WIP FPC-III support
[linux/fpc-iii.git] / arch / x86 / kvm / mmu / mmu.c
blob6d16481aa29de023fc057c1112c9c2086d139f22
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * MMU support
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
55 extern bool itlb_multihit_kvm_mitigation;
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
94 bool tdp_enabled = false;
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
99 enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
113 #define PTE_PREFETCH_NUM 8
115 #define PT32_LEVEL_BITS 10
117 #define PT32_LEVEL_SHIFT(level) \
118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120 #define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
124 #define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #include <trace/events/kvm.h>
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
140 struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
145 struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
148 u64 *sptep;
149 int level;
150 unsigned index;
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
159 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
182 static inline bool kvm_available_flush_tlb_with_range(void)
184 return kvm_x86_ops.tlb_remote_flush_with_range;
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
190 int ret = -ENOTSUPP;
192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 u64 start_gfn, u64 pages)
202 struct kvm_tlb_range range;
204 range.start_gfn = start_gfn;
205 range.pages = pages;
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
210 bool is_nx_huge_page_enabled(void)
212 return READ_ONCE(nx_huge_pages);
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
220 trace_mark_mmio_spte(sptep, gfn, mask);
221 mmu_spte_set(sptep, mask);
224 static gfn_t get_mmio_spte_gfn(u64 spte)
226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 & shadow_nonpresent_or_rsvd_mask;
231 return gpa >> PAGE_SHIFT;
234 static unsigned get_mmio_spte_access(u64 spte)
236 return spte & shadow_mmio_access_mask;
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 kvm_pfn_t pfn, unsigned int access)
242 if (unlikely(is_noslot_pfn(pfn))) {
243 mark_mmio_spte(vcpu, sptep, gfn, access);
244 return true;
247 return false;
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
252 u64 kvm_gen, spte_gen, gen;
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 spte_gen = get_mmio_spte_generation(spte);
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
268 /* Check if guest physical address doesn't exceed guest maximum */
269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
274 return gpa;
277 static int is_cpuid_PSE36(void)
279 return 1;
282 static int is_nx(struct kvm_vcpu *vcpu)
284 return vcpu->arch.efer & EFER_NX;
287 static gfn_t pse36_gfn_delta(u32 gpte)
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
297 WRITE_ONCE(*sptep, spte);
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
302 WRITE_ONCE(*sptep, spte);
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
307 return xchg(sptep, spte);
310 static u64 __get_spte_lockless(u64 *sptep)
312 return READ_ONCE(*sptep);
314 #else
315 union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
320 u64 spte;
323 static void count_spte_clear(u64 *sptep, u64 spte)
325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
327 if (is_shadow_present_pte(spte))
328 return;
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
335 static void __set_spte(u64 *sptep, u64 spte)
337 union split_spte *ssptep, sspte;
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
342 ssptep->spte_high = sspte.spte_high;
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
349 smp_wmb();
351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
356 union split_spte *ssptep, sspte;
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
367 smp_wmb();
369 ssptep->spte_high = sspte.spte_high;
370 count_spte_clear(sptep, spte);
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
375 union split_spte *ssptep, sspte, orig;
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
384 count_spte_clear(sptep, spte);
386 return orig.spte;
390 * The idea using the light way get the spte on x86_32 guest is from
391 * gup_get_pte (mm/gup.c).
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
407 static u64 __get_spte_lockless(u64 *sptep)
409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
413 retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
427 return spte.spte;
429 #endif
431 static bool spte_has_volatile_bits(u64 spte)
433 if (!is_shadow_present_pte(spte))
434 return false;
437 * Always atomically update spte if it can be updated
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
444 return true;
446 if (spte_ad_enabled(spte)) {
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
452 return false;
455 /* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
473 u64 old_spte = *sptep;
475 WARN_ON(!is_shadow_present_pte(new_spte));
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
479 return old_spte;
482 if (!spte_has_volatile_bits(old_spte))
483 __update_clear_spte_fast(sptep, new_spte);
484 else
485 old_spte = __update_clear_spte_slow(sptep, new_spte);
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
489 return old_spte;
492 /* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
501 * Returns true if the TLB needs to be flushed
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
508 if (!is_shadow_present_pte(old_spte))
509 return false;
512 * For the spte updated out of mmu-lock is safe, since
513 * we always atomically update it, see the comments in
514 * spte_has_volatile_bits().
516 if (spte_can_locklessly_be_made_writable(old_spte) &&
517 !is_writable_pte(new_spte))
518 flush = true;
521 * Flush TLB when accessed/dirty states are changed in the page tables,
522 * to guarantee consistency between TLB and page tables.
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
535 return flush;
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
542 * Returns non-zero if the PTE was previously valid.
544 static int mmu_spte_clear_track_bits(u64 *sptep)
546 kvm_pfn_t pfn;
547 u64 old_spte = *sptep;
549 if (!spte_has_volatile_bits(old_spte))
550 __update_clear_spte_fast(sptep, 0ull);
551 else
552 old_spte = __update_clear_spte_slow(sptep, 0ull);
554 if (!is_shadow_present_pte(old_spte))
555 return 0;
557 pfn = spte_to_pfn(old_spte);
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566 if (is_accessed_spte(old_spte))
567 kvm_set_pfn_accessed(pfn);
569 if (is_dirty_spte(old_spte))
570 kvm_set_pfn_dirty(pfn);
572 return 1;
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
580 static void mmu_spte_clear_no_track(u64 *sptep)
582 __update_clear_spte_fast(sptep, 0ull);
585 static u64 mmu_spte_get_lockless(u64 *sptep)
587 return __get_spte_lockless(sptep);
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
593 u64 new_spte = spte;
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
597 WARN_ON_ONCE(spte_ad_enabled(spte));
598 WARN_ON_ONCE(!is_access_track_spte(spte));
600 new_spte &= ~shadow_acc_track_mask;
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 new_spte |= saved_bits;
605 return new_spte;
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
611 u64 spte = mmu_spte_get_lockless(sptep);
613 if (!is_accessed_spte(spte))
614 return false;
616 if (spte_ad_enabled(spte)) {
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
631 return true;
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
640 local_irq_disable();
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
652 * Make sure the write to vcpu->mode is not reordered in front of
653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 local_irq_enable();
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
662 int r;
664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 if (r)
668 return r;
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
671 if (r)
672 return r;
673 if (maybe_indirect) {
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
676 if (r)
677 return r;
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
703 if (!sp->role.direct)
704 return sp->gfns[index];
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
711 if (!sp->role.direct) {
712 sp->gfns[index] = gfn;
713 return;
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
731 unsigned long idx;
733 idx = gfn_to_index(gfn, slot->base_gfn, level);
734 return &slot->arch.lpage_info[level - 2][idx];
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
740 struct kvm_lpage_info *linfo;
741 int i;
743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
762 struct kvm_memslots *slots;
763 struct kvm_memory_slot *slot;
764 gfn_t gfn;
766 kvm->arch.indirect_shadow_pages++;
767 gfn = sp->gfn;
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
771 /* the non-leaf shadow pages are keeping readonly. */
772 if (sp->role.level > PG_LEVEL_4K)
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
781 if (sp->lpage_disallowed)
782 return;
784 ++kvm->stat.nx_lpage_splits;
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
787 sp->lpage_disallowed = true;
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
792 struct kvm_memslots *slots;
793 struct kvm_memory_slot *slot;
794 gfn_t gfn;
796 kvm->arch.indirect_shadow_pages--;
797 gfn = sp->gfn;
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
800 if (sp->role.level > PG_LEVEL_4K)
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
804 kvm_mmu_gfn_allow_lpage(slot, gfn);
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
811 list_del(&sp->lpage_disallowed_link);
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
818 struct kvm_memory_slot *slot;
820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824 return NULL;
826 return slot;
830 * About rmap_head encoding:
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834 * pte_list_desc containing more mappings.
838 * Returns the number of pointers in the rmap chain, not counting the new one.
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 struct kvm_rmap_head *rmap_head)
843 struct pte_list_desc *desc;
844 int i, count = 0;
846 if (!rmap_head->val) {
847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 desc = mmu_alloc_pte_list_desc(vcpu);
852 desc->sptes[0] = (u64 *)rmap_head->val;
853 desc->sptes[1] = spte;
854 rmap_head->val = (unsigned long)desc | 1;
855 ++count;
856 } else {
857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 while (desc->sptes[PTE_LIST_EXT-1]) {
860 count += PTE_LIST_EXT;
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
867 desc = desc->more;
869 for (i = 0; desc->sptes[i]; ++i)
870 ++count;
871 desc->sptes[i] = spte;
873 return count;
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
881 int j;
883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
890 rmap_head->val = 0;
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
895 rmap_head->val = (unsigned long)desc->more | 1;
896 mmu_free_pte_list_desc(desc);
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
903 int i;
905 if (!rmap_head->val) {
906 pr_err("%s: %p 0->BUG\n", __func__, spte);
907 BUG();
908 } else if (!(rmap_head->val & 1)) {
909 rmap_printk("%s: %p 1->0\n", __func__, spte);
910 if ((u64 *)rmap_head->val != spte) {
911 pr_err("%s: %p 1->BUG\n", __func__, spte);
912 BUG();
914 rmap_head->val = 0;
915 } else {
916 rmap_printk("%s: %p many->many\n", __func__, spte);
917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 prev_desc = NULL;
919 while (desc) {
920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921 if (desc->sptes[i] == spte) {
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
924 return;
927 prev_desc = desc;
928 desc = desc->more;
930 pr_err("%s: %p many->many\n", __func__, spte);
931 BUG();
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
944 unsigned long idx;
946 idx = gfn_to_index(gfn, slot->base_gfn, level);
947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
953 struct kvm_memslots *slots;
954 struct kvm_memory_slot *slot;
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
958 return __gfn_to_rmap(gfn, sp->role.level, slot);
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
963 struct kvm_mmu_memory_cache *mc;
965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
966 return kvm_mmu_memory_cache_nr_free_objects(mc);
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
971 struct kvm_mmu_page *sp;
972 struct kvm_rmap_head *rmap_head;
974 sp = sptep_to_sp(spte);
975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
984 struct kvm_rmap_head *rmap_head;
986 sp = sptep_to_sp(spte);
987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
989 __pte_list_remove(spte, rmap_head);
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
996 struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
1005 * information in the iterator may not be valid.
1007 * Returns sptep if found, NULL otherwise.
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1012 u64 *sptep;
1014 if (!rmap_head->val)
1015 return NULL;
1017 if (!(rmap_head->val & 1)) {
1018 iter->desc = NULL;
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 iter->pos = 0;
1025 sptep = iter->desc->sptes[iter->pos];
1026 out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1034 * Returns sptep if found, NULL otherwise.
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1038 u64 *sptep;
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
1045 goto out;
1048 iter->desc = iter->desc->more;
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1058 return NULL;
1059 out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1066 _spte_; _spte_ = rmap_get_next(_iter_))
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1070 if (mmu_spte_clear_track_bits(sptep))
1071 rmap_remove(kvm, sptep);
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1077 if (is_large_pte(*sptep)) {
1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1084 return false;
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
1099 * spte write-protection is caused by protecting shadow page table.
1101 * Note: write protection is difference between dirty logging and spte
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
1108 * Return true if tlb need be flushed.
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1112 u64 spte = *sptep;
1114 if (!is_writable_pte(spte) &&
1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 return false;
1118 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
1122 spte = spte & ~PT_WRITABLE_MASK;
1124 return mmu_spte_update(sptep, spte);
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
1129 bool pt_protect)
1131 u64 *sptep;
1132 struct rmap_iterator iter;
1133 bool flush = false;
1135 for_each_rmap_spte(rmap_head, &iter, sptep)
1136 flush |= spte_write_protect(sptep, pt_protect);
1138 return flush;
1141 static bool spte_clear_dirty(u64 *sptep)
1143 u64 spte = *sptep;
1145 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1147 MMU_WARN_ON(!spte_ad_enabled(spte));
1148 spte &= ~shadow_dirty_mask;
1149 return mmu_spte_update(sptep, spte);
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1156 if (was_writable && !spte_ad_enabled(*sptep))
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1159 return was_writable;
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1170 u64 *sptep;
1171 struct rmap_iterator iter;
1172 bool flush = false;
1174 for_each_rmap_spte(rmap_head, &iter, sptep)
1175 if (spte_ad_need_write_protect(*sptep))
1176 flush |= spte_wrprot_for_clear_dirty(sptep);
1177 else
1178 flush |= spte_clear_dirty(sptep);
1180 return flush;
1183 static bool spte_set_dirty(u64 *sptep)
1185 u64 spte = *sptep;
1187 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1190 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191 * do not bother adding back write access to pages marked
1192 * SPTE_AD_WRPROT_ONLY_MASK.
1194 spte |= shadow_dirty_mask;
1196 return mmu_spte_update(sptep, spte);
1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1201 u64 *sptep;
1202 struct rmap_iterator iter;
1203 bool flush = false;
1205 for_each_rmap_spte(rmap_head, &iter, sptep)
1206 if (spte_ad_enabled(*sptep))
1207 flush |= spte_set_dirty(sptep);
1209 return flush;
1213 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214 * @kvm: kvm instance
1215 * @slot: slot to protect
1216 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217 * @mask: indicates which pages we should protect
1219 * Used when we do not need to care about huge page mappings: e.g. during dirty
1220 * logging we do not have any such mappings.
1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223 struct kvm_memory_slot *slot,
1224 gfn_t gfn_offset, unsigned long mask)
1226 struct kvm_rmap_head *rmap_head;
1228 if (kvm->arch.tdp_mmu_enabled)
1229 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 slot->base_gfn + gfn_offset, mask, true);
1231 while (mask) {
1232 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233 PG_LEVEL_4K, slot);
1234 __rmap_write_protect(kvm, rmap_head, false);
1236 /* clear the first set bit */
1237 mask &= mask - 1;
1242 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243 * protect the page if the D-bit isn't supported.
1244 * @kvm: kvm instance
1245 * @slot: slot to clear D-bit
1246 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247 * @mask: indicates which pages we should clear D-bit
1249 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 struct kvm_memory_slot *slot,
1253 gfn_t gfn_offset, unsigned long mask)
1255 struct kvm_rmap_head *rmap_head;
1257 if (kvm->arch.tdp_mmu_enabled)
1258 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 slot->base_gfn + gfn_offset, mask, false);
1260 while (mask) {
1261 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262 PG_LEVEL_4K, slot);
1263 __rmap_clear_dirty(kvm, rmap_head);
1265 /* clear the first set bit */
1266 mask &= mask - 1;
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273 * PT level pages.
1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276 * enable dirty logging for them.
1278 * Used when we do not need to care about huge page mappings: e.g. during dirty
1279 * logging we do not have any such mappings.
1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 struct kvm_memory_slot *slot,
1283 gfn_t gfn_offset, unsigned long mask)
1285 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287 mask);
1288 else
1289 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1292 int kvm_cpu_dirty_log_size(void)
1294 if (kvm_x86_ops.cpu_dirty_log_size)
1295 return kvm_x86_ops.cpu_dirty_log_size();
1297 return 0;
1300 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1301 struct kvm_memory_slot *slot, u64 gfn)
1303 struct kvm_rmap_head *rmap_head;
1304 int i;
1305 bool write_protected = false;
1307 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1308 rmap_head = __gfn_to_rmap(gfn, i, slot);
1309 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1312 if (kvm->arch.tdp_mmu_enabled)
1313 write_protected |=
1314 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1316 return write_protected;
1319 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1321 struct kvm_memory_slot *slot;
1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1327 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1329 u64 *sptep;
1330 struct rmap_iterator iter;
1331 bool flush = false;
1333 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1334 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1336 pte_list_remove(rmap_head, sptep);
1337 flush = true;
1340 return flush;
1343 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1344 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1345 unsigned long data)
1347 return kvm_zap_rmapp(kvm, rmap_head);
1350 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1351 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1352 unsigned long data)
1354 u64 *sptep;
1355 struct rmap_iterator iter;
1356 int need_flush = 0;
1357 u64 new_spte;
1358 pte_t *ptep = (pte_t *)data;
1359 kvm_pfn_t new_pfn;
1361 WARN_ON(pte_huge(*ptep));
1362 new_pfn = pte_pfn(*ptep);
1364 restart:
1365 for_each_rmap_spte(rmap_head, &iter, sptep) {
1366 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1367 sptep, *sptep, gfn, level);
1369 need_flush = 1;
1371 if (pte_write(*ptep)) {
1372 pte_list_remove(rmap_head, sptep);
1373 goto restart;
1374 } else {
1375 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1376 *sptep, new_pfn);
1378 mmu_spte_clear_track_bits(sptep);
1379 mmu_spte_set(sptep, new_spte);
1383 if (need_flush && kvm_available_flush_tlb_with_range()) {
1384 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1385 return 0;
1388 return need_flush;
1391 struct slot_rmap_walk_iterator {
1392 /* input fields. */
1393 struct kvm_memory_slot *slot;
1394 gfn_t start_gfn;
1395 gfn_t end_gfn;
1396 int start_level;
1397 int end_level;
1399 /* output fields. */
1400 gfn_t gfn;
1401 struct kvm_rmap_head *rmap;
1402 int level;
1404 /* private field. */
1405 struct kvm_rmap_head *end_rmap;
1408 static void
1409 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1411 iterator->level = level;
1412 iterator->gfn = iterator->start_gfn;
1413 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1414 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1415 iterator->slot);
1418 static void
1419 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1420 struct kvm_memory_slot *slot, int start_level,
1421 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1423 iterator->slot = slot;
1424 iterator->start_level = start_level;
1425 iterator->end_level = end_level;
1426 iterator->start_gfn = start_gfn;
1427 iterator->end_gfn = end_gfn;
1429 rmap_walk_init_level(iterator, iterator->start_level);
1432 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1434 return !!iterator->rmap;
1437 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1439 if (++iterator->rmap <= iterator->end_rmap) {
1440 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1441 return;
1444 if (++iterator->level > iterator->end_level) {
1445 iterator->rmap = NULL;
1446 return;
1449 rmap_walk_init_level(iterator, iterator->level);
1452 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1453 _start_gfn, _end_gfn, _iter_) \
1454 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1455 _end_level_, _start_gfn, _end_gfn); \
1456 slot_rmap_walk_okay(_iter_); \
1457 slot_rmap_walk_next(_iter_))
1459 static int kvm_handle_hva_range(struct kvm *kvm,
1460 unsigned long start,
1461 unsigned long end,
1462 unsigned long data,
1463 int (*handler)(struct kvm *kvm,
1464 struct kvm_rmap_head *rmap_head,
1465 struct kvm_memory_slot *slot,
1466 gfn_t gfn,
1467 int level,
1468 unsigned long data))
1470 struct kvm_memslots *slots;
1471 struct kvm_memory_slot *memslot;
1472 struct slot_rmap_walk_iterator iterator;
1473 int ret = 0;
1474 int i;
1476 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1477 slots = __kvm_memslots(kvm, i);
1478 kvm_for_each_memslot(memslot, slots) {
1479 unsigned long hva_start, hva_end;
1480 gfn_t gfn_start, gfn_end;
1482 hva_start = max(start, memslot->userspace_addr);
1483 hva_end = min(end, memslot->userspace_addr +
1484 (memslot->npages << PAGE_SHIFT));
1485 if (hva_start >= hva_end)
1486 continue;
1488 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1489 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1491 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1492 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1494 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1495 KVM_MAX_HUGEPAGE_LEVEL,
1496 gfn_start, gfn_end - 1,
1497 &iterator)
1498 ret |= handler(kvm, iterator.rmap, memslot,
1499 iterator.gfn, iterator.level, data);
1503 return ret;
1506 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1507 unsigned long data,
1508 int (*handler)(struct kvm *kvm,
1509 struct kvm_rmap_head *rmap_head,
1510 struct kvm_memory_slot *slot,
1511 gfn_t gfn, int level,
1512 unsigned long data))
1514 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1517 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1518 unsigned flags)
1520 int r;
1522 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1524 if (kvm->arch.tdp_mmu_enabled)
1525 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1527 return r;
1530 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1532 int r;
1534 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1536 if (kvm->arch.tdp_mmu_enabled)
1537 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1539 return r;
1542 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1543 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1544 unsigned long data)
1546 u64 *sptep;
1547 struct rmap_iterator iter;
1548 int young = 0;
1550 for_each_rmap_spte(rmap_head, &iter, sptep)
1551 young |= mmu_spte_age(sptep);
1553 trace_kvm_age_page(gfn, level, slot, young);
1554 return young;
1557 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1558 struct kvm_memory_slot *slot, gfn_t gfn,
1559 int level, unsigned long data)
1561 u64 *sptep;
1562 struct rmap_iterator iter;
1564 for_each_rmap_spte(rmap_head, &iter, sptep)
1565 if (is_accessed_spte(*sptep))
1566 return 1;
1567 return 0;
1570 #define RMAP_RECYCLE_THRESHOLD 1000
1572 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1574 struct kvm_rmap_head *rmap_head;
1575 struct kvm_mmu_page *sp;
1577 sp = sptep_to_sp(spte);
1579 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1581 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1582 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1583 KVM_PAGES_PER_HPAGE(sp->role.level));
1586 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1588 int young = false;
1590 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1591 if (kvm->arch.tdp_mmu_enabled)
1592 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1594 return young;
1597 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1599 int young = false;
1601 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1602 if (kvm->arch.tdp_mmu_enabled)
1603 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1605 return young;
1608 #ifdef MMU_DEBUG
1609 static int is_empty_shadow_page(u64 *spt)
1611 u64 *pos;
1612 u64 *end;
1614 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1615 if (is_shadow_present_pte(*pos)) {
1616 printk(KERN_ERR "%s: %p %llx\n", __func__,
1617 pos, *pos);
1618 return 0;
1620 return 1;
1622 #endif
1625 * This value is the sum of all of the kvm instances's
1626 * kvm->arch.n_used_mmu_pages values. We need a global,
1627 * aggregate version in order to make the slab shrinker
1628 * faster
1630 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1632 kvm->arch.n_used_mmu_pages += nr;
1633 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1636 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1638 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1639 hlist_del(&sp->hash_link);
1640 list_del(&sp->link);
1641 free_page((unsigned long)sp->spt);
1642 if (!sp->role.direct)
1643 free_page((unsigned long)sp->gfns);
1644 kmem_cache_free(mmu_page_header_cache, sp);
1647 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1649 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1652 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1653 struct kvm_mmu_page *sp, u64 *parent_pte)
1655 if (!parent_pte)
1656 return;
1658 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1661 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1662 u64 *parent_pte)
1664 __pte_list_remove(parent_pte, &sp->parent_ptes);
1667 static void drop_parent_pte(struct kvm_mmu_page *sp,
1668 u64 *parent_pte)
1670 mmu_page_remove_parent_pte(sp, parent_pte);
1671 mmu_spte_clear_no_track(parent_pte);
1674 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1676 struct kvm_mmu_page *sp;
1678 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1679 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1680 if (!direct)
1681 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1682 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1685 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1686 * depends on valid pages being added to the head of the list. See
1687 * comments in kvm_zap_obsolete_pages().
1689 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1690 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1691 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1692 return sp;
1695 static void mark_unsync(u64 *spte);
1696 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1698 u64 *sptep;
1699 struct rmap_iterator iter;
1701 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1702 mark_unsync(sptep);
1706 static void mark_unsync(u64 *spte)
1708 struct kvm_mmu_page *sp;
1709 unsigned int index;
1711 sp = sptep_to_sp(spte);
1712 index = spte - sp->spt;
1713 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1714 return;
1715 if (sp->unsync_children++)
1716 return;
1717 kvm_mmu_mark_parents_unsync(sp);
1720 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1721 struct kvm_mmu_page *sp)
1723 return 0;
1726 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1727 struct kvm_mmu_page *sp, u64 *spte,
1728 const void *pte)
1730 WARN_ON(1);
1733 #define KVM_PAGE_ARRAY_NR 16
1735 struct kvm_mmu_pages {
1736 struct mmu_page_and_offset {
1737 struct kvm_mmu_page *sp;
1738 unsigned int idx;
1739 } page[KVM_PAGE_ARRAY_NR];
1740 unsigned int nr;
1743 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1744 int idx)
1746 int i;
1748 if (sp->unsync)
1749 for (i=0; i < pvec->nr; i++)
1750 if (pvec->page[i].sp == sp)
1751 return 0;
1753 pvec->page[pvec->nr].sp = sp;
1754 pvec->page[pvec->nr].idx = idx;
1755 pvec->nr++;
1756 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1759 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1761 --sp->unsync_children;
1762 WARN_ON((int)sp->unsync_children < 0);
1763 __clear_bit(idx, sp->unsync_child_bitmap);
1766 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1767 struct kvm_mmu_pages *pvec)
1769 int i, ret, nr_unsync_leaf = 0;
1771 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1772 struct kvm_mmu_page *child;
1773 u64 ent = sp->spt[i];
1775 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1776 clear_unsync_child_bit(sp, i);
1777 continue;
1780 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1782 if (child->unsync_children) {
1783 if (mmu_pages_add(pvec, child, i))
1784 return -ENOSPC;
1786 ret = __mmu_unsync_walk(child, pvec);
1787 if (!ret) {
1788 clear_unsync_child_bit(sp, i);
1789 continue;
1790 } else if (ret > 0) {
1791 nr_unsync_leaf += ret;
1792 } else
1793 return ret;
1794 } else if (child->unsync) {
1795 nr_unsync_leaf++;
1796 if (mmu_pages_add(pvec, child, i))
1797 return -ENOSPC;
1798 } else
1799 clear_unsync_child_bit(sp, i);
1802 return nr_unsync_leaf;
1805 #define INVALID_INDEX (-1)
1807 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1808 struct kvm_mmu_pages *pvec)
1810 pvec->nr = 0;
1811 if (!sp->unsync_children)
1812 return 0;
1814 mmu_pages_add(pvec, sp, INVALID_INDEX);
1815 return __mmu_unsync_walk(sp, pvec);
1818 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1820 WARN_ON(!sp->unsync);
1821 trace_kvm_mmu_sync_page(sp);
1822 sp->unsync = 0;
1823 --kvm->stat.mmu_unsync;
1826 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1827 struct list_head *invalid_list);
1828 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1829 struct list_head *invalid_list);
1831 #define for_each_valid_sp(_kvm, _sp, _list) \
1832 hlist_for_each_entry(_sp, _list, hash_link) \
1833 if (is_obsolete_sp((_kvm), (_sp))) { \
1834 } else
1836 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1837 for_each_valid_sp(_kvm, _sp, \
1838 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1839 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1841 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1843 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1846 /* @sp->gfn should be write-protected at the call site */
1847 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1848 struct list_head *invalid_list)
1850 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1851 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1852 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1853 return false;
1856 return true;
1859 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1860 struct list_head *invalid_list,
1861 bool remote_flush)
1863 if (!remote_flush && list_empty(invalid_list))
1864 return false;
1866 if (!list_empty(invalid_list))
1867 kvm_mmu_commit_zap_page(kvm, invalid_list);
1868 else
1869 kvm_flush_remote_tlbs(kvm);
1870 return true;
1873 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1874 struct list_head *invalid_list,
1875 bool remote_flush, bool local_flush)
1877 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1878 return;
1880 if (local_flush)
1881 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1884 #ifdef CONFIG_KVM_MMU_AUDIT
1885 #include "mmu_audit.c"
1886 #else
1887 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1888 static void mmu_audit_disable(void) { }
1889 #endif
1891 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1893 return sp->role.invalid ||
1894 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1897 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1898 struct list_head *invalid_list)
1900 kvm_unlink_unsync_page(vcpu->kvm, sp);
1901 return __kvm_sync_page(vcpu, sp, invalid_list);
1904 /* @gfn should be write-protected at the call site */
1905 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1906 struct list_head *invalid_list)
1908 struct kvm_mmu_page *s;
1909 bool ret = false;
1911 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1912 if (!s->unsync)
1913 continue;
1915 WARN_ON(s->role.level != PG_LEVEL_4K);
1916 ret |= kvm_sync_page(vcpu, s, invalid_list);
1919 return ret;
1922 struct mmu_page_path {
1923 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1924 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1927 #define for_each_sp(pvec, sp, parents, i) \
1928 for (i = mmu_pages_first(&pvec, &parents); \
1929 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1930 i = mmu_pages_next(&pvec, &parents, i))
1932 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1933 struct mmu_page_path *parents,
1934 int i)
1936 int n;
1938 for (n = i+1; n < pvec->nr; n++) {
1939 struct kvm_mmu_page *sp = pvec->page[n].sp;
1940 unsigned idx = pvec->page[n].idx;
1941 int level = sp->role.level;
1943 parents->idx[level-1] = idx;
1944 if (level == PG_LEVEL_4K)
1945 break;
1947 parents->parent[level-2] = sp;
1950 return n;
1953 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1954 struct mmu_page_path *parents)
1956 struct kvm_mmu_page *sp;
1957 int level;
1959 if (pvec->nr == 0)
1960 return 0;
1962 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1964 sp = pvec->page[0].sp;
1965 level = sp->role.level;
1966 WARN_ON(level == PG_LEVEL_4K);
1968 parents->parent[level-2] = sp;
1970 /* Also set up a sentinel. Further entries in pvec are all
1971 * children of sp, so this element is never overwritten.
1973 parents->parent[level-1] = NULL;
1974 return mmu_pages_next(pvec, parents, 0);
1977 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1979 struct kvm_mmu_page *sp;
1980 unsigned int level = 0;
1982 do {
1983 unsigned int idx = parents->idx[level];
1984 sp = parents->parent[level];
1985 if (!sp)
1986 return;
1988 WARN_ON(idx == INVALID_INDEX);
1989 clear_unsync_child_bit(sp, idx);
1990 level++;
1991 } while (!sp->unsync_children);
1994 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1995 struct kvm_mmu_page *parent)
1997 int i;
1998 struct kvm_mmu_page *sp;
1999 struct mmu_page_path parents;
2000 struct kvm_mmu_pages pages;
2001 LIST_HEAD(invalid_list);
2002 bool flush = false;
2004 while (mmu_unsync_walk(parent, &pages)) {
2005 bool protected = false;
2007 for_each_sp(pages, sp, parents, i)
2008 protected |= rmap_write_protect(vcpu, sp->gfn);
2010 if (protected) {
2011 kvm_flush_remote_tlbs(vcpu->kvm);
2012 flush = false;
2015 for_each_sp(pages, sp, parents, i) {
2016 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2017 mmu_pages_clear_parents(&parents);
2019 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2020 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2021 cond_resched_lock(&vcpu->kvm->mmu_lock);
2022 flush = false;
2026 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2029 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2031 atomic_set(&sp->write_flooding_count, 0);
2034 static void clear_sp_write_flooding_count(u64 *spte)
2036 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2039 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2040 gfn_t gfn,
2041 gva_t gaddr,
2042 unsigned level,
2043 int direct,
2044 unsigned int access)
2046 bool direct_mmu = vcpu->arch.mmu->direct_map;
2047 union kvm_mmu_page_role role;
2048 struct hlist_head *sp_list;
2049 unsigned quadrant;
2050 struct kvm_mmu_page *sp;
2051 bool need_sync = false;
2052 bool flush = false;
2053 int collisions = 0;
2054 LIST_HEAD(invalid_list);
2056 role = vcpu->arch.mmu->mmu_role.base;
2057 role.level = level;
2058 role.direct = direct;
2059 if (role.direct)
2060 role.gpte_is_8_bytes = true;
2061 role.access = access;
2062 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2063 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2064 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2065 role.quadrant = quadrant;
2068 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2069 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2070 if (sp->gfn != gfn) {
2071 collisions++;
2072 continue;
2075 if (!need_sync && sp->unsync)
2076 need_sync = true;
2078 if (sp->role.word != role.word)
2079 continue;
2081 if (direct_mmu)
2082 goto trace_get_page;
2084 if (sp->unsync) {
2085 /* The page is good, but __kvm_sync_page might still end
2086 * up zapping it. If so, break in order to rebuild it.
2088 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2089 break;
2091 WARN_ON(!list_empty(&invalid_list));
2092 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2095 if (sp->unsync_children)
2096 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2098 __clear_sp_write_flooding_count(sp);
2100 trace_get_page:
2101 trace_kvm_mmu_get_page(sp, false);
2102 goto out;
2105 ++vcpu->kvm->stat.mmu_cache_miss;
2107 sp = kvm_mmu_alloc_page(vcpu, direct);
2109 sp->gfn = gfn;
2110 sp->role = role;
2111 hlist_add_head(&sp->hash_link, sp_list);
2112 if (!direct) {
2114 * we should do write protection before syncing pages
2115 * otherwise the content of the synced shadow page may
2116 * be inconsistent with guest page table.
2118 account_shadowed(vcpu->kvm, sp);
2119 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2120 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2122 if (level > PG_LEVEL_4K && need_sync)
2123 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2125 trace_kvm_mmu_get_page(sp, true);
2127 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2128 out:
2129 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2130 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2131 return sp;
2134 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2135 struct kvm_vcpu *vcpu, hpa_t root,
2136 u64 addr)
2138 iterator->addr = addr;
2139 iterator->shadow_addr = root;
2140 iterator->level = vcpu->arch.mmu->shadow_root_level;
2142 if (iterator->level == PT64_ROOT_4LEVEL &&
2143 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2144 !vcpu->arch.mmu->direct_map)
2145 --iterator->level;
2147 if (iterator->level == PT32E_ROOT_LEVEL) {
2149 * prev_root is currently only used for 64-bit hosts. So only
2150 * the active root_hpa is valid here.
2152 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2154 iterator->shadow_addr
2155 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2156 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2157 --iterator->level;
2158 if (!iterator->shadow_addr)
2159 iterator->level = 0;
2163 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2164 struct kvm_vcpu *vcpu, u64 addr)
2166 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2167 addr);
2170 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2172 if (iterator->level < PG_LEVEL_4K)
2173 return false;
2175 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2176 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2177 return true;
2180 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2181 u64 spte)
2183 if (is_last_spte(spte, iterator->level)) {
2184 iterator->level = 0;
2185 return;
2188 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2189 --iterator->level;
2192 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2194 __shadow_walk_next(iterator, *iterator->sptep);
2197 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2198 struct kvm_mmu_page *sp)
2200 u64 spte;
2202 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2204 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2206 mmu_spte_set(sptep, spte);
2208 mmu_page_add_parent_pte(vcpu, sp, sptep);
2210 if (sp->unsync_children || sp->unsync)
2211 mark_unsync(sptep);
2214 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2215 unsigned direct_access)
2217 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2218 struct kvm_mmu_page *child;
2221 * For the direct sp, if the guest pte's dirty bit
2222 * changed form clean to dirty, it will corrupt the
2223 * sp's access: allow writable in the read-only sp,
2224 * so we should update the spte at this point to get
2225 * a new sp with the correct access.
2227 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2228 if (child->role.access == direct_access)
2229 return;
2231 drop_parent_pte(child, sptep);
2232 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2236 /* Returns the number of zapped non-leaf child shadow pages. */
2237 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2238 u64 *spte, struct list_head *invalid_list)
2240 u64 pte;
2241 struct kvm_mmu_page *child;
2243 pte = *spte;
2244 if (is_shadow_present_pte(pte)) {
2245 if (is_last_spte(pte, sp->role.level)) {
2246 drop_spte(kvm, spte);
2247 if (is_large_pte(pte))
2248 --kvm->stat.lpages;
2249 } else {
2250 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2251 drop_parent_pte(child, spte);
2254 * Recursively zap nested TDP SPs, parentless SPs are
2255 * unlikely to be used again in the near future. This
2256 * avoids retaining a large number of stale nested SPs.
2258 if (tdp_enabled && invalid_list &&
2259 child->role.guest_mode && !child->parent_ptes.val)
2260 return kvm_mmu_prepare_zap_page(kvm, child,
2261 invalid_list);
2263 } else if (is_mmio_spte(pte)) {
2264 mmu_spte_clear_no_track(spte);
2266 return 0;
2269 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2270 struct kvm_mmu_page *sp,
2271 struct list_head *invalid_list)
2273 int zapped = 0;
2274 unsigned i;
2276 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2277 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2279 return zapped;
2282 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2284 u64 *sptep;
2285 struct rmap_iterator iter;
2287 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2288 drop_parent_pte(sp, sptep);
2291 static int mmu_zap_unsync_children(struct kvm *kvm,
2292 struct kvm_mmu_page *parent,
2293 struct list_head *invalid_list)
2295 int i, zapped = 0;
2296 struct mmu_page_path parents;
2297 struct kvm_mmu_pages pages;
2299 if (parent->role.level == PG_LEVEL_4K)
2300 return 0;
2302 while (mmu_unsync_walk(parent, &pages)) {
2303 struct kvm_mmu_page *sp;
2305 for_each_sp(pages, sp, parents, i) {
2306 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2307 mmu_pages_clear_parents(&parents);
2308 zapped++;
2312 return zapped;
2315 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2316 struct kvm_mmu_page *sp,
2317 struct list_head *invalid_list,
2318 int *nr_zapped)
2320 bool list_unstable;
2322 trace_kvm_mmu_prepare_zap_page(sp);
2323 ++kvm->stat.mmu_shadow_zapped;
2324 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2325 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2326 kvm_mmu_unlink_parents(kvm, sp);
2328 /* Zapping children means active_mmu_pages has become unstable. */
2329 list_unstable = *nr_zapped;
2331 if (!sp->role.invalid && !sp->role.direct)
2332 unaccount_shadowed(kvm, sp);
2334 if (sp->unsync)
2335 kvm_unlink_unsync_page(kvm, sp);
2336 if (!sp->root_count) {
2337 /* Count self */
2338 (*nr_zapped)++;
2341 * Already invalid pages (previously active roots) are not on
2342 * the active page list. See list_del() in the "else" case of
2343 * !sp->root_count.
2345 if (sp->role.invalid)
2346 list_add(&sp->link, invalid_list);
2347 else
2348 list_move(&sp->link, invalid_list);
2349 kvm_mod_used_mmu_pages(kvm, -1);
2350 } else {
2352 * Remove the active root from the active page list, the root
2353 * will be explicitly freed when the root_count hits zero.
2355 list_del(&sp->link);
2358 * Obsolete pages cannot be used on any vCPUs, see the comment
2359 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2360 * treats invalid shadow pages as being obsolete.
2362 if (!is_obsolete_sp(kvm, sp))
2363 kvm_reload_remote_mmus(kvm);
2366 if (sp->lpage_disallowed)
2367 unaccount_huge_nx_page(kvm, sp);
2369 sp->role.invalid = 1;
2370 return list_unstable;
2373 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2374 struct list_head *invalid_list)
2376 int nr_zapped;
2378 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2379 return nr_zapped;
2382 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2383 struct list_head *invalid_list)
2385 struct kvm_mmu_page *sp, *nsp;
2387 if (list_empty(invalid_list))
2388 return;
2391 * We need to make sure everyone sees our modifications to
2392 * the page tables and see changes to vcpu->mode here. The barrier
2393 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2394 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2396 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2397 * guest mode and/or lockless shadow page table walks.
2399 kvm_flush_remote_tlbs(kvm);
2401 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2402 WARN_ON(!sp->role.invalid || sp->root_count);
2403 kvm_mmu_free_page(sp);
2407 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2408 unsigned long nr_to_zap)
2410 unsigned long total_zapped = 0;
2411 struct kvm_mmu_page *sp, *tmp;
2412 LIST_HEAD(invalid_list);
2413 bool unstable;
2414 int nr_zapped;
2416 if (list_empty(&kvm->arch.active_mmu_pages))
2417 return 0;
2419 restart:
2420 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2422 * Don't zap active root pages, the page itself can't be freed
2423 * and zapping it will just force vCPUs to realloc and reload.
2425 if (sp->root_count)
2426 continue;
2428 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2429 &nr_zapped);
2430 total_zapped += nr_zapped;
2431 if (total_zapped >= nr_to_zap)
2432 break;
2434 if (unstable)
2435 goto restart;
2438 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2440 kvm->stat.mmu_recycled += total_zapped;
2441 return total_zapped;
2444 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2446 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2447 return kvm->arch.n_max_mmu_pages -
2448 kvm->arch.n_used_mmu_pages;
2450 return 0;
2453 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2455 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2457 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2458 return 0;
2460 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2462 if (!kvm_mmu_available_pages(vcpu->kvm))
2463 return -ENOSPC;
2464 return 0;
2468 * Changing the number of mmu pages allocated to the vm
2469 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2471 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2473 spin_lock(&kvm->mmu_lock);
2475 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2476 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2477 goal_nr_mmu_pages);
2479 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2482 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2484 spin_unlock(&kvm->mmu_lock);
2487 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2489 struct kvm_mmu_page *sp;
2490 LIST_HEAD(invalid_list);
2491 int r;
2493 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2494 r = 0;
2495 spin_lock(&kvm->mmu_lock);
2496 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2497 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2498 sp->role.word);
2499 r = 1;
2500 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2502 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2503 spin_unlock(&kvm->mmu_lock);
2505 return r;
2507 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2509 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2511 trace_kvm_mmu_unsync_page(sp);
2512 ++vcpu->kvm->stat.mmu_unsync;
2513 sp->unsync = 1;
2515 kvm_mmu_mark_parents_unsync(sp);
2518 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2519 bool can_unsync)
2521 struct kvm_mmu_page *sp;
2523 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2524 return true;
2526 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2527 if (!can_unsync)
2528 return true;
2530 if (sp->unsync)
2531 continue;
2533 WARN_ON(sp->role.level != PG_LEVEL_4K);
2534 kvm_unsync_page(vcpu, sp);
2538 * We need to ensure that the marking of unsync pages is visible
2539 * before the SPTE is updated to allow writes because
2540 * kvm_mmu_sync_roots() checks the unsync flags without holding
2541 * the MMU lock and so can race with this. If the SPTE was updated
2542 * before the page had been marked as unsync-ed, something like the
2543 * following could happen:
2545 * CPU 1 CPU 2
2546 * ---------------------------------------------------------------------
2547 * 1.2 Host updates SPTE
2548 * to be writable
2549 * 2.1 Guest writes a GPTE for GVA X.
2550 * (GPTE being in the guest page table shadowed
2551 * by the SP from CPU 1.)
2552 * This reads SPTE during the page table walk.
2553 * Since SPTE.W is read as 1, there is no
2554 * fault.
2556 * 2.2 Guest issues TLB flush.
2557 * That causes a VM Exit.
2559 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2560 * Since it is false, so it just returns.
2562 * 2.4 Guest accesses GVA X.
2563 * Since the mapping in the SP was not updated,
2564 * so the old mapping for GVA X incorrectly
2565 * gets used.
2566 * 1.1 Host marks SP
2567 * as unsync
2568 * (sp->unsync = true)
2570 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2571 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2572 * pairs with this write barrier.
2574 smp_wmb();
2576 return false;
2579 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2580 unsigned int pte_access, int level,
2581 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2582 bool can_unsync, bool host_writable)
2584 u64 spte;
2585 struct kvm_mmu_page *sp;
2586 int ret;
2588 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2589 return 0;
2591 sp = sptep_to_sp(sptep);
2593 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2594 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2596 if (spte & PT_WRITABLE_MASK)
2597 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2599 if (*sptep == spte)
2600 ret |= SET_SPTE_SPURIOUS;
2601 else if (mmu_spte_update(sptep, spte))
2602 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2603 return ret;
2606 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2607 unsigned int pte_access, bool write_fault, int level,
2608 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2609 bool host_writable)
2611 int was_rmapped = 0;
2612 int rmap_count;
2613 int set_spte_ret;
2614 int ret = RET_PF_FIXED;
2615 bool flush = false;
2617 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2618 *sptep, write_fault, gfn);
2620 if (is_shadow_present_pte(*sptep)) {
2622 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2623 * the parent of the now unreachable PTE.
2625 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2626 struct kvm_mmu_page *child;
2627 u64 pte = *sptep;
2629 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2630 drop_parent_pte(child, sptep);
2631 flush = true;
2632 } else if (pfn != spte_to_pfn(*sptep)) {
2633 pgprintk("hfn old %llx new %llx\n",
2634 spte_to_pfn(*sptep), pfn);
2635 drop_spte(vcpu->kvm, sptep);
2636 flush = true;
2637 } else
2638 was_rmapped = 1;
2641 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2642 speculative, true, host_writable);
2643 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2644 if (write_fault)
2645 ret = RET_PF_EMULATE;
2646 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2649 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2650 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2651 KVM_PAGES_PER_HPAGE(level));
2653 if (unlikely(is_mmio_spte(*sptep)))
2654 ret = RET_PF_EMULATE;
2657 * The fault is fully spurious if and only if the new SPTE and old SPTE
2658 * are identical, and emulation is not required.
2660 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2661 WARN_ON_ONCE(!was_rmapped);
2662 return RET_PF_SPURIOUS;
2665 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2666 trace_kvm_mmu_set_spte(level, gfn, sptep);
2667 if (!was_rmapped && is_large_pte(*sptep))
2668 ++vcpu->kvm->stat.lpages;
2670 if (is_shadow_present_pte(*sptep)) {
2671 if (!was_rmapped) {
2672 rmap_count = rmap_add(vcpu, sptep, gfn);
2673 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2674 rmap_recycle(vcpu, sptep, gfn);
2678 return ret;
2681 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2682 bool no_dirty_log)
2684 struct kvm_memory_slot *slot;
2686 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2687 if (!slot)
2688 return KVM_PFN_ERR_FAULT;
2690 return gfn_to_pfn_memslot_atomic(slot, gfn);
2693 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2694 struct kvm_mmu_page *sp,
2695 u64 *start, u64 *end)
2697 struct page *pages[PTE_PREFETCH_NUM];
2698 struct kvm_memory_slot *slot;
2699 unsigned int access = sp->role.access;
2700 int i, ret;
2701 gfn_t gfn;
2703 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2704 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2705 if (!slot)
2706 return -1;
2708 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2709 if (ret <= 0)
2710 return -1;
2712 for (i = 0; i < ret; i++, gfn++, start++) {
2713 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2714 page_to_pfn(pages[i]), true, true);
2715 put_page(pages[i]);
2718 return 0;
2721 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2722 struct kvm_mmu_page *sp, u64 *sptep)
2724 u64 *spte, *start = NULL;
2725 int i;
2727 WARN_ON(!sp->role.direct);
2729 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2730 spte = sp->spt + i;
2732 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2733 if (is_shadow_present_pte(*spte) || spte == sptep) {
2734 if (!start)
2735 continue;
2736 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2737 break;
2738 start = NULL;
2739 } else if (!start)
2740 start = spte;
2744 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2746 struct kvm_mmu_page *sp;
2748 sp = sptep_to_sp(sptep);
2751 * Without accessed bits, there's no way to distinguish between
2752 * actually accessed translations and prefetched, so disable pte
2753 * prefetch if accessed bits aren't available.
2755 if (sp_ad_disabled(sp))
2756 return;
2758 if (sp->role.level > PG_LEVEL_4K)
2759 return;
2761 __direct_pte_prefetch(vcpu, sp, sptep);
2764 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2765 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2767 unsigned long hva;
2768 pte_t *pte;
2769 int level;
2771 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2772 return PG_LEVEL_4K;
2775 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2776 * is not solely for performance, it's also necessary to avoid the
2777 * "writable" check in __gfn_to_hva_many(), which will always fail on
2778 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2779 * page fault steps have already verified the guest isn't writing a
2780 * read-only memslot.
2782 hva = __gfn_to_hva_memslot(slot, gfn);
2784 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2785 if (unlikely(!pte))
2786 return PG_LEVEL_4K;
2788 return level;
2791 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2792 int max_level, kvm_pfn_t *pfnp,
2793 bool huge_page_disallowed, int *req_level)
2795 struct kvm_memory_slot *slot;
2796 struct kvm_lpage_info *linfo;
2797 kvm_pfn_t pfn = *pfnp;
2798 kvm_pfn_t mask;
2799 int level;
2801 *req_level = PG_LEVEL_4K;
2803 if (unlikely(max_level == PG_LEVEL_4K))
2804 return PG_LEVEL_4K;
2806 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2807 return PG_LEVEL_4K;
2809 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2810 if (!slot)
2811 return PG_LEVEL_4K;
2813 max_level = min(max_level, max_huge_page_level);
2814 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2815 linfo = lpage_info_slot(gfn, slot, max_level);
2816 if (!linfo->disallow_lpage)
2817 break;
2820 if (max_level == PG_LEVEL_4K)
2821 return PG_LEVEL_4K;
2823 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2824 if (level == PG_LEVEL_4K)
2825 return level;
2827 *req_level = level = min(level, max_level);
2830 * Enforce the iTLB multihit workaround after capturing the requested
2831 * level, which will be used to do precise, accurate accounting.
2833 if (huge_page_disallowed)
2834 return PG_LEVEL_4K;
2837 * mmu_notifier_retry() was successful and mmu_lock is held, so
2838 * the pmd can't be split from under us.
2840 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2841 VM_BUG_ON((gfn & mask) != (pfn & mask));
2842 *pfnp = pfn & ~mask;
2844 return level;
2847 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2848 kvm_pfn_t *pfnp, int *goal_levelp)
2850 int level = *goal_levelp;
2852 if (cur_level == level && level > PG_LEVEL_4K &&
2853 is_shadow_present_pte(spte) &&
2854 !is_large_pte(spte)) {
2856 * A small SPTE exists for this pfn, but FNAME(fetch)
2857 * and __direct_map would like to create a large PTE
2858 * instead: just force them to go down another level,
2859 * patching back for them into pfn the next 9 bits of
2860 * the address.
2862 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2863 KVM_PAGES_PER_HPAGE(level - 1);
2864 *pfnp |= gfn & page_mask;
2865 (*goal_levelp)--;
2869 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2870 int map_writable, int max_level, kvm_pfn_t pfn,
2871 bool prefault, bool is_tdp)
2873 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2874 bool write = error_code & PFERR_WRITE_MASK;
2875 bool exec = error_code & PFERR_FETCH_MASK;
2876 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2877 struct kvm_shadow_walk_iterator it;
2878 struct kvm_mmu_page *sp;
2879 int level, req_level, ret;
2880 gfn_t gfn = gpa >> PAGE_SHIFT;
2881 gfn_t base_gfn = gfn;
2883 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2884 return RET_PF_RETRY;
2886 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2887 huge_page_disallowed, &req_level);
2889 trace_kvm_mmu_spte_requested(gpa, level, pfn);
2890 for_each_shadow_entry(vcpu, gpa, it) {
2892 * We cannot overwrite existing page tables with an NX
2893 * large page, as the leaf could be executable.
2895 if (nx_huge_page_workaround_enabled)
2896 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2897 &pfn, &level);
2899 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2900 if (it.level == level)
2901 break;
2903 drop_large_spte(vcpu, it.sptep);
2904 if (!is_shadow_present_pte(*it.sptep)) {
2905 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2906 it.level - 1, true, ACC_ALL);
2908 link_shadow_page(vcpu, it.sptep, sp);
2909 if (is_tdp && huge_page_disallowed &&
2910 req_level >= it.level)
2911 account_huge_nx_page(vcpu->kvm, sp);
2915 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2916 write, level, base_gfn, pfn, prefault,
2917 map_writable);
2918 if (ret == RET_PF_SPURIOUS)
2919 return ret;
2921 direct_pte_prefetch(vcpu, it.sptep);
2922 ++vcpu->stat.pf_fixed;
2923 return ret;
2926 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2928 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2931 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2934 * Do not cache the mmio info caused by writing the readonly gfn
2935 * into the spte otherwise read access on readonly gfn also can
2936 * caused mmio page fault and treat it as mmio access.
2938 if (pfn == KVM_PFN_ERR_RO_FAULT)
2939 return RET_PF_EMULATE;
2941 if (pfn == KVM_PFN_ERR_HWPOISON) {
2942 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2943 return RET_PF_RETRY;
2946 return -EFAULT;
2949 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2950 kvm_pfn_t pfn, unsigned int access,
2951 int *ret_val)
2953 /* The pfn is invalid, report the error! */
2954 if (unlikely(is_error_pfn(pfn))) {
2955 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2956 return true;
2959 if (unlikely(is_noslot_pfn(pfn)))
2960 vcpu_cache_mmio_info(vcpu, gva, gfn,
2961 access & shadow_mmio_access_mask);
2963 return false;
2966 static bool page_fault_can_be_fast(u32 error_code)
2969 * Do not fix the mmio spte with invalid generation number which
2970 * need to be updated by slow page fault path.
2972 if (unlikely(error_code & PFERR_RSVD_MASK))
2973 return false;
2975 /* See if the page fault is due to an NX violation */
2976 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2977 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2978 return false;
2981 * #PF can be fast if:
2982 * 1. The shadow page table entry is not present, which could mean that
2983 * the fault is potentially caused by access tracking (if enabled).
2984 * 2. The shadow page table entry is present and the fault
2985 * is caused by write-protect, that means we just need change the W
2986 * bit of the spte which can be done out of mmu-lock.
2988 * However, if access tracking is disabled we know that a non-present
2989 * page must be a genuine page fault where we have to create a new SPTE.
2990 * So, if access tracking is disabled, we return true only for write
2991 * accesses to a present page.
2994 return shadow_acc_track_mask != 0 ||
2995 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2996 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3000 * Returns true if the SPTE was fixed successfully. Otherwise,
3001 * someone else modified the SPTE from its original value.
3003 static bool
3004 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3005 u64 *sptep, u64 old_spte, u64 new_spte)
3007 gfn_t gfn;
3009 WARN_ON(!sp->role.direct);
3012 * Theoretically we could also set dirty bit (and flush TLB) here in
3013 * order to eliminate unnecessary PML logging. See comments in
3014 * set_spte. But fast_page_fault is very unlikely to happen with PML
3015 * enabled, so we do not do this. This might result in the same GPA
3016 * to be logged in PML buffer again when the write really happens, and
3017 * eventually to be called by mark_page_dirty twice. But it's also no
3018 * harm. This also avoids the TLB flush needed after setting dirty bit
3019 * so non-PML cases won't be impacted.
3021 * Compare with set_spte where instead shadow_dirty_mask is set.
3023 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3024 return false;
3026 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3028 * The gfn of direct spte is stable since it is
3029 * calculated by sp->gfn.
3031 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3032 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3035 return true;
3038 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3040 if (fault_err_code & PFERR_FETCH_MASK)
3041 return is_executable_pte(spte);
3043 if (fault_err_code & PFERR_WRITE_MASK)
3044 return is_writable_pte(spte);
3046 /* Fault was on Read access */
3047 return spte & PT_PRESENT_MASK;
3051 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3053 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3054 u32 error_code)
3056 struct kvm_shadow_walk_iterator iterator;
3057 struct kvm_mmu_page *sp;
3058 int ret = RET_PF_INVALID;
3059 u64 spte = 0ull;
3060 uint retry_count = 0;
3062 if (!page_fault_can_be_fast(error_code))
3063 return ret;
3065 walk_shadow_page_lockless_begin(vcpu);
3067 do {
3068 u64 new_spte;
3070 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3071 if (!is_shadow_present_pte(spte))
3072 break;
3074 sp = sptep_to_sp(iterator.sptep);
3075 if (!is_last_spte(spte, sp->role.level))
3076 break;
3079 * Check whether the memory access that caused the fault would
3080 * still cause it if it were to be performed right now. If not,
3081 * then this is a spurious fault caused by TLB lazily flushed,
3082 * or some other CPU has already fixed the PTE after the
3083 * current CPU took the fault.
3085 * Need not check the access of upper level table entries since
3086 * they are always ACC_ALL.
3088 if (is_access_allowed(error_code, spte)) {
3089 ret = RET_PF_SPURIOUS;
3090 break;
3093 new_spte = spte;
3095 if (is_access_track_spte(spte))
3096 new_spte = restore_acc_track_spte(new_spte);
3099 * Currently, to simplify the code, write-protection can
3100 * be removed in the fast path only if the SPTE was
3101 * write-protected for dirty-logging or access tracking.
3103 if ((error_code & PFERR_WRITE_MASK) &&
3104 spte_can_locklessly_be_made_writable(spte)) {
3105 new_spte |= PT_WRITABLE_MASK;
3108 * Do not fix write-permission on the large spte. Since
3109 * we only dirty the first page into the dirty-bitmap in
3110 * fast_pf_fix_direct_spte(), other pages are missed
3111 * if its slot has dirty logging enabled.
3113 * Instead, we let the slow page fault path create a
3114 * normal spte to fix the access.
3116 * See the comments in kvm_arch_commit_memory_region().
3118 if (sp->role.level > PG_LEVEL_4K)
3119 break;
3122 /* Verify that the fault can be handled in the fast path */
3123 if (new_spte == spte ||
3124 !is_access_allowed(error_code, new_spte))
3125 break;
3128 * Currently, fast page fault only works for direct mapping
3129 * since the gfn is not stable for indirect shadow page. See
3130 * Documentation/virt/kvm/locking.rst to get more detail.
3132 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3133 new_spte)) {
3134 ret = RET_PF_FIXED;
3135 break;
3138 if (++retry_count > 4) {
3139 printk_once(KERN_WARNING
3140 "kvm: Fast #PF retrying more than 4 times.\n");
3141 break;
3144 } while (true);
3146 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3147 spte, ret);
3148 walk_shadow_page_lockless_end(vcpu);
3150 return ret;
3153 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3154 struct list_head *invalid_list)
3156 struct kvm_mmu_page *sp;
3158 if (!VALID_PAGE(*root_hpa))
3159 return;
3161 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3163 if (kvm_mmu_put_root(kvm, sp)) {
3164 if (sp->tdp_mmu_page)
3165 kvm_tdp_mmu_free_root(kvm, sp);
3166 else if (sp->role.invalid)
3167 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3170 *root_hpa = INVALID_PAGE;
3173 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3174 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3175 ulong roots_to_free)
3177 struct kvm *kvm = vcpu->kvm;
3178 int i;
3179 LIST_HEAD(invalid_list);
3180 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3182 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3184 /* Before acquiring the MMU lock, see if we need to do any real work. */
3185 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3186 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3187 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3188 VALID_PAGE(mmu->prev_roots[i].hpa))
3189 break;
3191 if (i == KVM_MMU_NUM_PREV_ROOTS)
3192 return;
3195 spin_lock(&kvm->mmu_lock);
3197 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3198 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3199 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3200 &invalid_list);
3202 if (free_active_root) {
3203 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3204 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3205 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3206 } else {
3207 for (i = 0; i < 4; ++i)
3208 if (mmu->pae_root[i] != 0)
3209 mmu_free_root_page(kvm,
3210 &mmu->pae_root[i],
3211 &invalid_list);
3212 mmu->root_hpa = INVALID_PAGE;
3214 mmu->root_pgd = 0;
3217 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3218 spin_unlock(&kvm->mmu_lock);
3220 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3222 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3224 int ret = 0;
3226 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3227 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3228 ret = 1;
3231 return ret;
3234 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3235 u8 level, bool direct)
3237 struct kvm_mmu_page *sp;
3239 spin_lock(&vcpu->kvm->mmu_lock);
3241 if (make_mmu_pages_available(vcpu)) {
3242 spin_unlock(&vcpu->kvm->mmu_lock);
3243 return INVALID_PAGE;
3245 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3246 ++sp->root_count;
3248 spin_unlock(&vcpu->kvm->mmu_lock);
3249 return __pa(sp->spt);
3252 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3254 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3255 hpa_t root;
3256 unsigned i;
3258 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3259 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3261 if (!VALID_PAGE(root))
3262 return -ENOSPC;
3263 vcpu->arch.mmu->root_hpa = root;
3264 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3265 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3266 true);
3268 if (!VALID_PAGE(root))
3269 return -ENOSPC;
3270 vcpu->arch.mmu->root_hpa = root;
3271 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3272 for (i = 0; i < 4; ++i) {
3273 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3275 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3276 i << 30, PT32_ROOT_LEVEL, true);
3277 if (!VALID_PAGE(root))
3278 return -ENOSPC;
3279 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3281 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3282 } else
3283 BUG();
3285 /* root_pgd is ignored for direct MMUs. */
3286 vcpu->arch.mmu->root_pgd = 0;
3288 return 0;
3291 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3293 u64 pdptr, pm_mask;
3294 gfn_t root_gfn, root_pgd;
3295 hpa_t root;
3296 int i;
3298 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3299 root_gfn = root_pgd >> PAGE_SHIFT;
3301 if (mmu_check_root(vcpu, root_gfn))
3302 return 1;
3305 * Do we shadow a long mode page table? If so we need to
3306 * write-protect the guests page table root.
3308 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3309 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3311 root = mmu_alloc_root(vcpu, root_gfn, 0,
3312 vcpu->arch.mmu->shadow_root_level, false);
3313 if (!VALID_PAGE(root))
3314 return -ENOSPC;
3315 vcpu->arch.mmu->root_hpa = root;
3316 goto set_root_pgd;
3320 * We shadow a 32 bit page table. This may be a legacy 2-level
3321 * or a PAE 3-level page table. In either case we need to be aware that
3322 * the shadow page table may be a PAE or a long mode page table.
3324 pm_mask = PT_PRESENT_MASK;
3325 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3326 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3328 for (i = 0; i < 4; ++i) {
3329 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3330 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3331 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3332 if (!(pdptr & PT_PRESENT_MASK)) {
3333 vcpu->arch.mmu->pae_root[i] = 0;
3334 continue;
3336 root_gfn = pdptr >> PAGE_SHIFT;
3337 if (mmu_check_root(vcpu, root_gfn))
3338 return 1;
3341 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3342 PT32_ROOT_LEVEL, false);
3343 if (!VALID_PAGE(root))
3344 return -ENOSPC;
3345 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3347 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3350 * If we shadow a 32 bit page table with a long mode page
3351 * table we enter this path.
3353 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3354 if (vcpu->arch.mmu->lm_root == NULL) {
3356 * The additional page necessary for this is only
3357 * allocated on demand.
3360 u64 *lm_root;
3362 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3363 if (lm_root == NULL)
3364 return 1;
3366 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3368 vcpu->arch.mmu->lm_root = lm_root;
3371 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3374 set_root_pgd:
3375 vcpu->arch.mmu->root_pgd = root_pgd;
3377 return 0;
3380 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3382 if (vcpu->arch.mmu->direct_map)
3383 return mmu_alloc_direct_roots(vcpu);
3384 else
3385 return mmu_alloc_shadow_roots(vcpu);
3388 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3390 int i;
3391 struct kvm_mmu_page *sp;
3393 if (vcpu->arch.mmu->direct_map)
3394 return;
3396 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3397 return;
3399 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3401 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3402 hpa_t root = vcpu->arch.mmu->root_hpa;
3403 sp = to_shadow_page(root);
3406 * Even if another CPU was marking the SP as unsync-ed
3407 * simultaneously, any guest page table changes are not
3408 * guaranteed to be visible anyway until this VCPU issues a TLB
3409 * flush strictly after those changes are made. We only need to
3410 * ensure that the other CPU sets these flags before any actual
3411 * changes to the page tables are made. The comments in
3412 * mmu_need_write_protect() describe what could go wrong if this
3413 * requirement isn't satisfied.
3415 if (!smp_load_acquire(&sp->unsync) &&
3416 !smp_load_acquire(&sp->unsync_children))
3417 return;
3419 spin_lock(&vcpu->kvm->mmu_lock);
3420 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3422 mmu_sync_children(vcpu, sp);
3424 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3425 spin_unlock(&vcpu->kvm->mmu_lock);
3426 return;
3429 spin_lock(&vcpu->kvm->mmu_lock);
3430 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3432 for (i = 0; i < 4; ++i) {
3433 hpa_t root = vcpu->arch.mmu->pae_root[i];
3435 if (root && VALID_PAGE(root)) {
3436 root &= PT64_BASE_ADDR_MASK;
3437 sp = to_shadow_page(root);
3438 mmu_sync_children(vcpu, sp);
3442 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3443 spin_unlock(&vcpu->kvm->mmu_lock);
3445 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3447 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448 u32 access, struct x86_exception *exception)
3450 if (exception)
3451 exception->error_code = 0;
3452 return vaddr;
3455 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3456 u32 access,
3457 struct x86_exception *exception)
3459 if (exception)
3460 exception->error_code = 0;
3461 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3464 static bool
3465 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3467 int bit7 = (pte >> 7) & 1;
3469 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3472 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3474 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3477 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3480 * A nested guest cannot use the MMIO cache if it is using nested
3481 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3483 if (mmu_is_nested(vcpu))
3484 return false;
3486 if (direct)
3487 return vcpu_match_mmio_gpa(vcpu, addr);
3489 return vcpu_match_mmio_gva(vcpu, addr);
3493 * Return the level of the lowest level SPTE added to sptes.
3494 * That SPTE may be non-present.
3496 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3498 struct kvm_shadow_walk_iterator iterator;
3499 int leaf = -1;
3500 u64 spte;
3502 walk_shadow_page_lockless_begin(vcpu);
3504 for (shadow_walk_init(&iterator, vcpu, addr),
3505 *root_level = iterator.level;
3506 shadow_walk_okay(&iterator);
3507 __shadow_walk_next(&iterator, spte)) {
3508 leaf = iterator.level;
3509 spte = mmu_spte_get_lockless(iterator.sptep);
3511 sptes[leaf] = spte;
3513 if (!is_shadow_present_pte(spte))
3514 break;
3517 walk_shadow_page_lockless_end(vcpu);
3519 return leaf;
3522 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3523 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3525 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3526 struct rsvd_bits_validate *rsvd_check;
3527 int root, leaf, level;
3528 bool reserved = false;
3530 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3531 *sptep = 0ull;
3532 return reserved;
3535 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3536 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3537 else
3538 leaf = get_walk(vcpu, addr, sptes, &root);
3540 if (unlikely(leaf < 0)) {
3541 *sptep = 0ull;
3542 return reserved;
3545 *sptep = sptes[leaf];
3548 * Skip reserved bits checks on the terminal leaf if it's not a valid
3549 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3550 * design, always have reserved bits set. The purpose of the checks is
3551 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3553 if (!is_shadow_present_pte(sptes[leaf]))
3554 leaf++;
3556 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3558 for (level = root; level >= leaf; level--)
3560 * Use a bitwise-OR instead of a logical-OR to aggregate the
3561 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3562 * adding a Jcc in the loop.
3564 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3565 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3567 if (reserved) {
3568 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3569 __func__, addr);
3570 for (level = root; level >= leaf; level--)
3571 pr_err("------ spte 0x%llx level %d.\n",
3572 sptes[level], level);
3575 return reserved;
3578 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3580 u64 spte;
3581 bool reserved;
3583 if (mmio_info_in_cache(vcpu, addr, direct))
3584 return RET_PF_EMULATE;
3586 reserved = get_mmio_spte(vcpu, addr, &spte);
3587 if (WARN_ON(reserved))
3588 return -EINVAL;
3590 if (is_mmio_spte(spte)) {
3591 gfn_t gfn = get_mmio_spte_gfn(spte);
3592 unsigned int access = get_mmio_spte_access(spte);
3594 if (!check_mmio_spte(vcpu, spte))
3595 return RET_PF_INVALID;
3597 if (direct)
3598 addr = 0;
3600 trace_handle_mmio_page_fault(addr, gfn, access);
3601 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3602 return RET_PF_EMULATE;
3606 * If the page table is zapped by other cpus, let CPU fault again on
3607 * the address.
3609 return RET_PF_RETRY;
3612 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3613 u32 error_code, gfn_t gfn)
3615 if (unlikely(error_code & PFERR_RSVD_MASK))
3616 return false;
3618 if (!(error_code & PFERR_PRESENT_MASK) ||
3619 !(error_code & PFERR_WRITE_MASK))
3620 return false;
3623 * guest is writing the page which is write tracked which can
3624 * not be fixed by page fault handler.
3626 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3627 return true;
3629 return false;
3632 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3634 struct kvm_shadow_walk_iterator iterator;
3635 u64 spte;
3637 walk_shadow_page_lockless_begin(vcpu);
3638 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3639 clear_sp_write_flooding_count(iterator.sptep);
3640 if (!is_shadow_present_pte(spte))
3641 break;
3643 walk_shadow_page_lockless_end(vcpu);
3646 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3647 gfn_t gfn)
3649 struct kvm_arch_async_pf arch;
3651 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3652 arch.gfn = gfn;
3653 arch.direct_map = vcpu->arch.mmu->direct_map;
3654 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3656 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3657 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3660 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3661 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3662 bool *writable)
3664 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3665 bool async;
3667 /* Don't expose private memslots to L2. */
3668 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3669 *pfn = KVM_PFN_NOSLOT;
3670 *writable = false;
3671 return false;
3674 async = false;
3675 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3676 if (!async)
3677 return false; /* *pfn has correct page already */
3679 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3680 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3681 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3682 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3683 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3684 return true;
3685 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3686 return true;
3689 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3690 return false;
3693 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3694 bool prefault, int max_level, bool is_tdp)
3696 bool write = error_code & PFERR_WRITE_MASK;
3697 bool map_writable;
3699 gfn_t gfn = gpa >> PAGE_SHIFT;
3700 unsigned long mmu_seq;
3701 kvm_pfn_t pfn;
3702 int r;
3704 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3705 return RET_PF_EMULATE;
3707 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3708 r = fast_page_fault(vcpu, gpa, error_code);
3709 if (r != RET_PF_INVALID)
3710 return r;
3713 r = mmu_topup_memory_caches(vcpu, false);
3714 if (r)
3715 return r;
3717 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3718 smp_rmb();
3720 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3721 return RET_PF_RETRY;
3723 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3724 return r;
3726 r = RET_PF_RETRY;
3727 spin_lock(&vcpu->kvm->mmu_lock);
3728 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3729 goto out_unlock;
3730 r = make_mmu_pages_available(vcpu);
3731 if (r)
3732 goto out_unlock;
3734 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3735 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3736 pfn, prefault);
3737 else
3738 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3739 prefault, is_tdp);
3741 out_unlock:
3742 spin_unlock(&vcpu->kvm->mmu_lock);
3743 kvm_release_pfn_clean(pfn);
3744 return r;
3747 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3748 u32 error_code, bool prefault)
3750 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3752 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3753 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3754 PG_LEVEL_2M, false);
3757 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3758 u64 fault_address, char *insn, int insn_len)
3760 int r = 1;
3761 u32 flags = vcpu->arch.apf.host_apf_flags;
3763 #ifndef CONFIG_X86_64
3764 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3765 if (WARN_ON_ONCE(fault_address >> 32))
3766 return -EFAULT;
3767 #endif
3769 vcpu->arch.l1tf_flush_l1d = true;
3770 if (!flags) {
3771 trace_kvm_page_fault(fault_address, error_code);
3773 if (kvm_event_needs_reinjection(vcpu))
3774 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3775 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3776 insn_len);
3777 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3778 vcpu->arch.apf.host_apf_flags = 0;
3779 local_irq_disable();
3780 kvm_async_pf_task_wait_schedule(fault_address);
3781 local_irq_enable();
3782 } else {
3783 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3786 return r;
3788 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3790 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3791 bool prefault)
3793 int max_level;
3795 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3796 max_level > PG_LEVEL_4K;
3797 max_level--) {
3798 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3799 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3801 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3802 break;
3805 return direct_page_fault(vcpu, gpa, error_code, prefault,
3806 max_level, true);
3809 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3810 struct kvm_mmu *context)
3812 context->page_fault = nonpaging_page_fault;
3813 context->gva_to_gpa = nonpaging_gva_to_gpa;
3814 context->sync_page = nonpaging_sync_page;
3815 context->invlpg = NULL;
3816 context->update_pte = nonpaging_update_pte;
3817 context->root_level = 0;
3818 context->shadow_root_level = PT32E_ROOT_LEVEL;
3819 context->direct_map = true;
3820 context->nx = false;
3823 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3824 union kvm_mmu_page_role role)
3826 return (role.direct || pgd == root->pgd) &&
3827 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3828 role.word == to_shadow_page(root->hpa)->role.word;
3832 * Find out if a previously cached root matching the new pgd/role is available.
3833 * The current root is also inserted into the cache.
3834 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3835 * returned.
3836 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3837 * false is returned. This root should now be freed by the caller.
3839 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3840 union kvm_mmu_page_role new_role)
3842 uint i;
3843 struct kvm_mmu_root_info root;
3844 struct kvm_mmu *mmu = vcpu->arch.mmu;
3846 root.pgd = mmu->root_pgd;
3847 root.hpa = mmu->root_hpa;
3849 if (is_root_usable(&root, new_pgd, new_role))
3850 return true;
3852 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3853 swap(root, mmu->prev_roots[i]);
3855 if (is_root_usable(&root, new_pgd, new_role))
3856 break;
3859 mmu->root_hpa = root.hpa;
3860 mmu->root_pgd = root.pgd;
3862 return i < KVM_MMU_NUM_PREV_ROOTS;
3865 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3866 union kvm_mmu_page_role new_role)
3868 struct kvm_mmu *mmu = vcpu->arch.mmu;
3871 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3872 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3873 * later if necessary.
3875 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3876 mmu->root_level >= PT64_ROOT_4LEVEL)
3877 return cached_root_available(vcpu, new_pgd, new_role);
3879 return false;
3882 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3883 union kvm_mmu_page_role new_role,
3884 bool skip_tlb_flush, bool skip_mmu_sync)
3886 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3887 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3888 return;
3892 * It's possible that the cached previous root page is obsolete because
3893 * of a change in the MMU generation number. However, changing the
3894 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3895 * free the root set here and allocate a new one.
3897 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3899 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3900 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3901 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3902 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3905 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3906 * switching to a new CR3, that GVA->GPA mapping may no longer be
3907 * valid. So clear any cached MMIO info even when we don't need to sync
3908 * the shadow page tables.
3910 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3913 * If this is a direct root page, it doesn't have a write flooding
3914 * count. Otherwise, clear the write flooding count.
3916 if (!new_role.direct)
3917 __clear_sp_write_flooding_count(
3918 to_shadow_page(vcpu->arch.mmu->root_hpa));
3921 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3922 bool skip_mmu_sync)
3924 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3925 skip_tlb_flush, skip_mmu_sync);
3927 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3929 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3931 return kvm_read_cr3(vcpu);
3934 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3935 unsigned int access, int *nr_present)
3937 if (unlikely(is_mmio_spte(*sptep))) {
3938 if (gfn != get_mmio_spte_gfn(*sptep)) {
3939 mmu_spte_clear_no_track(sptep);
3940 return true;
3943 (*nr_present)++;
3944 mark_mmio_spte(vcpu, sptep, gfn, access);
3945 return true;
3948 return false;
3951 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3952 unsigned level, unsigned gpte)
3955 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3956 * If it is clear, there are no large pages at this level, so clear
3957 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3959 gpte &= level - mmu->last_nonleaf_level;
3962 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3963 * iff level <= PG_LEVEL_4K, which for our purpose means
3964 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3966 gpte |= level - PG_LEVEL_4K - 1;
3968 return gpte & PT_PAGE_SIZE_MASK;
3971 #define PTTYPE_EPT 18 /* arbitrary */
3972 #define PTTYPE PTTYPE_EPT
3973 #include "paging_tmpl.h"
3974 #undef PTTYPE
3976 #define PTTYPE 64
3977 #include "paging_tmpl.h"
3978 #undef PTTYPE
3980 #define PTTYPE 32
3981 #include "paging_tmpl.h"
3982 #undef PTTYPE
3984 static void
3985 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3986 struct rsvd_bits_validate *rsvd_check,
3987 int maxphyaddr, int level, bool nx, bool gbpages,
3988 bool pse, bool amd)
3990 u64 exb_bit_rsvd = 0;
3991 u64 gbpages_bit_rsvd = 0;
3992 u64 nonleaf_bit8_rsvd = 0;
3994 rsvd_check->bad_mt_xwr = 0;
3996 if (!nx)
3997 exb_bit_rsvd = rsvd_bits(63, 63);
3998 if (!gbpages)
3999 gbpages_bit_rsvd = rsvd_bits(7, 7);
4002 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4003 * leaf entries) on AMD CPUs only.
4005 if (amd)
4006 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4008 switch (level) {
4009 case PT32_ROOT_LEVEL:
4010 /* no rsvd bits for 2 level 4K page table entries */
4011 rsvd_check->rsvd_bits_mask[0][1] = 0;
4012 rsvd_check->rsvd_bits_mask[0][0] = 0;
4013 rsvd_check->rsvd_bits_mask[1][0] =
4014 rsvd_check->rsvd_bits_mask[0][0];
4016 if (!pse) {
4017 rsvd_check->rsvd_bits_mask[1][1] = 0;
4018 break;
4021 if (is_cpuid_PSE36())
4022 /* 36bits PSE 4MB page */
4023 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4024 else
4025 /* 32 bits PSE 4MB page */
4026 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4027 break;
4028 case PT32E_ROOT_LEVEL:
4029 rsvd_check->rsvd_bits_mask[0][2] =
4030 rsvd_bits(maxphyaddr, 63) |
4031 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4032 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4033 rsvd_bits(maxphyaddr, 62); /* PDE */
4034 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4035 rsvd_bits(maxphyaddr, 62); /* PTE */
4036 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4037 rsvd_bits(maxphyaddr, 62) |
4038 rsvd_bits(13, 20); /* large page */
4039 rsvd_check->rsvd_bits_mask[1][0] =
4040 rsvd_check->rsvd_bits_mask[0][0];
4041 break;
4042 case PT64_ROOT_5LEVEL:
4043 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4044 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4045 rsvd_bits(maxphyaddr, 51);
4046 rsvd_check->rsvd_bits_mask[1][4] =
4047 rsvd_check->rsvd_bits_mask[0][4];
4048 fallthrough;
4049 case PT64_ROOT_4LEVEL:
4050 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4051 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4052 rsvd_bits(maxphyaddr, 51);
4053 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4054 gbpages_bit_rsvd |
4055 rsvd_bits(maxphyaddr, 51);
4056 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4057 rsvd_bits(maxphyaddr, 51);
4058 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4059 rsvd_bits(maxphyaddr, 51);
4060 rsvd_check->rsvd_bits_mask[1][3] =
4061 rsvd_check->rsvd_bits_mask[0][3];
4062 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4063 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4064 rsvd_bits(13, 29);
4065 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4066 rsvd_bits(maxphyaddr, 51) |
4067 rsvd_bits(13, 20); /* large page */
4068 rsvd_check->rsvd_bits_mask[1][0] =
4069 rsvd_check->rsvd_bits_mask[0][0];
4070 break;
4074 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4075 struct kvm_mmu *context)
4077 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4078 cpuid_maxphyaddr(vcpu), context->root_level,
4079 context->nx,
4080 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4081 is_pse(vcpu),
4082 guest_cpuid_is_amd_or_hygon(vcpu));
4085 static void
4086 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4087 int maxphyaddr, bool execonly)
4089 u64 bad_mt_xwr;
4091 rsvd_check->rsvd_bits_mask[0][4] =
4092 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4093 rsvd_check->rsvd_bits_mask[0][3] =
4094 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4095 rsvd_check->rsvd_bits_mask[0][2] =
4096 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4097 rsvd_check->rsvd_bits_mask[0][1] =
4098 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4099 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4101 /* large page */
4102 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4103 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4104 rsvd_check->rsvd_bits_mask[1][2] =
4105 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4106 rsvd_check->rsvd_bits_mask[1][1] =
4107 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4108 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4110 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4111 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4112 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4113 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4114 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4115 if (!execonly) {
4116 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4117 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4119 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4122 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4123 struct kvm_mmu *context, bool execonly)
4125 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4126 cpuid_maxphyaddr(vcpu), execonly);
4130 * the page table on host is the shadow page table for the page
4131 * table in guest or amd nested guest, its mmu features completely
4132 * follow the features in guest.
4134 void
4135 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4137 bool uses_nx = context->nx ||
4138 context->mmu_role.base.smep_andnot_wp;
4139 struct rsvd_bits_validate *shadow_zero_check;
4140 int i;
4143 * Passing "true" to the last argument is okay; it adds a check
4144 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4146 shadow_zero_check = &context->shadow_zero_check;
4147 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4148 shadow_phys_bits,
4149 context->shadow_root_level, uses_nx,
4150 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4151 is_pse(vcpu), true);
4153 if (!shadow_me_mask)
4154 return;
4156 for (i = context->shadow_root_level; --i >= 0;) {
4157 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4158 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4162 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4164 static inline bool boot_cpu_is_amd(void)
4166 WARN_ON_ONCE(!tdp_enabled);
4167 return shadow_x_mask == 0;
4171 * the direct page table on host, use as much mmu features as
4172 * possible, however, kvm currently does not do execution-protection.
4174 static void
4175 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4176 struct kvm_mmu *context)
4178 struct rsvd_bits_validate *shadow_zero_check;
4179 int i;
4181 shadow_zero_check = &context->shadow_zero_check;
4183 if (boot_cpu_is_amd())
4184 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4185 shadow_phys_bits,
4186 context->shadow_root_level, false,
4187 boot_cpu_has(X86_FEATURE_GBPAGES),
4188 true, true);
4189 else
4190 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4191 shadow_phys_bits,
4192 false);
4194 if (!shadow_me_mask)
4195 return;
4197 for (i = context->shadow_root_level; --i >= 0;) {
4198 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4199 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4204 * as the comments in reset_shadow_zero_bits_mask() except it
4205 * is the shadow page table for intel nested guest.
4207 static void
4208 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4209 struct kvm_mmu *context, bool execonly)
4211 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4212 shadow_phys_bits, execonly);
4215 #define BYTE_MASK(access) \
4216 ((1 & (access) ? 2 : 0) | \
4217 (2 & (access) ? 4 : 0) | \
4218 (3 & (access) ? 8 : 0) | \
4219 (4 & (access) ? 16 : 0) | \
4220 (5 & (access) ? 32 : 0) | \
4221 (6 & (access) ? 64 : 0) | \
4222 (7 & (access) ? 128 : 0))
4225 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4226 struct kvm_mmu *mmu, bool ept)
4228 unsigned byte;
4230 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4231 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4232 const u8 u = BYTE_MASK(ACC_USER_MASK);
4234 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4235 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4236 bool cr0_wp = is_write_protection(vcpu);
4238 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4239 unsigned pfec = byte << 1;
4242 * Each "*f" variable has a 1 bit for each UWX value
4243 * that causes a fault with the given PFEC.
4246 /* Faults from writes to non-writable pages */
4247 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4248 /* Faults from user mode accesses to supervisor pages */
4249 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4250 /* Faults from fetches of non-executable pages*/
4251 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4252 /* Faults from kernel mode fetches of user pages */
4253 u8 smepf = 0;
4254 /* Faults from kernel mode accesses of user pages */
4255 u8 smapf = 0;
4257 if (!ept) {
4258 /* Faults from kernel mode accesses to user pages */
4259 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4261 /* Not really needed: !nx will cause pte.nx to fault */
4262 if (!mmu->nx)
4263 ff = 0;
4265 /* Allow supervisor writes if !cr0.wp */
4266 if (!cr0_wp)
4267 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4269 /* Disallow supervisor fetches of user code if cr4.smep */
4270 if (cr4_smep)
4271 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4274 * SMAP:kernel-mode data accesses from user-mode
4275 * mappings should fault. A fault is considered
4276 * as a SMAP violation if all of the following
4277 * conditions are true:
4278 * - X86_CR4_SMAP is set in CR4
4279 * - A user page is accessed
4280 * - The access is not a fetch
4281 * - Page fault in kernel mode
4282 * - if CPL = 3 or X86_EFLAGS_AC is clear
4284 * Here, we cover the first three conditions.
4285 * The fourth is computed dynamically in permission_fault();
4286 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4287 * *not* subject to SMAP restrictions.
4289 if (cr4_smap)
4290 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4293 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4298 * PKU is an additional mechanism by which the paging controls access to
4299 * user-mode addresses based on the value in the PKRU register. Protection
4300 * key violations are reported through a bit in the page fault error code.
4301 * Unlike other bits of the error code, the PK bit is not known at the
4302 * call site of e.g. gva_to_gpa; it must be computed directly in
4303 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4304 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4306 * In particular the following conditions come from the error code, the
4307 * page tables and the machine state:
4308 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4309 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4310 * - PK is always zero if U=0 in the page tables
4311 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4313 * The PKRU bitmask caches the result of these four conditions. The error
4314 * code (minus the P bit) and the page table's U bit form an index into the
4315 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4316 * with the two bits of the PKRU register corresponding to the protection key.
4317 * For the first three conditions above the bits will be 00, thus masking
4318 * away both AD and WD. For all reads or if the last condition holds, WD
4319 * only will be masked away.
4321 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4322 bool ept)
4324 unsigned bit;
4325 bool wp;
4327 if (ept) {
4328 mmu->pkru_mask = 0;
4329 return;
4332 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4333 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4334 mmu->pkru_mask = 0;
4335 return;
4338 wp = is_write_protection(vcpu);
4340 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4341 unsigned pfec, pkey_bits;
4342 bool check_pkey, check_write, ff, uf, wf, pte_user;
4344 pfec = bit << 1;
4345 ff = pfec & PFERR_FETCH_MASK;
4346 uf = pfec & PFERR_USER_MASK;
4347 wf = pfec & PFERR_WRITE_MASK;
4349 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4350 pte_user = pfec & PFERR_RSVD_MASK;
4353 * Only need to check the access which is not an
4354 * instruction fetch and is to a user page.
4356 check_pkey = (!ff && pte_user);
4358 * write access is controlled by PKRU if it is a
4359 * user access or CR0.WP = 1.
4361 check_write = check_pkey && wf && (uf || wp);
4363 /* PKRU.AD stops both read and write access. */
4364 pkey_bits = !!check_pkey;
4365 /* PKRU.WD stops write access. */
4366 pkey_bits |= (!!check_write) << 1;
4368 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4372 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4374 unsigned root_level = mmu->root_level;
4376 mmu->last_nonleaf_level = root_level;
4377 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4378 mmu->last_nonleaf_level++;
4381 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4382 struct kvm_mmu *context,
4383 int level)
4385 context->nx = is_nx(vcpu);
4386 context->root_level = level;
4388 reset_rsvds_bits_mask(vcpu, context);
4389 update_permission_bitmask(vcpu, context, false);
4390 update_pkru_bitmask(vcpu, context, false);
4391 update_last_nonleaf_level(vcpu, context);
4393 MMU_WARN_ON(!is_pae(vcpu));
4394 context->page_fault = paging64_page_fault;
4395 context->gva_to_gpa = paging64_gva_to_gpa;
4396 context->sync_page = paging64_sync_page;
4397 context->invlpg = paging64_invlpg;
4398 context->update_pte = paging64_update_pte;
4399 context->shadow_root_level = level;
4400 context->direct_map = false;
4403 static void paging64_init_context(struct kvm_vcpu *vcpu,
4404 struct kvm_mmu *context)
4406 int root_level = is_la57_mode(vcpu) ?
4407 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4409 paging64_init_context_common(vcpu, context, root_level);
4412 static void paging32_init_context(struct kvm_vcpu *vcpu,
4413 struct kvm_mmu *context)
4415 context->nx = false;
4416 context->root_level = PT32_ROOT_LEVEL;
4418 reset_rsvds_bits_mask(vcpu, context);
4419 update_permission_bitmask(vcpu, context, false);
4420 update_pkru_bitmask(vcpu, context, false);
4421 update_last_nonleaf_level(vcpu, context);
4423 context->page_fault = paging32_page_fault;
4424 context->gva_to_gpa = paging32_gva_to_gpa;
4425 context->sync_page = paging32_sync_page;
4426 context->invlpg = paging32_invlpg;
4427 context->update_pte = paging32_update_pte;
4428 context->shadow_root_level = PT32E_ROOT_LEVEL;
4429 context->direct_map = false;
4432 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4433 struct kvm_mmu *context)
4435 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4438 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4440 union kvm_mmu_extended_role ext = {0};
4442 ext.cr0_pg = !!is_paging(vcpu);
4443 ext.cr4_pae = !!is_pae(vcpu);
4444 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4445 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4446 ext.cr4_pse = !!is_pse(vcpu);
4447 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4448 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4450 ext.valid = 1;
4452 return ext;
4455 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4456 bool base_only)
4458 union kvm_mmu_role role = {0};
4460 role.base.access = ACC_ALL;
4461 role.base.nxe = !!is_nx(vcpu);
4462 role.base.cr0_wp = is_write_protection(vcpu);
4463 role.base.smm = is_smm(vcpu);
4464 role.base.guest_mode = is_guest_mode(vcpu);
4466 if (base_only)
4467 return role;
4469 role.ext = kvm_calc_mmu_role_ext(vcpu);
4471 return role;
4474 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4476 /* Use 5-level TDP if and only if it's useful/necessary. */
4477 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4478 return 4;
4480 return max_tdp_level;
4483 static union kvm_mmu_role
4484 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4486 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4488 role.base.ad_disabled = (shadow_accessed_mask == 0);
4489 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4490 role.base.direct = true;
4491 role.base.gpte_is_8_bytes = true;
4493 return role;
4496 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4498 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4499 union kvm_mmu_role new_role =
4500 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4502 if (new_role.as_u64 == context->mmu_role.as_u64)
4503 return;
4505 context->mmu_role.as_u64 = new_role.as_u64;
4506 context->page_fault = kvm_tdp_page_fault;
4507 context->sync_page = nonpaging_sync_page;
4508 context->invlpg = NULL;
4509 context->update_pte = nonpaging_update_pte;
4510 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4511 context->direct_map = true;
4512 context->get_guest_pgd = get_cr3;
4513 context->get_pdptr = kvm_pdptr_read;
4514 context->inject_page_fault = kvm_inject_page_fault;
4516 if (!is_paging(vcpu)) {
4517 context->nx = false;
4518 context->gva_to_gpa = nonpaging_gva_to_gpa;
4519 context->root_level = 0;
4520 } else if (is_long_mode(vcpu)) {
4521 context->nx = is_nx(vcpu);
4522 context->root_level = is_la57_mode(vcpu) ?
4523 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4524 reset_rsvds_bits_mask(vcpu, context);
4525 context->gva_to_gpa = paging64_gva_to_gpa;
4526 } else if (is_pae(vcpu)) {
4527 context->nx = is_nx(vcpu);
4528 context->root_level = PT32E_ROOT_LEVEL;
4529 reset_rsvds_bits_mask(vcpu, context);
4530 context->gva_to_gpa = paging64_gva_to_gpa;
4531 } else {
4532 context->nx = false;
4533 context->root_level = PT32_ROOT_LEVEL;
4534 reset_rsvds_bits_mask(vcpu, context);
4535 context->gva_to_gpa = paging32_gva_to_gpa;
4538 update_permission_bitmask(vcpu, context, false);
4539 update_pkru_bitmask(vcpu, context, false);
4540 update_last_nonleaf_level(vcpu, context);
4541 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4544 static union kvm_mmu_role
4545 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4547 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4549 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4550 !is_write_protection(vcpu);
4551 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4552 !is_write_protection(vcpu);
4553 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4555 return role;
4558 static union kvm_mmu_role
4559 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4561 union kvm_mmu_role role =
4562 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4564 role.base.direct = !is_paging(vcpu);
4566 if (!is_long_mode(vcpu))
4567 role.base.level = PT32E_ROOT_LEVEL;
4568 else if (is_la57_mode(vcpu))
4569 role.base.level = PT64_ROOT_5LEVEL;
4570 else
4571 role.base.level = PT64_ROOT_4LEVEL;
4573 return role;
4576 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4577 u32 cr0, u32 cr4, u32 efer,
4578 union kvm_mmu_role new_role)
4580 if (!(cr0 & X86_CR0_PG))
4581 nonpaging_init_context(vcpu, context);
4582 else if (efer & EFER_LMA)
4583 paging64_init_context(vcpu, context);
4584 else if (cr4 & X86_CR4_PAE)
4585 paging32E_init_context(vcpu, context);
4586 else
4587 paging32_init_context(vcpu, context);
4589 context->mmu_role.as_u64 = new_role.as_u64;
4590 reset_shadow_zero_bits_mask(vcpu, context);
4593 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4595 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4596 union kvm_mmu_role new_role =
4597 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4599 if (new_role.as_u64 != context->mmu_role.as_u64)
4600 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4603 static union kvm_mmu_role
4604 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4606 union kvm_mmu_role role =
4607 kvm_calc_shadow_root_page_role_common(vcpu, false);
4609 role.base.direct = false;
4610 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4612 return role;
4615 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4616 gpa_t nested_cr3)
4618 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4619 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4621 context->shadow_root_level = new_role.base.level;
4623 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4625 if (new_role.as_u64 != context->mmu_role.as_u64)
4626 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4628 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4630 static union kvm_mmu_role
4631 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4632 bool execonly, u8 level)
4634 union kvm_mmu_role role = {0};
4636 /* SMM flag is inherited from root_mmu */
4637 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4639 role.base.level = level;
4640 role.base.gpte_is_8_bytes = true;
4641 role.base.direct = false;
4642 role.base.ad_disabled = !accessed_dirty;
4643 role.base.guest_mode = true;
4644 role.base.access = ACC_ALL;
4647 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4648 * SMAP variation to denote shadow EPT entries.
4650 role.base.cr0_wp = true;
4651 role.base.smap_andnot_wp = true;
4653 role.ext = kvm_calc_mmu_role_ext(vcpu);
4654 role.ext.execonly = execonly;
4656 return role;
4659 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4660 bool accessed_dirty, gpa_t new_eptp)
4662 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4663 u8 level = vmx_eptp_page_walk_level(new_eptp);
4664 union kvm_mmu_role new_role =
4665 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4666 execonly, level);
4668 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4670 if (new_role.as_u64 == context->mmu_role.as_u64)
4671 return;
4673 context->shadow_root_level = level;
4675 context->nx = true;
4676 context->ept_ad = accessed_dirty;
4677 context->page_fault = ept_page_fault;
4678 context->gva_to_gpa = ept_gva_to_gpa;
4679 context->sync_page = ept_sync_page;
4680 context->invlpg = ept_invlpg;
4681 context->update_pte = ept_update_pte;
4682 context->root_level = level;
4683 context->direct_map = false;
4684 context->mmu_role.as_u64 = new_role.as_u64;
4686 update_permission_bitmask(vcpu, context, true);
4687 update_pkru_bitmask(vcpu, context, true);
4688 update_last_nonleaf_level(vcpu, context);
4689 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4690 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4692 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4694 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4696 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4698 kvm_init_shadow_mmu(vcpu,
4699 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4700 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4701 vcpu->arch.efer);
4703 context->get_guest_pgd = get_cr3;
4704 context->get_pdptr = kvm_pdptr_read;
4705 context->inject_page_fault = kvm_inject_page_fault;
4708 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4710 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4711 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4713 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4714 return;
4716 g_context->mmu_role.as_u64 = new_role.as_u64;
4717 g_context->get_guest_pgd = get_cr3;
4718 g_context->get_pdptr = kvm_pdptr_read;
4719 g_context->inject_page_fault = kvm_inject_page_fault;
4722 * L2 page tables are never shadowed, so there is no need to sync
4723 * SPTEs.
4725 g_context->invlpg = NULL;
4728 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4729 * L1's nested page tables (e.g. EPT12). The nested translation
4730 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4731 * L2's page tables as the first level of translation and L1's
4732 * nested page tables as the second level of translation. Basically
4733 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4735 if (!is_paging(vcpu)) {
4736 g_context->nx = false;
4737 g_context->root_level = 0;
4738 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4739 } else if (is_long_mode(vcpu)) {
4740 g_context->nx = is_nx(vcpu);
4741 g_context->root_level = is_la57_mode(vcpu) ?
4742 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4743 reset_rsvds_bits_mask(vcpu, g_context);
4744 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4745 } else if (is_pae(vcpu)) {
4746 g_context->nx = is_nx(vcpu);
4747 g_context->root_level = PT32E_ROOT_LEVEL;
4748 reset_rsvds_bits_mask(vcpu, g_context);
4749 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4750 } else {
4751 g_context->nx = false;
4752 g_context->root_level = PT32_ROOT_LEVEL;
4753 reset_rsvds_bits_mask(vcpu, g_context);
4754 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4757 update_permission_bitmask(vcpu, g_context, false);
4758 update_pkru_bitmask(vcpu, g_context, false);
4759 update_last_nonleaf_level(vcpu, g_context);
4762 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4764 if (reset_roots) {
4765 uint i;
4767 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4769 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4770 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4773 if (mmu_is_nested(vcpu))
4774 init_kvm_nested_mmu(vcpu);
4775 else if (tdp_enabled)
4776 init_kvm_tdp_mmu(vcpu);
4777 else
4778 init_kvm_softmmu(vcpu);
4780 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4782 static union kvm_mmu_page_role
4783 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4785 union kvm_mmu_role role;
4787 if (tdp_enabled)
4788 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4789 else
4790 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4792 return role.base;
4795 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4797 kvm_mmu_unload(vcpu);
4798 kvm_init_mmu(vcpu, true);
4800 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4802 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4804 int r;
4806 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4807 if (r)
4808 goto out;
4809 r = mmu_alloc_roots(vcpu);
4810 kvm_mmu_sync_roots(vcpu);
4811 if (r)
4812 goto out;
4813 kvm_mmu_load_pgd(vcpu);
4814 kvm_x86_ops.tlb_flush_current(vcpu);
4815 out:
4816 return r;
4818 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4820 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4822 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4823 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4824 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4825 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4827 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4829 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4830 struct kvm_mmu_page *sp, u64 *spte,
4831 const void *new)
4833 if (sp->role.level != PG_LEVEL_4K) {
4834 ++vcpu->kvm->stat.mmu_pde_zapped;
4835 return;
4838 ++vcpu->kvm->stat.mmu_pte_updated;
4839 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4842 static bool need_remote_flush(u64 old, u64 new)
4844 if (!is_shadow_present_pte(old))
4845 return false;
4846 if (!is_shadow_present_pte(new))
4847 return true;
4848 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4849 return true;
4850 old ^= shadow_nx_mask;
4851 new ^= shadow_nx_mask;
4852 return (old & ~new & PT64_PERM_MASK) != 0;
4855 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4856 int *bytes)
4858 u64 gentry = 0;
4859 int r;
4862 * Assume that the pte write on a page table of the same type
4863 * as the current vcpu paging mode since we update the sptes only
4864 * when they have the same mode.
4866 if (is_pae(vcpu) && *bytes == 4) {
4867 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4868 *gpa &= ~(gpa_t)7;
4869 *bytes = 8;
4872 if (*bytes == 4 || *bytes == 8) {
4873 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4874 if (r)
4875 gentry = 0;
4878 return gentry;
4882 * If we're seeing too many writes to a page, it may no longer be a page table,
4883 * or we may be forking, in which case it is better to unmap the page.
4885 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4888 * Skip write-flooding detected for the sp whose level is 1, because
4889 * it can become unsync, then the guest page is not write-protected.
4891 if (sp->role.level == PG_LEVEL_4K)
4892 return false;
4894 atomic_inc(&sp->write_flooding_count);
4895 return atomic_read(&sp->write_flooding_count) >= 3;
4899 * Misaligned accesses are too much trouble to fix up; also, they usually
4900 * indicate a page is not used as a page table.
4902 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4903 int bytes)
4905 unsigned offset, pte_size, misaligned;
4907 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4908 gpa, bytes, sp->role.word);
4910 offset = offset_in_page(gpa);
4911 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4914 * Sometimes, the OS only writes the last one bytes to update status
4915 * bits, for example, in linux, andb instruction is used in clear_bit().
4917 if (!(offset & (pte_size - 1)) && bytes == 1)
4918 return false;
4920 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4921 misaligned |= bytes < 4;
4923 return misaligned;
4926 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4928 unsigned page_offset, quadrant;
4929 u64 *spte;
4930 int level;
4932 page_offset = offset_in_page(gpa);
4933 level = sp->role.level;
4934 *nspte = 1;
4935 if (!sp->role.gpte_is_8_bytes) {
4936 page_offset <<= 1; /* 32->64 */
4938 * A 32-bit pde maps 4MB while the shadow pdes map
4939 * only 2MB. So we need to double the offset again
4940 * and zap two pdes instead of one.
4942 if (level == PT32_ROOT_LEVEL) {
4943 page_offset &= ~7; /* kill rounding error */
4944 page_offset <<= 1;
4945 *nspte = 2;
4947 quadrant = page_offset >> PAGE_SHIFT;
4948 page_offset &= ~PAGE_MASK;
4949 if (quadrant != sp->role.quadrant)
4950 return NULL;
4953 spte = &sp->spt[page_offset / sizeof(*spte)];
4954 return spte;
4958 * Ignore various flags when determining if a SPTE can be immediately
4959 * overwritten for the current MMU.
4960 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4961 * match the current MMU role, as MMU's level tracks the root level.
4962 * - access: updated based on the new guest PTE
4963 * - quadrant: handled by get_written_sptes()
4964 * - invalid: always false (loop only walks valid shadow pages)
4966 static const union kvm_mmu_page_role role_ign = {
4967 .level = 0xf,
4968 .access = 0x7,
4969 .quadrant = 0x3,
4970 .invalid = 0x1,
4973 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4974 const u8 *new, int bytes,
4975 struct kvm_page_track_notifier_node *node)
4977 gfn_t gfn = gpa >> PAGE_SHIFT;
4978 struct kvm_mmu_page *sp;
4979 LIST_HEAD(invalid_list);
4980 u64 entry, gentry, *spte;
4981 int npte;
4982 bool remote_flush, local_flush;
4985 * If we don't have indirect shadow pages, it means no page is
4986 * write-protected, so we can exit simply.
4988 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4989 return;
4991 remote_flush = local_flush = false;
4993 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4996 * No need to care whether allocation memory is successful
4997 * or not since pte prefetch is skiped if it does not have
4998 * enough objects in the cache.
5000 mmu_topup_memory_caches(vcpu, true);
5002 spin_lock(&vcpu->kvm->mmu_lock);
5004 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5006 ++vcpu->kvm->stat.mmu_pte_write;
5007 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5009 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5010 if (detect_write_misaligned(sp, gpa, bytes) ||
5011 detect_write_flooding(sp)) {
5012 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5013 ++vcpu->kvm->stat.mmu_flooded;
5014 continue;
5017 spte = get_written_sptes(sp, gpa, &npte);
5018 if (!spte)
5019 continue;
5021 local_flush = true;
5022 while (npte--) {
5023 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5025 entry = *spte;
5026 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5027 if (gentry &&
5028 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5029 rmap_can_add(vcpu))
5030 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5031 if (need_remote_flush(entry, *spte))
5032 remote_flush = true;
5033 ++spte;
5036 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5037 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5038 spin_unlock(&vcpu->kvm->mmu_lock);
5041 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5043 gpa_t gpa;
5044 int r;
5046 if (vcpu->arch.mmu->direct_map)
5047 return 0;
5049 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5051 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5053 return r;
5055 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5057 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5058 void *insn, int insn_len)
5060 int r, emulation_type = EMULTYPE_PF;
5061 bool direct = vcpu->arch.mmu->direct_map;
5063 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5064 return RET_PF_RETRY;
5066 r = RET_PF_INVALID;
5067 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5068 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5069 if (r == RET_PF_EMULATE)
5070 goto emulate;
5073 if (r == RET_PF_INVALID) {
5074 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5075 lower_32_bits(error_code), false);
5076 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5077 return -EIO;
5080 if (r < 0)
5081 return r;
5082 if (r != RET_PF_EMULATE)
5083 return 1;
5086 * Before emulating the instruction, check if the error code
5087 * was due to a RO violation while translating the guest page.
5088 * This can occur when using nested virtualization with nested
5089 * paging in both guests. If true, we simply unprotect the page
5090 * and resume the guest.
5092 if (vcpu->arch.mmu->direct_map &&
5093 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5094 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5095 return 1;
5099 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5100 * optimistically try to just unprotect the page and let the processor
5101 * re-execute the instruction that caused the page fault. Do not allow
5102 * retrying MMIO emulation, as it's not only pointless but could also
5103 * cause us to enter an infinite loop because the processor will keep
5104 * faulting on the non-existent MMIO address. Retrying an instruction
5105 * from a nested guest is also pointless and dangerous as we are only
5106 * explicitly shadowing L1's page tables, i.e. unprotecting something
5107 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5109 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5110 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5111 emulate:
5112 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5113 insn_len);
5115 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5117 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5118 gva_t gva, hpa_t root_hpa)
5120 int i;
5122 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5123 if (mmu != &vcpu->arch.guest_mmu) {
5124 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5125 if (is_noncanonical_address(gva, vcpu))
5126 return;
5128 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5131 if (!mmu->invlpg)
5132 return;
5134 if (root_hpa == INVALID_PAGE) {
5135 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5138 * INVLPG is required to invalidate any global mappings for the VA,
5139 * irrespective of PCID. Since it would take us roughly similar amount
5140 * of work to determine whether any of the prev_root mappings of the VA
5141 * is marked global, or to just sync it blindly, so we might as well
5142 * just always sync it.
5144 * Mappings not reachable via the current cr3 or the prev_roots will be
5145 * synced when switching to that cr3, so nothing needs to be done here
5146 * for them.
5148 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5149 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5150 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5151 } else {
5152 mmu->invlpg(vcpu, gva, root_hpa);
5155 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5157 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5159 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5160 ++vcpu->stat.invlpg;
5162 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5165 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5167 struct kvm_mmu *mmu = vcpu->arch.mmu;
5168 bool tlb_flush = false;
5169 uint i;
5171 if (pcid == kvm_get_active_pcid(vcpu)) {
5172 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5173 tlb_flush = true;
5176 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5177 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5178 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5179 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5180 tlb_flush = true;
5184 if (tlb_flush)
5185 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5187 ++vcpu->stat.invlpg;
5190 * Mappings not reachable via the current cr3 or the prev_roots will be
5191 * synced when switching to that cr3, so nothing needs to be done here
5192 * for them.
5195 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5197 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5198 int tdp_huge_page_level)
5200 tdp_enabled = enable_tdp;
5201 max_tdp_level = tdp_max_root_level;
5204 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5205 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5206 * the kernel is not. But, KVM never creates a page size greater than
5207 * what is used by the kernel for any given HVA, i.e. the kernel's
5208 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5210 if (tdp_enabled)
5211 max_huge_page_level = tdp_huge_page_level;
5212 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5213 max_huge_page_level = PG_LEVEL_1G;
5214 else
5215 max_huge_page_level = PG_LEVEL_2M;
5217 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5219 /* The return value indicates if tlb flush on all vcpus is needed. */
5220 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5222 /* The caller should hold mmu-lock before calling this function. */
5223 static __always_inline bool
5224 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5225 slot_level_handler fn, int start_level, int end_level,
5226 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5228 struct slot_rmap_walk_iterator iterator;
5229 bool flush = false;
5231 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5232 end_gfn, &iterator) {
5233 if (iterator.rmap)
5234 flush |= fn(kvm, iterator.rmap);
5236 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5237 if (flush && lock_flush_tlb) {
5238 kvm_flush_remote_tlbs_with_address(kvm,
5239 start_gfn,
5240 iterator.gfn - start_gfn + 1);
5241 flush = false;
5243 cond_resched_lock(&kvm->mmu_lock);
5247 if (flush && lock_flush_tlb) {
5248 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5249 end_gfn - start_gfn + 1);
5250 flush = false;
5253 return flush;
5256 static __always_inline bool
5257 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5258 slot_level_handler fn, int start_level, int end_level,
5259 bool lock_flush_tlb)
5261 return slot_handle_level_range(kvm, memslot, fn, start_level,
5262 end_level, memslot->base_gfn,
5263 memslot->base_gfn + memslot->npages - 1,
5264 lock_flush_tlb);
5267 static __always_inline bool
5268 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5269 slot_level_handler fn, bool lock_flush_tlb)
5271 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5272 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5275 static __always_inline bool
5276 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5277 slot_level_handler fn, bool lock_flush_tlb)
5279 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5280 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5283 static __always_inline bool
5284 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5285 slot_level_handler fn, bool lock_flush_tlb)
5287 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5288 PG_LEVEL_4K, lock_flush_tlb);
5291 static void free_mmu_pages(struct kvm_mmu *mmu)
5293 free_page((unsigned long)mmu->pae_root);
5294 free_page((unsigned long)mmu->lm_root);
5297 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5299 struct page *page;
5300 int i;
5302 mmu->root_hpa = INVALID_PAGE;
5303 mmu->root_pgd = 0;
5304 mmu->translate_gpa = translate_gpa;
5305 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5306 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5309 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5310 * while the PDP table is a per-vCPU construct that's allocated at MMU
5311 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5312 * x86_64. Therefore we need to allocate the PDP table in the first
5313 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5314 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5315 * skip allocating the PDP table.
5317 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5318 return 0;
5320 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5321 if (!page)
5322 return -ENOMEM;
5324 mmu->pae_root = page_address(page);
5325 for (i = 0; i < 4; ++i)
5326 mmu->pae_root[i] = INVALID_PAGE;
5328 return 0;
5331 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5333 int ret;
5335 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5336 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5338 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5339 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5341 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5343 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5344 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5346 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5348 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5349 if (ret)
5350 return ret;
5352 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5353 if (ret)
5354 goto fail_allocate_root;
5356 return ret;
5357 fail_allocate_root:
5358 free_mmu_pages(&vcpu->arch.guest_mmu);
5359 return ret;
5362 #define BATCH_ZAP_PAGES 10
5363 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5365 struct kvm_mmu_page *sp, *node;
5366 int nr_zapped, batch = 0;
5368 restart:
5369 list_for_each_entry_safe_reverse(sp, node,
5370 &kvm->arch.active_mmu_pages, link) {
5372 * No obsolete valid page exists before a newly created page
5373 * since active_mmu_pages is a FIFO list.
5375 if (!is_obsolete_sp(kvm, sp))
5376 break;
5379 * Invalid pages should never land back on the list of active
5380 * pages. Skip the bogus page, otherwise we'll get stuck in an
5381 * infinite loop if the page gets put back on the list (again).
5383 if (WARN_ON(sp->role.invalid))
5384 continue;
5387 * No need to flush the TLB since we're only zapping shadow
5388 * pages with an obsolete generation number and all vCPUS have
5389 * loaded a new root, i.e. the shadow pages being zapped cannot
5390 * be in active use by the guest.
5392 if (batch >= BATCH_ZAP_PAGES &&
5393 cond_resched_lock(&kvm->mmu_lock)) {
5394 batch = 0;
5395 goto restart;
5398 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5399 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5400 batch += nr_zapped;
5401 goto restart;
5406 * Trigger a remote TLB flush before freeing the page tables to ensure
5407 * KVM is not in the middle of a lockless shadow page table walk, which
5408 * may reference the pages.
5410 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5414 * Fast invalidate all shadow pages and use lock-break technique
5415 * to zap obsolete pages.
5417 * It's required when memslot is being deleted or VM is being
5418 * destroyed, in these cases, we should ensure that KVM MMU does
5419 * not use any resource of the being-deleted slot or all slots
5420 * after calling the function.
5422 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5424 lockdep_assert_held(&kvm->slots_lock);
5426 spin_lock(&kvm->mmu_lock);
5427 trace_kvm_mmu_zap_all_fast(kvm);
5430 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5431 * held for the entire duration of zapping obsolete pages, it's
5432 * impossible for there to be multiple invalid generations associated
5433 * with *valid* shadow pages at any given time, i.e. there is exactly
5434 * one valid generation and (at most) one invalid generation.
5436 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5439 * Notify all vcpus to reload its shadow page table and flush TLB.
5440 * Then all vcpus will switch to new shadow page table with the new
5441 * mmu_valid_gen.
5443 * Note: we need to do this under the protection of mmu_lock,
5444 * otherwise, vcpu would purge shadow page but miss tlb flush.
5446 kvm_reload_remote_mmus(kvm);
5448 kvm_zap_obsolete_pages(kvm);
5450 if (kvm->arch.tdp_mmu_enabled)
5451 kvm_tdp_mmu_zap_all(kvm);
5453 spin_unlock(&kvm->mmu_lock);
5456 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5458 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5461 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5462 struct kvm_memory_slot *slot,
5463 struct kvm_page_track_notifier_node *node)
5465 kvm_mmu_zap_all_fast(kvm);
5468 void kvm_mmu_init_vm(struct kvm *kvm)
5470 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5472 kvm_mmu_init_tdp_mmu(kvm);
5474 node->track_write = kvm_mmu_pte_write;
5475 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5476 kvm_page_track_register_notifier(kvm, node);
5479 void kvm_mmu_uninit_vm(struct kvm *kvm)
5481 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5483 kvm_page_track_unregister_notifier(kvm, node);
5485 kvm_mmu_uninit_tdp_mmu(kvm);
5488 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5490 struct kvm_memslots *slots;
5491 struct kvm_memory_slot *memslot;
5492 int i;
5493 bool flush;
5495 spin_lock(&kvm->mmu_lock);
5496 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5497 slots = __kvm_memslots(kvm, i);
5498 kvm_for_each_memslot(memslot, slots) {
5499 gfn_t start, end;
5501 start = max(gfn_start, memslot->base_gfn);
5502 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5503 if (start >= end)
5504 continue;
5506 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5507 PG_LEVEL_4K,
5508 KVM_MAX_HUGEPAGE_LEVEL,
5509 start, end - 1, true);
5513 if (kvm->arch.tdp_mmu_enabled) {
5514 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5515 if (flush)
5516 kvm_flush_remote_tlbs(kvm);
5519 spin_unlock(&kvm->mmu_lock);
5522 static bool slot_rmap_write_protect(struct kvm *kvm,
5523 struct kvm_rmap_head *rmap_head)
5525 return __rmap_write_protect(kvm, rmap_head, false);
5528 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5529 struct kvm_memory_slot *memslot,
5530 int start_level)
5532 bool flush;
5534 spin_lock(&kvm->mmu_lock);
5535 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5536 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5537 if (kvm->arch.tdp_mmu_enabled)
5538 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5539 spin_unlock(&kvm->mmu_lock);
5542 * We can flush all the TLBs out of the mmu lock without TLB
5543 * corruption since we just change the spte from writable to
5544 * readonly so that we only need to care the case of changing
5545 * spte from present to present (changing the spte from present
5546 * to nonpresent will flush all the TLBs immediately), in other
5547 * words, the only case we care is mmu_spte_update() where we
5548 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5549 * instead of PT_WRITABLE_MASK, that means it does not depend
5550 * on PT_WRITABLE_MASK anymore.
5552 if (flush)
5553 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5556 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5557 struct kvm_rmap_head *rmap_head)
5559 u64 *sptep;
5560 struct rmap_iterator iter;
5561 int need_tlb_flush = 0;
5562 kvm_pfn_t pfn;
5563 struct kvm_mmu_page *sp;
5565 restart:
5566 for_each_rmap_spte(rmap_head, &iter, sptep) {
5567 sp = sptep_to_sp(sptep);
5568 pfn = spte_to_pfn(*sptep);
5571 * We cannot do huge page mapping for indirect shadow pages,
5572 * which are found on the last rmap (level = 1) when not using
5573 * tdp; such shadow pages are synced with the page table in
5574 * the guest, and the guest page table is using 4K page size
5575 * mapping if the indirect sp has level = 1.
5577 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5578 (kvm_is_zone_device_pfn(pfn) ||
5579 PageCompound(pfn_to_page(pfn)))) {
5580 pte_list_remove(rmap_head, sptep);
5582 if (kvm_available_flush_tlb_with_range())
5583 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5584 KVM_PAGES_PER_HPAGE(sp->role.level));
5585 else
5586 need_tlb_flush = 1;
5588 goto restart;
5592 return need_tlb_flush;
5595 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5596 const struct kvm_memory_slot *memslot)
5598 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5599 spin_lock(&kvm->mmu_lock);
5600 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5601 kvm_mmu_zap_collapsible_spte, true);
5603 if (kvm->arch.tdp_mmu_enabled)
5604 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5605 spin_unlock(&kvm->mmu_lock);
5608 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5609 struct kvm_memory_slot *memslot)
5612 * All current use cases for flushing the TLBs for a specific memslot
5613 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5614 * The interaction between the various operations on memslot must be
5615 * serialized by slots_locks to ensure the TLB flush from one operation
5616 * is observed by any other operation on the same memslot.
5618 lockdep_assert_held(&kvm->slots_lock);
5619 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5620 memslot->npages);
5623 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5624 struct kvm_memory_slot *memslot)
5626 bool flush;
5628 spin_lock(&kvm->mmu_lock);
5629 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5630 if (kvm->arch.tdp_mmu_enabled)
5631 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5632 spin_unlock(&kvm->mmu_lock);
5635 * It's also safe to flush TLBs out of mmu lock here as currently this
5636 * function is only used for dirty logging, in which case flushing TLB
5637 * out of mmu lock also guarantees no dirty pages will be lost in
5638 * dirty_bitmap.
5640 if (flush)
5641 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5643 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5645 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5646 struct kvm_memory_slot *memslot)
5648 bool flush;
5650 spin_lock(&kvm->mmu_lock);
5651 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5652 false);
5653 if (kvm->arch.tdp_mmu_enabled)
5654 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5655 spin_unlock(&kvm->mmu_lock);
5657 if (flush)
5658 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5660 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5662 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5663 struct kvm_memory_slot *memslot)
5665 bool flush;
5667 spin_lock(&kvm->mmu_lock);
5668 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5669 if (kvm->arch.tdp_mmu_enabled)
5670 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5671 spin_unlock(&kvm->mmu_lock);
5673 if (flush)
5674 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5676 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5678 void kvm_mmu_zap_all(struct kvm *kvm)
5680 struct kvm_mmu_page *sp, *node;
5681 LIST_HEAD(invalid_list);
5682 int ign;
5684 spin_lock(&kvm->mmu_lock);
5685 restart:
5686 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5687 if (WARN_ON(sp->role.invalid))
5688 continue;
5689 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5690 goto restart;
5691 if (cond_resched_lock(&kvm->mmu_lock))
5692 goto restart;
5695 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5697 if (kvm->arch.tdp_mmu_enabled)
5698 kvm_tdp_mmu_zap_all(kvm);
5700 spin_unlock(&kvm->mmu_lock);
5703 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5705 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5707 gen &= MMIO_SPTE_GEN_MASK;
5710 * Generation numbers are incremented in multiples of the number of
5711 * address spaces in order to provide unique generations across all
5712 * address spaces. Strip what is effectively the address space
5713 * modifier prior to checking for a wrap of the MMIO generation so
5714 * that a wrap in any address space is detected.
5716 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5719 * The very rare case: if the MMIO generation number has wrapped,
5720 * zap all shadow pages.
5722 if (unlikely(gen == 0)) {
5723 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5724 kvm_mmu_zap_all_fast(kvm);
5728 static unsigned long
5729 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5731 struct kvm *kvm;
5732 int nr_to_scan = sc->nr_to_scan;
5733 unsigned long freed = 0;
5735 mutex_lock(&kvm_lock);
5737 list_for_each_entry(kvm, &vm_list, vm_list) {
5738 int idx;
5739 LIST_HEAD(invalid_list);
5742 * Never scan more than sc->nr_to_scan VM instances.
5743 * Will not hit this condition practically since we do not try
5744 * to shrink more than one VM and it is very unlikely to see
5745 * !n_used_mmu_pages so many times.
5747 if (!nr_to_scan--)
5748 break;
5750 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5751 * here. We may skip a VM instance errorneosly, but we do not
5752 * want to shrink a VM that only started to populate its MMU
5753 * anyway.
5755 if (!kvm->arch.n_used_mmu_pages &&
5756 !kvm_has_zapped_obsolete_pages(kvm))
5757 continue;
5759 idx = srcu_read_lock(&kvm->srcu);
5760 spin_lock(&kvm->mmu_lock);
5762 if (kvm_has_zapped_obsolete_pages(kvm)) {
5763 kvm_mmu_commit_zap_page(kvm,
5764 &kvm->arch.zapped_obsolete_pages);
5765 goto unlock;
5768 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5770 unlock:
5771 spin_unlock(&kvm->mmu_lock);
5772 srcu_read_unlock(&kvm->srcu, idx);
5775 * unfair on small ones
5776 * per-vm shrinkers cry out
5777 * sadness comes quickly
5779 list_move_tail(&kvm->vm_list, &vm_list);
5780 break;
5783 mutex_unlock(&kvm_lock);
5784 return freed;
5787 static unsigned long
5788 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5790 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5793 static struct shrinker mmu_shrinker = {
5794 .count_objects = mmu_shrink_count,
5795 .scan_objects = mmu_shrink_scan,
5796 .seeks = DEFAULT_SEEKS * 10,
5799 static void mmu_destroy_caches(void)
5801 kmem_cache_destroy(pte_list_desc_cache);
5802 kmem_cache_destroy(mmu_page_header_cache);
5805 static void kvm_set_mmio_spte_mask(void)
5807 u64 mask;
5810 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5811 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5812 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5813 * 52-bit physical addresses then there are no reserved PA bits in the
5814 * PTEs and so the reserved PA approach must be disabled.
5816 if (shadow_phys_bits < 52)
5817 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5818 else
5819 mask = 0;
5821 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5824 static bool get_nx_auto_mode(void)
5826 /* Return true when CPU has the bug, and mitigations are ON */
5827 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5830 static void __set_nx_huge_pages(bool val)
5832 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5835 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5837 bool old_val = nx_huge_pages;
5838 bool new_val;
5840 /* In "auto" mode deploy workaround only if CPU has the bug. */
5841 if (sysfs_streq(val, "off"))
5842 new_val = 0;
5843 else if (sysfs_streq(val, "force"))
5844 new_val = 1;
5845 else if (sysfs_streq(val, "auto"))
5846 new_val = get_nx_auto_mode();
5847 else if (strtobool(val, &new_val) < 0)
5848 return -EINVAL;
5850 __set_nx_huge_pages(new_val);
5852 if (new_val != old_val) {
5853 struct kvm *kvm;
5855 mutex_lock(&kvm_lock);
5857 list_for_each_entry(kvm, &vm_list, vm_list) {
5858 mutex_lock(&kvm->slots_lock);
5859 kvm_mmu_zap_all_fast(kvm);
5860 mutex_unlock(&kvm->slots_lock);
5862 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5864 mutex_unlock(&kvm_lock);
5867 return 0;
5870 int kvm_mmu_module_init(void)
5872 int ret = -ENOMEM;
5874 if (nx_huge_pages == -1)
5875 __set_nx_huge_pages(get_nx_auto_mode());
5878 * MMU roles use union aliasing which is, generally speaking, an
5879 * undefined behavior. However, we supposedly know how compilers behave
5880 * and the current status quo is unlikely to change. Guardians below are
5881 * supposed to let us know if the assumption becomes false.
5883 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5884 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5885 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5887 kvm_mmu_reset_all_pte_masks();
5889 kvm_set_mmio_spte_mask();
5891 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5892 sizeof(struct pte_list_desc),
5893 0, SLAB_ACCOUNT, NULL);
5894 if (!pte_list_desc_cache)
5895 goto out;
5897 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5898 sizeof(struct kvm_mmu_page),
5899 0, SLAB_ACCOUNT, NULL);
5900 if (!mmu_page_header_cache)
5901 goto out;
5903 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5904 goto out;
5906 ret = register_shrinker(&mmu_shrinker);
5907 if (ret)
5908 goto out;
5910 return 0;
5912 out:
5913 mmu_destroy_caches();
5914 return ret;
5918 * Calculate mmu pages needed for kvm.
5920 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5922 unsigned long nr_mmu_pages;
5923 unsigned long nr_pages = 0;
5924 struct kvm_memslots *slots;
5925 struct kvm_memory_slot *memslot;
5926 int i;
5928 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5929 slots = __kvm_memslots(kvm, i);
5931 kvm_for_each_memslot(memslot, slots)
5932 nr_pages += memslot->npages;
5935 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5936 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5938 return nr_mmu_pages;
5941 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5943 kvm_mmu_unload(vcpu);
5944 free_mmu_pages(&vcpu->arch.root_mmu);
5945 free_mmu_pages(&vcpu->arch.guest_mmu);
5946 mmu_free_memory_caches(vcpu);
5949 void kvm_mmu_module_exit(void)
5951 mmu_destroy_caches();
5952 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5953 unregister_shrinker(&mmu_shrinker);
5954 mmu_audit_disable();
5957 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5959 unsigned int old_val;
5960 int err;
5962 old_val = nx_huge_pages_recovery_ratio;
5963 err = param_set_uint(val, kp);
5964 if (err)
5965 return err;
5967 if (READ_ONCE(nx_huge_pages) &&
5968 !old_val && nx_huge_pages_recovery_ratio) {
5969 struct kvm *kvm;
5971 mutex_lock(&kvm_lock);
5973 list_for_each_entry(kvm, &vm_list, vm_list)
5974 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5976 mutex_unlock(&kvm_lock);
5979 return err;
5982 static void kvm_recover_nx_lpages(struct kvm *kvm)
5984 int rcu_idx;
5985 struct kvm_mmu_page *sp;
5986 unsigned int ratio;
5987 LIST_HEAD(invalid_list);
5988 ulong to_zap;
5990 rcu_idx = srcu_read_lock(&kvm->srcu);
5991 spin_lock(&kvm->mmu_lock);
5993 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5994 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5995 for ( ; to_zap; --to_zap) {
5996 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5997 break;
6000 * We use a separate list instead of just using active_mmu_pages
6001 * because the number of lpage_disallowed pages is expected to
6002 * be relatively small compared to the total.
6004 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6005 struct kvm_mmu_page,
6006 lpage_disallowed_link);
6007 WARN_ON_ONCE(!sp->lpage_disallowed);
6008 if (sp->tdp_mmu_page)
6009 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
6010 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
6011 else {
6012 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6013 WARN_ON_ONCE(sp->lpage_disallowed);
6016 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6017 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6018 cond_resched_lock(&kvm->mmu_lock);
6021 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6023 spin_unlock(&kvm->mmu_lock);
6024 srcu_read_unlock(&kvm->srcu, rcu_idx);
6027 static long get_nx_lpage_recovery_timeout(u64 start_time)
6029 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6030 ? start_time + 60 * HZ - get_jiffies_64()
6031 : MAX_SCHEDULE_TIMEOUT;
6034 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6036 u64 start_time;
6037 long remaining_time;
6039 while (true) {
6040 start_time = get_jiffies_64();
6041 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6043 set_current_state(TASK_INTERRUPTIBLE);
6044 while (!kthread_should_stop() && remaining_time > 0) {
6045 schedule_timeout(remaining_time);
6046 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6047 set_current_state(TASK_INTERRUPTIBLE);
6050 set_current_state(TASK_RUNNING);
6052 if (kthread_should_stop())
6053 return 0;
6055 kvm_recover_nx_lpages(kvm);
6059 int kvm_mmu_post_init_vm(struct kvm *kvm)
6061 int err;
6063 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6064 "kvm-nx-lpage-recovery",
6065 &kvm->arch.nx_lpage_recovery_thread);
6066 if (!err)
6067 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6069 return err;
6072 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6074 if (kvm->arch.nx_lpage_recovery_thread)
6075 kthread_stop(kvm->arch.nx_lpage_recovery_thread);