WIP FPC-III support
[linux/fpc-iii.git] / arch / x86 / kernel / traps.c
blob7f5aec758f0eeac2d9bcebcd80963bc9d79e7ab3
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/realmode.h>
47 #include <asm/text-patching.h>
48 #include <asm/ftrace.h>
49 #include <asm/traps.h>
50 #include <asm/desc.h>
51 #include <asm/fpu/internal.h>
52 #include <asm/cpu.h>
53 #include <asm/cpu_entry_area.h>
54 #include <asm/mce.h>
55 #include <asm/fixmap.h>
56 #include <asm/mach_traps.h>
57 #include <asm/alternative.h>
58 #include <asm/fpu/xstate.h>
59 #include <asm/vm86.h>
60 #include <asm/umip.h>
61 #include <asm/insn.h>
62 #include <asm/insn-eval.h>
63 #include <asm/vdso.h>
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/proto.h>
68 #else
69 #include <asm/processor-flags.h>
70 #include <asm/setup.h>
71 #include <asm/proto.h>
72 #endif
74 DECLARE_BITMAP(system_vectors, NR_VECTORS);
76 static inline void cond_local_irq_enable(struct pt_regs *regs)
78 if (regs->flags & X86_EFLAGS_IF)
79 local_irq_enable();
82 static inline void cond_local_irq_disable(struct pt_regs *regs)
84 if (regs->flags & X86_EFLAGS_IF)
85 local_irq_disable();
88 __always_inline int is_valid_bugaddr(unsigned long addr)
90 if (addr < TASK_SIZE_MAX)
91 return 0;
94 * We got #UD, if the text isn't readable we'd have gotten
95 * a different exception.
97 return *(unsigned short *)addr == INSN_UD2;
100 static nokprobe_inline int
101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
102 struct pt_regs *regs, long error_code)
104 if (v8086_mode(regs)) {
106 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
107 * On nmi (interrupt 2), do_trap should not be called.
109 if (trapnr < X86_TRAP_UD) {
110 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
111 error_code, trapnr))
112 return 0;
114 } else if (!user_mode(regs)) {
115 if (fixup_exception(regs, trapnr, error_code, 0))
116 return 0;
118 tsk->thread.error_code = error_code;
119 tsk->thread.trap_nr = trapnr;
120 die(str, regs, error_code);
121 } else {
122 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
123 return 0;
127 * We want error_code and trap_nr set for userspace faults and
128 * kernelspace faults which result in die(), but not
129 * kernelspace faults which are fixed up. die() gives the
130 * process no chance to handle the signal and notice the
131 * kernel fault information, so that won't result in polluting
132 * the information about previously queued, but not yet
133 * delivered, faults. See also exc_general_protection below.
135 tsk->thread.error_code = error_code;
136 tsk->thread.trap_nr = trapnr;
138 return -1;
141 static void show_signal(struct task_struct *tsk, int signr,
142 const char *type, const char *desc,
143 struct pt_regs *regs, long error_code)
145 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
146 printk_ratelimit()) {
147 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
148 tsk->comm, task_pid_nr(tsk), type, desc,
149 regs->ip, regs->sp, error_code);
150 print_vma_addr(KERN_CONT " in ", regs->ip);
151 pr_cont("\n");
155 static void
156 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
157 long error_code, int sicode, void __user *addr)
159 struct task_struct *tsk = current;
161 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
162 return;
164 show_signal(tsk, signr, "trap ", str, regs, error_code);
166 if (!sicode)
167 force_sig(signr);
168 else
169 force_sig_fault(signr, sicode, addr);
171 NOKPROBE_SYMBOL(do_trap);
173 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
174 unsigned long trapnr, int signr, int sicode, void __user *addr)
176 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
178 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
179 NOTIFY_STOP) {
180 cond_local_irq_enable(regs);
181 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
182 cond_local_irq_disable(regs);
187 * Posix requires to provide the address of the faulting instruction for
188 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
190 * This address is usually regs->ip, but when an uprobe moved the code out
191 * of line then regs->ip points to the XOL code which would confuse
192 * anything which analyzes the fault address vs. the unmodified binary. If
193 * a trap happened in XOL code then uprobe maps regs->ip back to the
194 * original instruction address.
196 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
198 return (void __user *)uprobe_get_trap_addr(regs);
201 DEFINE_IDTENTRY(exc_divide_error)
203 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
204 FPE_INTDIV, error_get_trap_addr(regs));
207 DEFINE_IDTENTRY(exc_overflow)
209 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
212 #ifdef CONFIG_X86_F00F_BUG
213 void handle_invalid_op(struct pt_regs *regs)
214 #else
215 static inline void handle_invalid_op(struct pt_regs *regs)
216 #endif
218 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
219 ILL_ILLOPN, error_get_trap_addr(regs));
222 static noinstr bool handle_bug(struct pt_regs *regs)
224 bool handled = false;
226 if (!is_valid_bugaddr(regs->ip))
227 return handled;
230 * All lies, just get the WARN/BUG out.
232 instrumentation_begin();
234 * Since we're emulating a CALL with exceptions, restore the interrupt
235 * state to what it was at the exception site.
237 if (regs->flags & X86_EFLAGS_IF)
238 raw_local_irq_enable();
239 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
240 regs->ip += LEN_UD2;
241 handled = true;
243 if (regs->flags & X86_EFLAGS_IF)
244 raw_local_irq_disable();
245 instrumentation_end();
247 return handled;
250 DEFINE_IDTENTRY_RAW(exc_invalid_op)
252 irqentry_state_t state;
255 * We use UD2 as a short encoding for 'CALL __WARN', as such
256 * handle it before exception entry to avoid recursive WARN
257 * in case exception entry is the one triggering WARNs.
259 if (!user_mode(regs) && handle_bug(regs))
260 return;
262 state = irqentry_enter(regs);
263 instrumentation_begin();
264 handle_invalid_op(regs);
265 instrumentation_end();
266 irqentry_exit(regs, state);
269 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
271 do_error_trap(regs, 0, "coprocessor segment overrun",
272 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
275 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
277 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
278 0, NULL);
281 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
283 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
284 SIGBUS, 0, NULL);
287 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
289 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
290 0, NULL);
293 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
295 char *str = "alignment check";
297 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
298 return;
300 if (!user_mode(regs))
301 die("Split lock detected\n", regs, error_code);
303 local_irq_enable();
305 if (handle_user_split_lock(regs, error_code))
306 goto out;
308 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
309 error_code, BUS_ADRALN, NULL);
311 out:
312 local_irq_disable();
315 #ifdef CONFIG_VMAP_STACK
316 __visible void __noreturn handle_stack_overflow(const char *message,
317 struct pt_regs *regs,
318 unsigned long fault_address)
320 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
321 (void *)fault_address, current->stack,
322 (char *)current->stack + THREAD_SIZE - 1);
323 die(message, regs, 0);
325 /* Be absolutely certain we don't return. */
326 panic("%s", message);
328 #endif
331 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
333 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
334 * SDM's warnings about double faults being unrecoverable, returning works as
335 * expected. Presumably what the SDM actually means is that the CPU may get
336 * the register state wrong on entry, so returning could be a bad idea.
338 * Various CPU engineers have promised that double faults due to an IRET fault
339 * while the stack is read-only are, in fact, recoverable.
341 * On x86_32, this is entered through a task gate, and regs are synthesized
342 * from the TSS. Returning is, in principle, okay, but changes to regs will
343 * be lost. If, for some reason, we need to return to a context with modified
344 * regs, the shim code could be adjusted to synchronize the registers.
346 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
347 * to be read before doing anything else.
349 DEFINE_IDTENTRY_DF(exc_double_fault)
351 static const char str[] = "double fault";
352 struct task_struct *tsk = current;
354 #ifdef CONFIG_VMAP_STACK
355 unsigned long address = read_cr2();
356 #endif
358 #ifdef CONFIG_X86_ESPFIX64
359 extern unsigned char native_irq_return_iret[];
362 * If IRET takes a non-IST fault on the espfix64 stack, then we
363 * end up promoting it to a doublefault. In that case, take
364 * advantage of the fact that we're not using the normal (TSS.sp0)
365 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
366 * and then modify our own IRET frame so that, when we return,
367 * we land directly at the #GP(0) vector with the stack already
368 * set up according to its expectations.
370 * The net result is that our #GP handler will think that we
371 * entered from usermode with the bad user context.
373 * No need for nmi_enter() here because we don't use RCU.
375 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
376 regs->cs == __KERNEL_CS &&
377 regs->ip == (unsigned long)native_irq_return_iret)
379 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
380 unsigned long *p = (unsigned long *)regs->sp;
383 * regs->sp points to the failing IRET frame on the
384 * ESPFIX64 stack. Copy it to the entry stack. This fills
385 * in gpregs->ss through gpregs->ip.
388 gpregs->ip = p[0];
389 gpregs->cs = p[1];
390 gpregs->flags = p[2];
391 gpregs->sp = p[3];
392 gpregs->ss = p[4];
393 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
396 * Adjust our frame so that we return straight to the #GP
397 * vector with the expected RSP value. This is safe because
398 * we won't enable interupts or schedule before we invoke
399 * general_protection, so nothing will clobber the stack
400 * frame we just set up.
402 * We will enter general_protection with kernel GSBASE,
403 * which is what the stub expects, given that the faulting
404 * RIP will be the IRET instruction.
406 regs->ip = (unsigned long)asm_exc_general_protection;
407 regs->sp = (unsigned long)&gpregs->orig_ax;
409 return;
411 #endif
413 irqentry_nmi_enter(regs);
414 instrumentation_begin();
415 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
417 tsk->thread.error_code = error_code;
418 tsk->thread.trap_nr = X86_TRAP_DF;
420 #ifdef CONFIG_VMAP_STACK
422 * If we overflow the stack into a guard page, the CPU will fail
423 * to deliver #PF and will send #DF instead. Similarly, if we
424 * take any non-IST exception while too close to the bottom of
425 * the stack, the processor will get a page fault while
426 * delivering the exception and will generate a double fault.
428 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
429 * Page-Fault Exception (#PF):
431 * Processors update CR2 whenever a page fault is detected. If a
432 * second page fault occurs while an earlier page fault is being
433 * delivered, the faulting linear address of the second fault will
434 * overwrite the contents of CR2 (replacing the previous
435 * address). These updates to CR2 occur even if the page fault
436 * results in a double fault or occurs during the delivery of a
437 * double fault.
439 * The logic below has a small possibility of incorrectly diagnosing
440 * some errors as stack overflows. For example, if the IDT or GDT
441 * gets corrupted such that #GP delivery fails due to a bad descriptor
442 * causing #GP and we hit this condition while CR2 coincidentally
443 * points to the stack guard page, we'll think we overflowed the
444 * stack. Given that we're going to panic one way or another
445 * if this happens, this isn't necessarily worth fixing.
447 * If necessary, we could improve the test by only diagnosing
448 * a stack overflow if the saved RSP points within 47 bytes of
449 * the bottom of the stack: if RSP == tsk_stack + 48 and we
450 * take an exception, the stack is already aligned and there
451 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
452 * possible error code, so a stack overflow would *not* double
453 * fault. With any less space left, exception delivery could
454 * fail, and, as a practical matter, we've overflowed the
455 * stack even if the actual trigger for the double fault was
456 * something else.
458 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
459 handle_stack_overflow("kernel stack overflow (double-fault)",
460 regs, address);
462 #endif
464 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
465 die("double fault", regs, error_code);
466 panic("Machine halted.");
467 instrumentation_end();
470 DEFINE_IDTENTRY(exc_bounds)
472 if (notify_die(DIE_TRAP, "bounds", regs, 0,
473 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
474 return;
475 cond_local_irq_enable(regs);
477 if (!user_mode(regs))
478 die("bounds", regs, 0);
480 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
482 cond_local_irq_disable(regs);
485 enum kernel_gp_hint {
486 GP_NO_HINT,
487 GP_NON_CANONICAL,
488 GP_CANONICAL
492 * When an uncaught #GP occurs, try to determine the memory address accessed by
493 * the instruction and return that address to the caller. Also, try to figure
494 * out whether any part of the access to that address was non-canonical.
496 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
497 unsigned long *addr)
499 u8 insn_buf[MAX_INSN_SIZE];
500 struct insn insn;
502 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
503 MAX_INSN_SIZE))
504 return GP_NO_HINT;
506 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
507 insn_get_modrm(&insn);
508 insn_get_sib(&insn);
510 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
511 if (*addr == -1UL)
512 return GP_NO_HINT;
514 #ifdef CONFIG_X86_64
516 * Check that:
517 * - the operand is not in the kernel half
518 * - the last byte of the operand is not in the user canonical half
520 if (*addr < ~__VIRTUAL_MASK &&
521 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
522 return GP_NON_CANONICAL;
523 #endif
525 return GP_CANONICAL;
528 #define GPFSTR "general protection fault"
530 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
532 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
533 enum kernel_gp_hint hint = GP_NO_HINT;
534 struct task_struct *tsk;
535 unsigned long gp_addr;
536 int ret;
538 cond_local_irq_enable(regs);
540 if (static_cpu_has(X86_FEATURE_UMIP)) {
541 if (user_mode(regs) && fixup_umip_exception(regs))
542 goto exit;
545 if (v8086_mode(regs)) {
546 local_irq_enable();
547 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
548 local_irq_disable();
549 return;
552 tsk = current;
554 if (user_mode(regs)) {
555 tsk->thread.error_code = error_code;
556 tsk->thread.trap_nr = X86_TRAP_GP;
558 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
559 return;
561 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
562 force_sig(SIGSEGV);
563 goto exit;
566 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
567 goto exit;
569 tsk->thread.error_code = error_code;
570 tsk->thread.trap_nr = X86_TRAP_GP;
573 * To be potentially processing a kprobe fault and to trust the result
574 * from kprobe_running(), we have to be non-preemptible.
576 if (!preemptible() &&
577 kprobe_running() &&
578 kprobe_fault_handler(regs, X86_TRAP_GP))
579 goto exit;
581 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
582 if (ret == NOTIFY_STOP)
583 goto exit;
585 if (error_code)
586 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
587 else
588 hint = get_kernel_gp_address(regs, &gp_addr);
590 if (hint != GP_NO_HINT)
591 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
592 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
593 : "maybe for address",
594 gp_addr);
597 * KASAN is interested only in the non-canonical case, clear it
598 * otherwise.
600 if (hint != GP_NON_CANONICAL)
601 gp_addr = 0;
603 die_addr(desc, regs, error_code, gp_addr);
605 exit:
606 cond_local_irq_disable(regs);
609 static bool do_int3(struct pt_regs *regs)
611 int res;
613 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
614 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
615 SIGTRAP) == NOTIFY_STOP)
616 return true;
617 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
619 #ifdef CONFIG_KPROBES
620 if (kprobe_int3_handler(regs))
621 return true;
622 #endif
623 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
625 return res == NOTIFY_STOP;
628 static void do_int3_user(struct pt_regs *regs)
630 if (do_int3(regs))
631 return;
633 cond_local_irq_enable(regs);
634 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
635 cond_local_irq_disable(regs);
638 DEFINE_IDTENTRY_RAW(exc_int3)
641 * poke_int3_handler() is completely self contained code; it does (and
642 * must) *NOT* call out to anything, lest it hits upon yet another
643 * INT3.
645 if (poke_int3_handler(regs))
646 return;
649 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
650 * and therefore can trigger INT3, hence poke_int3_handler() must
651 * be done before. If the entry came from kernel mode, then use
652 * nmi_enter() because the INT3 could have been hit in any context
653 * including NMI.
655 if (user_mode(regs)) {
656 irqentry_enter_from_user_mode(regs);
657 instrumentation_begin();
658 do_int3_user(regs);
659 instrumentation_end();
660 irqentry_exit_to_user_mode(regs);
661 } else {
662 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
664 instrumentation_begin();
665 if (!do_int3(regs))
666 die("int3", regs, 0);
667 instrumentation_end();
668 irqentry_nmi_exit(regs, irq_state);
672 #ifdef CONFIG_X86_64
674 * Help handler running on a per-cpu (IST or entry trampoline) stack
675 * to switch to the normal thread stack if the interrupted code was in
676 * user mode. The actual stack switch is done in entry_64.S
678 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
680 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
681 if (regs != eregs)
682 *regs = *eregs;
683 return regs;
686 #ifdef CONFIG_AMD_MEM_ENCRYPT
687 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
689 unsigned long sp, *stack;
690 struct stack_info info;
691 struct pt_regs *regs_ret;
694 * In the SYSCALL entry path the RSP value comes from user-space - don't
695 * trust it and switch to the current kernel stack
697 if (regs->ip >= (unsigned long)entry_SYSCALL_64 &&
698 regs->ip < (unsigned long)entry_SYSCALL_64_safe_stack) {
699 sp = this_cpu_read(cpu_current_top_of_stack);
700 goto sync;
704 * From here on the RSP value is trusted. Now check whether entry
705 * happened from a safe stack. Not safe are the entry or unknown stacks,
706 * use the fall-back stack instead in this case.
708 sp = regs->sp;
709 stack = (unsigned long *)sp;
711 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
712 info.type >= STACK_TYPE_EXCEPTION_LAST)
713 sp = __this_cpu_ist_top_va(VC2);
715 sync:
717 * Found a safe stack - switch to it as if the entry didn't happen via
718 * IST stack. The code below only copies pt_regs, the real switch happens
719 * in assembly code.
721 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
723 regs_ret = (struct pt_regs *)sp;
724 *regs_ret = *regs;
726 return regs_ret;
728 #endif
730 struct bad_iret_stack {
731 void *error_entry_ret;
732 struct pt_regs regs;
735 asmlinkage __visible noinstr
736 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
739 * This is called from entry_64.S early in handling a fault
740 * caused by a bad iret to user mode. To handle the fault
741 * correctly, we want to move our stack frame to where it would
742 * be had we entered directly on the entry stack (rather than
743 * just below the IRET frame) and we want to pretend that the
744 * exception came from the IRET target.
746 struct bad_iret_stack tmp, *new_stack =
747 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
749 /* Copy the IRET target to the temporary storage. */
750 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
752 /* Copy the remainder of the stack from the current stack. */
753 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
755 /* Update the entry stack */
756 __memcpy(new_stack, &tmp, sizeof(tmp));
758 BUG_ON(!user_mode(&new_stack->regs));
759 return new_stack;
761 #endif
763 static bool is_sysenter_singlestep(struct pt_regs *regs)
766 * We don't try for precision here. If we're anywhere in the region of
767 * code that can be single-stepped in the SYSENTER entry path, then
768 * assume that this is a useless single-step trap due to SYSENTER
769 * being invoked with TF set. (We don't know in advance exactly
770 * which instructions will be hit because BTF could plausibly
771 * be set.)
773 #ifdef CONFIG_X86_32
774 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
775 (unsigned long)__end_SYSENTER_singlestep_region -
776 (unsigned long)__begin_SYSENTER_singlestep_region;
777 #elif defined(CONFIG_IA32_EMULATION)
778 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
779 (unsigned long)__end_entry_SYSENTER_compat -
780 (unsigned long)entry_SYSENTER_compat;
781 #else
782 return false;
783 #endif
786 static __always_inline unsigned long debug_read_clear_dr6(void)
788 unsigned long dr6;
791 * The Intel SDM says:
793 * Certain debug exceptions may clear bits 0-3. The remaining
794 * contents of the DR6 register are never cleared by the
795 * processor. To avoid confusion in identifying debug
796 * exceptions, debug handlers should clear the register before
797 * returning to the interrupted task.
799 * Keep it simple: clear DR6 immediately.
801 get_debugreg(dr6, 6);
802 set_debugreg(DR6_RESERVED, 6);
803 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
805 return dr6;
809 * Our handling of the processor debug registers is non-trivial.
810 * We do not clear them on entry and exit from the kernel. Therefore
811 * it is possible to get a watchpoint trap here from inside the kernel.
812 * However, the code in ./ptrace.c has ensured that the user can
813 * only set watchpoints on userspace addresses. Therefore the in-kernel
814 * watchpoint trap can only occur in code which is reading/writing
815 * from user space. Such code must not hold kernel locks (since it
816 * can equally take a page fault), therefore it is safe to call
817 * force_sig_info even though that claims and releases locks.
819 * Code in ./signal.c ensures that the debug control register
820 * is restored before we deliver any signal, and therefore that
821 * user code runs with the correct debug control register even though
822 * we clear it here.
824 * Being careful here means that we don't have to be as careful in a
825 * lot of more complicated places (task switching can be a bit lazy
826 * about restoring all the debug state, and ptrace doesn't have to
827 * find every occurrence of the TF bit that could be saved away even
828 * by user code)
830 * May run on IST stack.
833 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
836 * Notifiers will clear bits in @dr6 to indicate the event has been
837 * consumed - hw_breakpoint_handler(), single_stop_cont().
839 * Notifiers will set bits in @virtual_dr6 to indicate the desire
840 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
842 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
843 return true;
845 return false;
848 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
849 unsigned long dr6)
852 * Disable breakpoints during exception handling; recursive exceptions
853 * are exceedingly 'fun'.
855 * Since this function is NOKPROBE, and that also applies to
856 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
857 * HW_BREAKPOINT_W on our stack)
859 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
860 * includes the entry stack is excluded for everything.
862 unsigned long dr7 = local_db_save();
863 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
864 instrumentation_begin();
867 * If something gets miswired and we end up here for a user mode
868 * #DB, we will malfunction.
870 WARN_ON_ONCE(user_mode(regs));
872 if (test_thread_flag(TIF_BLOCKSTEP)) {
874 * The SDM says "The processor clears the BTF flag when it
875 * generates a debug exception." but PTRACE_BLOCKSTEP requested
876 * it for userspace, but we just took a kernel #DB, so re-set
877 * BTF.
879 unsigned long debugctl;
881 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
882 debugctl |= DEBUGCTLMSR_BTF;
883 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
887 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
888 * watchpoint at the same time then that will still be handled.
890 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
891 dr6 &= ~DR_STEP;
893 if (kprobe_debug_handler(regs))
894 goto out;
897 * The kernel doesn't use INT1
899 if (!dr6)
900 goto out;
902 if (notify_debug(regs, &dr6))
903 goto out;
906 * The kernel doesn't use TF single-step outside of:
908 * - Kprobes, consumed through kprobe_debug_handler()
909 * - KGDB, consumed through notify_debug()
911 * So if we get here with DR_STEP set, something is wonky.
913 * A known way to trigger this is through QEMU's GDB stub,
914 * which leaks #DB into the guest and causes IST recursion.
916 if (WARN_ON_ONCE(dr6 & DR_STEP))
917 regs->flags &= ~X86_EFLAGS_TF;
918 out:
919 instrumentation_end();
920 irqentry_nmi_exit(regs, irq_state);
922 local_db_restore(dr7);
925 static __always_inline void exc_debug_user(struct pt_regs *regs,
926 unsigned long dr6)
928 bool icebp;
931 * If something gets miswired and we end up here for a kernel mode
932 * #DB, we will malfunction.
934 WARN_ON_ONCE(!user_mode(regs));
937 * NB: We can't easily clear DR7 here because
938 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
939 * user memory, etc. This means that a recursive #DB is possible. If
940 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
941 * Since we're not on the IST stack right now, everything will be
942 * fine.
945 irqentry_enter_from_user_mode(regs);
946 instrumentation_begin();
949 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
950 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
952 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
953 * even if it is not the result of PTRACE_SINGLESTEP.
955 current->thread.virtual_dr6 = (dr6 & DR_STEP);
958 * The SDM says "The processor clears the BTF flag when it
959 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
960 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
962 clear_thread_flag(TIF_BLOCKSTEP);
965 * If dr6 has no reason to give us about the origin of this trap,
966 * then it's very likely the result of an icebp/int01 trap.
967 * User wants a sigtrap for that.
969 icebp = !dr6;
971 if (notify_debug(regs, &dr6))
972 goto out;
974 /* It's safe to allow irq's after DR6 has been saved */
975 local_irq_enable();
977 if (v8086_mode(regs)) {
978 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
979 goto out_irq;
982 /* Add the virtual_dr6 bits for signals. */
983 dr6 |= current->thread.virtual_dr6;
984 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
985 send_sigtrap(regs, 0, get_si_code(dr6));
987 out_irq:
988 local_irq_disable();
989 out:
990 instrumentation_end();
991 irqentry_exit_to_user_mode(regs);
994 #ifdef CONFIG_X86_64
995 /* IST stack entry */
996 DEFINE_IDTENTRY_DEBUG(exc_debug)
998 exc_debug_kernel(regs, debug_read_clear_dr6());
1001 /* User entry, runs on regular task stack */
1002 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1004 exc_debug_user(regs, debug_read_clear_dr6());
1006 #else
1007 /* 32 bit does not have separate entry points. */
1008 DEFINE_IDTENTRY_RAW(exc_debug)
1010 unsigned long dr6 = debug_read_clear_dr6();
1012 if (user_mode(regs))
1013 exc_debug_user(regs, dr6);
1014 else
1015 exc_debug_kernel(regs, dr6);
1017 #endif
1020 * Note that we play around with the 'TS' bit in an attempt to get
1021 * the correct behaviour even in the presence of the asynchronous
1022 * IRQ13 behaviour
1024 static void math_error(struct pt_regs *regs, int trapnr)
1026 struct task_struct *task = current;
1027 struct fpu *fpu = &task->thread.fpu;
1028 int si_code;
1029 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1030 "simd exception";
1032 cond_local_irq_enable(regs);
1034 if (!user_mode(regs)) {
1035 if (fixup_exception(regs, trapnr, 0, 0))
1036 goto exit;
1038 task->thread.error_code = 0;
1039 task->thread.trap_nr = trapnr;
1041 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1042 SIGFPE) != NOTIFY_STOP)
1043 die(str, regs, 0);
1044 goto exit;
1048 * Save the info for the exception handler and clear the error.
1050 fpu__save(fpu);
1052 task->thread.trap_nr = trapnr;
1053 task->thread.error_code = 0;
1055 si_code = fpu__exception_code(fpu, trapnr);
1056 /* Retry when we get spurious exceptions: */
1057 if (!si_code)
1058 goto exit;
1060 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1061 return;
1063 force_sig_fault(SIGFPE, si_code,
1064 (void __user *)uprobe_get_trap_addr(regs));
1065 exit:
1066 cond_local_irq_disable(regs);
1069 DEFINE_IDTENTRY(exc_coprocessor_error)
1071 math_error(regs, X86_TRAP_MF);
1074 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1076 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1077 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1078 if (!static_cpu_has(X86_FEATURE_XMM)) {
1079 __exc_general_protection(regs, 0);
1080 return;
1083 math_error(regs, X86_TRAP_XF);
1086 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1089 * This addresses a Pentium Pro Erratum:
1091 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1092 * Virtual Wire mode implemented through the local APIC, an
1093 * interrupt vector of 0Fh (Intel reserved encoding) may be
1094 * generated by the local APIC (Int 15). This vector may be
1095 * generated upon receipt of a spurious interrupt (an interrupt
1096 * which is removed before the system receives the INTA sequence)
1097 * instead of the programmed 8259 spurious interrupt vector.
1099 * IMPLICATION: The spurious interrupt vector programmed in the
1100 * 8259 is normally handled by an operating system's spurious
1101 * interrupt handler. However, a vector of 0Fh is unknown to some
1102 * operating systems, which would crash if this erratum occurred.
1104 * In theory this could be limited to 32bit, but the handler is not
1105 * hurting and who knows which other CPUs suffer from this.
1109 DEFINE_IDTENTRY(exc_device_not_available)
1111 unsigned long cr0 = read_cr0();
1113 #ifdef CONFIG_MATH_EMULATION
1114 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1115 struct math_emu_info info = { };
1117 cond_local_irq_enable(regs);
1119 info.regs = regs;
1120 math_emulate(&info);
1122 cond_local_irq_disable(regs);
1123 return;
1125 #endif
1127 /* This should not happen. */
1128 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1129 /* Try to fix it up and carry on. */
1130 write_cr0(cr0 & ~X86_CR0_TS);
1131 } else {
1133 * Something terrible happened, and we're better off trying
1134 * to kill the task than getting stuck in a never-ending
1135 * loop of #NM faults.
1137 die("unexpected #NM exception", regs, 0);
1141 #ifdef CONFIG_X86_32
1142 DEFINE_IDTENTRY_SW(iret_error)
1144 local_irq_enable();
1145 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1146 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1147 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1148 ILL_BADSTK, (void __user *)NULL);
1150 local_irq_disable();
1152 #endif
1154 void __init trap_init(void)
1156 /* Init cpu_entry_area before IST entries are set up */
1157 setup_cpu_entry_areas();
1159 /* Init GHCB memory pages when running as an SEV-ES guest */
1160 sev_es_init_vc_handling();
1162 idt_setup_traps();
1165 * Should be a barrier for any external CPU state:
1167 cpu_init();
1169 idt_setup_ist_traps();