1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * Macros and functions to access KVM PTEs (also known as SPTEs)
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2020 Red Hat, Inc. and/or its affiliates.
12 #include <linux/kvm_host.h>
14 #include "mmu_internal.h"
18 #include <asm/e820/api.h>
20 u64 __read_mostly shadow_nx_mask
;
21 u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
22 u64 __read_mostly shadow_user_mask
;
23 u64 __read_mostly shadow_accessed_mask
;
24 u64 __read_mostly shadow_dirty_mask
;
25 u64 __read_mostly shadow_mmio_value
;
26 u64 __read_mostly shadow_mmio_access_mask
;
27 u64 __read_mostly shadow_present_mask
;
28 u64 __read_mostly shadow_me_mask
;
29 u64 __read_mostly shadow_acc_track_mask
;
31 u64 __read_mostly shadow_nonpresent_or_rsvd_mask
;
32 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask
;
34 u8 __read_mostly shadow_phys_bits
;
36 static u64
generation_mmio_spte_mask(u64 gen
)
40 WARN_ON(gen
& ~MMIO_SPTE_GEN_MASK
);
41 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK
| MMIO_SPTE_GEN_LOW_MASK
) & SPTE_SPECIAL_MASK
);
43 mask
= (gen
<< MMIO_SPTE_GEN_LOW_SHIFT
) & MMIO_SPTE_GEN_LOW_MASK
;
44 mask
|= (gen
<< MMIO_SPTE_GEN_HIGH_SHIFT
) & MMIO_SPTE_GEN_HIGH_MASK
;
48 u64
make_mmio_spte(struct kvm_vcpu
*vcpu
, u64 gfn
, unsigned int access
)
50 u64 gen
= kvm_vcpu_memslots(vcpu
)->generation
& MMIO_SPTE_GEN_MASK
;
51 u64 mask
= generation_mmio_spte_mask(gen
);
52 u64 gpa
= gfn
<< PAGE_SHIFT
;
54 access
&= shadow_mmio_access_mask
;
55 mask
|= shadow_mmio_value
| access
;
56 mask
|= gpa
| shadow_nonpresent_or_rsvd_mask
;
57 mask
|= (gpa
& shadow_nonpresent_or_rsvd_mask
)
58 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN
;
63 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn
)
66 return !is_zero_pfn(pfn
) && PageReserved(pfn_to_page(pfn
)) &&
68 * Some reserved pages, such as those from NVDIMM
69 * DAX devices, are not for MMIO, and can be mapped
70 * with cached memory type for better performance.
71 * However, the above check misconceives those pages
72 * as MMIO, and results in KVM mapping them with UC
73 * memory type, which would hurt the performance.
74 * Therefore, we check the host memory type in addition
75 * and only treat UC/UC-/WC pages as MMIO.
77 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn
));
79 return !e820__mapped_raw_any(pfn_to_hpa(pfn
),
80 pfn_to_hpa(pfn
+ 1) - 1,
84 int make_spte(struct kvm_vcpu
*vcpu
, unsigned int pte_access
, int level
,
85 gfn_t gfn
, kvm_pfn_t pfn
, u64 old_spte
, bool speculative
,
86 bool can_unsync
, bool host_writable
, bool ad_disabled
,
93 spte
|= SPTE_AD_DISABLED_MASK
;
94 else if (kvm_vcpu_ad_need_write_protect(vcpu
))
95 spte
|= SPTE_AD_WRPROT_ONLY_MASK
;
98 * For the EPT case, shadow_present_mask is 0 if hardware
99 * supports exec-only page table entries. In that case,
100 * ACC_USER_MASK and shadow_user_mask are used to represent
101 * read access. See FNAME(gpte_access) in paging_tmpl.h.
103 spte
|= shadow_present_mask
;
105 spte
|= spte_shadow_accessed_mask(spte
);
107 if (level
> PG_LEVEL_4K
&& (pte_access
& ACC_EXEC_MASK
) &&
108 is_nx_huge_page_enabled()) {
109 pte_access
&= ~ACC_EXEC_MASK
;
112 if (pte_access
& ACC_EXEC_MASK
)
113 spte
|= shadow_x_mask
;
115 spte
|= shadow_nx_mask
;
117 if (pte_access
& ACC_USER_MASK
)
118 spte
|= shadow_user_mask
;
120 if (level
> PG_LEVEL_4K
)
121 spte
|= PT_PAGE_SIZE_MASK
;
123 spte
|= kvm_x86_ops
.get_mt_mask(vcpu
, gfn
,
124 kvm_is_mmio_pfn(pfn
));
127 spte
|= SPTE_HOST_WRITEABLE
;
129 pte_access
&= ~ACC_WRITE_MASK
;
131 if (!kvm_is_mmio_pfn(pfn
))
132 spte
|= shadow_me_mask
;
134 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
136 if (pte_access
& ACC_WRITE_MASK
) {
137 spte
|= PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
;
140 * Optimization: for pte sync, if spte was writable the hash
141 * lookup is unnecessary (and expensive). Write protection
142 * is responsibility of mmu_get_page / kvm_sync_page.
143 * Same reasoning can be applied to dirty page accounting.
145 if (!can_unsync
&& is_writable_pte(old_spte
))
148 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
149 pgprintk("%s: found shadow page for %llx, marking ro\n",
151 ret
|= SET_SPTE_WRITE_PROTECTED_PT
;
152 pte_access
&= ~ACC_WRITE_MASK
;
153 spte
&= ~(PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
);
157 if (pte_access
& ACC_WRITE_MASK
)
158 spte
|= spte_shadow_dirty_mask(spte
);
161 spte
= mark_spte_for_access_track(spte
);
168 u64
make_nonleaf_spte(u64
*child_pt
, bool ad_disabled
)
172 spte
= __pa(child_pt
) | shadow_present_mask
| PT_WRITABLE_MASK
|
173 shadow_user_mask
| shadow_x_mask
| shadow_me_mask
;
176 spte
|= SPTE_AD_DISABLED_MASK
;
178 spte
|= shadow_accessed_mask
;
183 u64
kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte
, kvm_pfn_t new_pfn
)
187 new_spte
= old_spte
& ~PT64_BASE_ADDR_MASK
;
188 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
190 new_spte
&= ~PT_WRITABLE_MASK
;
191 new_spte
&= ~SPTE_HOST_WRITEABLE
;
193 new_spte
= mark_spte_for_access_track(new_spte
);
198 static u8
kvm_get_shadow_phys_bits(void)
201 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
202 * in CPU detection code, but the processor treats those reduced bits as
203 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
204 * the physical address bits reported by CPUID.
206 if (likely(boot_cpu_data
.extended_cpuid_level
>= 0x80000008))
207 return cpuid_eax(0x80000008) & 0xff;
210 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
211 * custom CPUID. Proceed with whatever the kernel found since these features
212 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
214 return boot_cpu_data
.x86_phys_bits
;
217 u64
mark_spte_for_access_track(u64 spte
)
219 if (spte_ad_enabled(spte
))
220 return spte
& ~shadow_accessed_mask
;
222 if (is_access_track_spte(spte
))
226 * Making an Access Tracking PTE will result in removal of write access
227 * from the PTE. So, verify that we will be able to restore the write
228 * access in the fast page fault path later on.
230 WARN_ONCE((spte
& PT_WRITABLE_MASK
) &&
231 !spte_can_locklessly_be_made_writable(spte
),
232 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
234 WARN_ONCE(spte
& (SHADOW_ACC_TRACK_SAVED_BITS_MASK
<<
235 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT
),
236 "kvm: Access Tracking saved bit locations are not zero\n");
238 spte
|= (spte
& SHADOW_ACC_TRACK_SAVED_BITS_MASK
) <<
239 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT
;
240 spte
&= ~shadow_acc_track_mask
;
245 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value
, u64 access_mask
)
247 BUG_ON((u64
)(unsigned)access_mask
!= access_mask
);
248 WARN_ON(mmio_value
& (shadow_nonpresent_or_rsvd_mask
<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN
));
249 WARN_ON(mmio_value
& shadow_nonpresent_or_rsvd_lower_gfn_mask
);
250 shadow_mmio_value
= mmio_value
| SPTE_MMIO_MASK
;
251 shadow_mmio_access_mask
= access_mask
;
253 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
256 * Sets the shadow PTE masks used by the MMU.
259 * - Setting either @accessed_mask or @dirty_mask requires setting both
260 * - At least one of @accessed_mask or @acc_track_mask must be set
262 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
263 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
, u64 p_mask
,
264 u64 acc_track_mask
, u64 me_mask
)
266 BUG_ON(!dirty_mask
!= !accessed_mask
);
267 BUG_ON(!accessed_mask
&& !acc_track_mask
);
268 BUG_ON(acc_track_mask
& SPTE_SPECIAL_MASK
);
270 shadow_user_mask
= user_mask
;
271 shadow_accessed_mask
= accessed_mask
;
272 shadow_dirty_mask
= dirty_mask
;
273 shadow_nx_mask
= nx_mask
;
274 shadow_x_mask
= x_mask
;
275 shadow_present_mask
= p_mask
;
276 shadow_acc_track_mask
= acc_track_mask
;
277 shadow_me_mask
= me_mask
;
279 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
281 void kvm_mmu_reset_all_pte_masks(void)
285 shadow_user_mask
= 0;
286 shadow_accessed_mask
= 0;
287 shadow_dirty_mask
= 0;
290 shadow_present_mask
= 0;
291 shadow_acc_track_mask
= 0;
293 shadow_phys_bits
= kvm_get_shadow_phys_bits();
296 * If the CPU has 46 or less physical address bits, then set an
297 * appropriate mask to guard against L1TF attacks. Otherwise, it is
298 * assumed that the CPU is not vulnerable to L1TF.
300 * Some Intel CPUs address the L1 cache using more PA bits than are
301 * reported by CPUID. Use the PA width of the L1 cache when possible
302 * to achieve more effective mitigation, e.g. if system RAM overlaps
303 * the most significant bits of legal physical address space.
305 shadow_nonpresent_or_rsvd_mask
= 0;
306 low_phys_bits
= boot_cpu_data
.x86_phys_bits
;
307 if (boot_cpu_has_bug(X86_BUG_L1TF
) &&
308 !WARN_ON_ONCE(boot_cpu_data
.x86_cache_bits
>=
309 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN
)) {
310 low_phys_bits
= boot_cpu_data
.x86_cache_bits
311 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN
;
312 shadow_nonpresent_or_rsvd_mask
=
313 rsvd_bits(low_phys_bits
, boot_cpu_data
.x86_cache_bits
- 1);
316 shadow_nonpresent_or_rsvd_lower_gfn_mask
=
317 GENMASK_ULL(low_phys_bits
- 1, PAGE_SHIFT
);