_len
, image
->initrd_buf
,
413 image
->initrd_buf_len
, image
->cmdline_buf
,
414 image
->cmdline_buf_len
);
418 * Apply purgatory relocations.
420 * @pi: Purgatory to be relocated.
421 * @section: Section relocations applying to.
422 * @relsec: Section containing RELAs.
423 * @symtabsec: Corresponding symtab.
425 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
427 int arch_kexec_apply_relocations_add(struct purgatory_info
*pi
,
428 Elf_Shdr
*section
, const Elf_Shdr
*relsec
,
429 const Elf_Shdr
*symtabsec
)
435 unsigned long address
, sec_base
, value
;
436 const char *strtab
, *name
, *shstrtab
;
437 const Elf_Shdr
*sechdrs
;
439 /* String & section header string table */
440 sechdrs
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
441 strtab
= (char *)pi
->ehdr
+ sechdrs
[symtabsec
->sh_link
].sh_offset
;
442 shstrtab
= (char *)pi
->ehdr
+ sechdrs
[pi
->ehdr
->e_shstrndx
].sh_offset
;
444 rel
= (void *)pi
->ehdr
+ relsec
->sh_offset
;
446 pr_debug("Applying relocate section %s to %u\n",
447 shstrtab
+ relsec
->sh_name
, relsec
->sh_info
);
449 for (i
= 0; i
< relsec
->sh_size
/ sizeof(*rel
); i
++) {
452 * rel[i].r_offset contains byte offset from beginning
453 * of section to the storage unit affected.
455 * This is location to update. This is temporary buffer
456 * where section is currently loaded. This will finally be
457 * loaded to a different address later, pointed to by
458 * ->sh_addr. kexec takes care of moving it
459 * (kexec_load_segment()).
461 location
= pi
->purgatory_buf
;
462 location
+= section
->sh_offset
;
463 location
+= rel
[i
].r_offset
;
465 /* Final address of the location */
466 address
= section
->sh_addr
+ rel
[i
].r_offset
;
469 * rel[i].r_info contains information about symbol table index
470 * w.r.t which relocation must be made and type of relocation
471 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
472 * these respectively.
474 sym
= (void *)pi
->ehdr
+ symtabsec
->sh_offset
;
475 sym
+= ELF64_R_SYM(rel
[i
].r_info
);
478 name
= strtab
+ sym
->st_name
;
480 name
= shstrtab
+ sechdrs
[sym
->st_shndx
].sh_name
;
482 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
483 name
, sym
->st_info
, sym
->st_shndx
, sym
->st_value
,
486 if (sym
->st_shndx
== SHN_UNDEF
) {
487 pr_err("Undefined symbol: %s\n", name
);
491 if (sym
->st_shndx
== SHN_COMMON
) {
492 pr_err("symbol '%s' in common section\n", name
);
496 if (sym
->st_shndx
== SHN_ABS
)
498 else if (sym
->st_shndx
>= pi
->ehdr
->e_shnum
) {
499 pr_err("Invalid section %d for symbol %s\n",
500 sym
->st_shndx
, name
);
503 sec_base
= pi
->sechdrs
[sym
->st_shndx
].sh_addr
;
505 value
= sym
->st_value
;
507 value
+= rel
[i
].r_addend
;
509 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
513 *(u64
*)location
= value
;
516 *(u32
*)location
= value
;
517 if (value
!= *(u32
*)location
)
521 *(s32
*)location
= value
;
522 if ((s64
)value
!= *(s32
*)location
)
527 value
-= (u64
)address
;
528 *(u32
*)location
= value
;
531 pr_err("Unknown rela relocation: %llu\n",
532 ELF64_R_TYPE(rel
[i
].r_info
));
539 pr_err("Overflow in relocation type %d value 0x%lx\n",
540 (int)ELF64_R_TYPE(rel
[i
].r_info
), value
);
543 #endif /* CONFIG_KEXEC_FILE */
546 kexec_mark_range(unsigned long start
, unsigned long end
, bool protect
)
549 unsigned int nr_pages
;
552 * For physical range: [start, end]. We must skip the unassigned
553 * crashk resource with zero-valued "end" member.
555 if (!end
|| start
> end
)
558 page
= pfn_to_page(start
>> PAGE_SHIFT
);
559 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
561 return set_pages_ro(page
, nr_pages
);
563 return set_pages_rw(page
, nr_pages
);
566 static void kexec_mark_crashkres(bool protect
)
568 unsigned long control
;
570 kexec_mark_range(crashk_low_res
.start
, crashk_low_res
.end
, protect
);
572 /* Don't touch the control code page used in crash_kexec().*/
573 control
= PFN_PHYS(page_to_pfn(kexec_crash_image
->control_code_page
));
574 /* Control code page is located in the 2nd page. */
575 kexec_mark_range(crashk_res
.start
, control
+ PAGE_SIZE
- 1, protect
);
576 control
+= KEXEC_CONTROL_PAGE_SIZE
;
577 kexec_mark_range(control
, crashk_res
.end
, protect
);
580 void arch_kexec_protect_crashkres(void)
582 kexec_mark_crashkres(true);
585 void arch_kexec_unprotect_crashkres(void)
587 kexec_mark_crashkres(false);
591 * During a traditional boot under SME, SME will encrypt the kernel,
592 * so the SME kexec kernel also needs to be un-encrypted in order to
593 * replicate a normal SME boot.
595 * During a traditional boot under SEV, the kernel has already been
596 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
597 * order to replicate a normal SEV boot.
599 int arch_kexec_post_alloc_pages(void *vaddr
, unsigned int pages
, gfp_t gfp
)
605 * If SME is active we need to be sure that kexec pages are
606 * not encrypted because when we boot to the new kernel the
607 * pages won't be accessed encrypted (initially).
609 return set_memory_decrypted((unsigned long)vaddr
, pages
);
612 void arch_kexec_pre_free_pages(void *vaddr
, unsigned int pages
)
618 * If SME is active we need to reset the pages back to being
619 * an encrypted mapping before freeing them.
621 set_memory_encrypted((unsigned long)vaddr
, pages
);