1 // SPDX-License-Identifier: GPL-2.0-only
3 * Suspend support specific for i386/x86-64.
5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
18 #include <asm/proto.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
30 __visible
unsigned long saved_context_ebx
;
31 __visible
unsigned long saved_context_esp
, saved_context_ebp
;
32 __visible
unsigned long saved_context_esi
, saved_context_edi
;
33 __visible
unsigned long saved_context_eflags
;
35 struct saved_context saved_context
;
37 static void msr_save_context(struct saved_context
*ctxt
)
39 struct saved_msr
*msr
= ctxt
->saved_msrs
.array
;
40 struct saved_msr
*end
= msr
+ ctxt
->saved_msrs
.num
;
43 msr
->valid
= !rdmsrl_safe(msr
->info
.msr_no
, &msr
->info
.reg
.q
);
48 static void msr_restore_context(struct saved_context
*ctxt
)
50 struct saved_msr
*msr
= ctxt
->saved_msrs
.array
;
51 struct saved_msr
*end
= msr
+ ctxt
->saved_msrs
.num
;
55 wrmsrl(msr
->info
.msr_no
, msr
->info
.reg
.q
);
61 * __save_processor_state - save CPU registers before creating a
62 * hibernation image and before restoring the memory state from it
63 * @ctxt - structure to store the registers contents in
65 * NOTE: If there is a CPU register the modification of which by the
66 * boot kernel (ie. the kernel used for loading the hibernation image)
67 * might affect the operations of the restored target kernel (ie. the one
68 * saved in the hibernation image), then its contents must be saved by this
69 * function. In other words, if kernel A is hibernated and different
70 * kernel B is used for loading the hibernation image into memory, the
71 * kernel A's __save_processor_state() function must save all registers
72 * needed by kernel A, so that it can operate correctly after the resume
73 * regardless of what kernel B does in the meantime.
75 static void __save_processor_state(struct saved_context
*ctxt
)
78 mtrr_save_fixed_ranges(NULL
);
85 store_idt(&ctxt
->idt
);
88 * We save it here, but restore it only in the hibernate case.
89 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
90 * mode in "secondary_startup_64". In 32-bit mode it is done via
91 * 'pmode_gdt' in wakeup_start.
93 ctxt
->gdt_desc
.size
= GDT_SIZE
- 1;
94 ctxt
->gdt_desc
.address
= (unsigned long)get_cpu_gdt_rw(smp_processor_id());
98 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
102 #ifdef CONFIG_X86_32_LAZY_GS
103 savesegment(gs
, ctxt
->gs
);
106 savesegment(gs
, ctxt
->gs
);
107 savesegment(fs
, ctxt
->fs
);
108 savesegment(ds
, ctxt
->ds
);
109 savesegment(es
, ctxt
->es
);
111 rdmsrl(MSR_FS_BASE
, ctxt
->fs_base
);
112 rdmsrl(MSR_GS_BASE
, ctxt
->kernelmode_gs_base
);
113 rdmsrl(MSR_KERNEL_GS_BASE
, ctxt
->usermode_gs_base
);
114 mtrr_save_fixed_ranges(NULL
);
116 rdmsrl(MSR_EFER
, ctxt
->efer
);
122 ctxt
->cr0
= read_cr0();
123 ctxt
->cr2
= read_cr2();
124 ctxt
->cr3
= __read_cr3();
125 ctxt
->cr4
= __read_cr4();
126 ctxt
->misc_enable_saved
= !rdmsrl_safe(MSR_IA32_MISC_ENABLE
,
128 msr_save_context(ctxt
);
131 /* Needed by apm.c */
132 void save_processor_state(void)
134 __save_processor_state(&saved_context
);
135 x86_platform
.save_sched_clock_state();
138 EXPORT_SYMBOL(save_processor_state
);
141 static void do_fpu_end(void)
144 * Restore FPU regs if necessary.
149 static void fix_processor_context(void)
151 int cpu
= smp_processor_id();
153 struct desc_struct
*desc
= get_cpu_gdt_rw(cpu
);
158 * We need to reload TR, which requires that we change the
159 * GDT entry to indicate "available" first.
161 * XXX: This could probably all be replaced by a call to
164 set_tss_desc(cpu
, &get_cpu_entry_area(cpu
)->tss
.x86_tss
);
167 memcpy(&tss
, &desc
[GDT_ENTRY_TSS
], sizeof(tss_desc
));
168 tss
.type
= 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
169 write_gdt_entry(desc
, GDT_ENTRY_TSS
, &tss
, DESC_TSS
);
171 syscall_init(); /* This sets MSR_*STAR and related */
173 if (boot_cpu_has(X86_FEATURE_SEP
))
176 load_TR_desc(); /* This does ltr */
177 load_mm_ldt(current
->active_mm
); /* This does lldt */
178 initialize_tlbstate_and_flush();
182 /* The processor is back on the direct GDT, load back the fixmap */
183 load_fixmap_gdt(cpu
);
187 * __restore_processor_state - restore the contents of CPU registers saved
188 * by __save_processor_state()
189 * @ctxt - structure to load the registers contents from
191 * The asm code that gets us here will have restored a usable GDT, although
192 * it will be pointing to the wrong alias.
194 static void notrace
__restore_processor_state(struct saved_context
*ctxt
)
196 struct cpuinfo_x86
*c
;
198 if (ctxt
->misc_enable_saved
)
199 wrmsrl(MSR_IA32_MISC_ENABLE
, ctxt
->misc_enable
);
203 /* cr4 was introduced in the Pentium CPU */
206 __write_cr4(ctxt
->cr4
);
209 wrmsrl(MSR_EFER
, ctxt
->efer
);
210 __write_cr4(ctxt
->cr4
);
212 write_cr3(ctxt
->cr3
);
213 write_cr2(ctxt
->cr2
);
214 write_cr0(ctxt
->cr0
);
216 /* Restore the IDT. */
217 load_idt(&ctxt
->idt
);
220 * Just in case the asm code got us here with the SS, DS, or ES
221 * out of sync with the GDT, update them.
223 loadsegment(ss
, __KERNEL_DS
);
224 loadsegment(ds
, __USER_DS
);
225 loadsegment(es
, __USER_DS
);
228 * Restore percpu access. Percpu access can happen in exception
229 * handlers or in complicated helpers like load_gs_index().
232 wrmsrl(MSR_GS_BASE
, ctxt
->kernelmode_gs_base
);
234 loadsegment(fs
, __KERNEL_PERCPU
);
235 loadsegment(gs
, __KERNEL_STACK_CANARY
);
238 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
239 fix_processor_context();
242 * Now that we have descriptor tables fully restored and working
243 * exception handling, restore the usermode segments.
246 loadsegment(ds
, ctxt
->es
);
247 loadsegment(es
, ctxt
->es
);
248 loadsegment(fs
, ctxt
->fs
);
249 load_gs_index(ctxt
->gs
);
252 * Restore FSBASE and GSBASE after restoring the selectors, since
253 * restoring the selectors clobbers the bases. Keep in mind
254 * that MSR_KERNEL_GS_BASE is horribly misnamed.
256 wrmsrl(MSR_FS_BASE
, ctxt
->fs_base
);
257 wrmsrl(MSR_KERNEL_GS_BASE
, ctxt
->usermode_gs_base
);
258 #elif defined(CONFIG_X86_32_LAZY_GS)
259 loadsegment(gs
, ctxt
->gs
);
263 tsc_verify_tsc_adjust(true);
264 x86_platform
.restore_sched_clock_state();
266 perf_restore_debug_store();
267 msr_restore_context(ctxt
);
269 c
= &cpu_data(smp_processor_id());
270 if (cpu_has(c
, X86_FEATURE_MSR_IA32_FEAT_CTL
))
271 init_ia32_feat_ctl(c
);
274 /* Needed by apm.c */
275 void notrace
restore_processor_state(void)
277 __restore_processor_state(&saved_context
);
280 EXPORT_SYMBOL(restore_processor_state
);
283 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
284 static void resume_play_dead(void)
287 tboot_shutdown(TB_SHUTDOWN_WFS
);
291 int hibernate_resume_nonboot_cpu_disable(void)
293 void (*play_dead
)(void) = smp_ops
.play_dead
;
297 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
298 * during hibernate image restoration, because it is likely that the
299 * monitored address will be actually written to at that time and then
300 * the "dead" CPU will attempt to execute instructions again, but the
301 * address in its instruction pointer may not be possible to resolve
302 * any more at that point (the page tables used by it previously may
303 * have been overwritten by hibernate image data).
305 * First, make sure that we wake up all the potentially disabled SMT
306 * threads which have been initially brought up and then put into
307 * mwait/cpuidle sleep.
308 * Those will be put to proper (not interfering with hibernation
309 * resume) sleep afterwards, and the resumed kernel will decide itself
310 * what to do with them.
312 ret
= cpuhp_smt_enable();
315 smp_ops
.play_dead
= resume_play_dead
;
316 ret
= freeze_secondary_cpus(0);
317 smp_ops
.play_dead
= play_dead
;
323 * When bsp_check() is called in hibernate and suspend, cpu hotplug
324 * is disabled already. So it's unnessary to handle race condition between
325 * cpumask query and cpu hotplug.
327 static int bsp_check(void)
329 if (cpumask_first(cpu_online_mask
) != 0) {
330 pr_warn("CPU0 is offline.\n");
337 static int bsp_pm_callback(struct notifier_block
*nb
, unsigned long action
,
343 case PM_SUSPEND_PREPARE
:
344 case PM_HIBERNATION_PREPARE
:
347 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
348 case PM_RESTORE_PREPARE
:
350 * When system resumes from hibernation, online CPU0 because
351 * 1. it's required for resume and
352 * 2. the CPU was online before hibernation
355 _debug_hotplug_cpu(0, 1);
357 case PM_POST_RESTORE
:
359 * When a resume really happens, this code won't be called.
361 * This code is called only when user space hibernation software
362 * prepares for snapshot device during boot time. So we just
363 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
364 * preparing the snapshot device.
366 * This works for normal boot case in our CPU0 hotplug debug
367 * mode, i.e. CPU0 is offline and user mode hibernation
368 * software initializes during boot time.
370 * If CPU0 is online and user application accesses snapshot
371 * device after boot time, this will offline CPU0 and user may
372 * see different CPU0 state before and after accessing
373 * the snapshot device. But hopefully this is not a case when
374 * user debugging CPU0 hotplug. Even if users hit this case,
375 * they can easily online CPU0 back.
377 * To simplify this debug code, we only consider normal boot
378 * case. Otherwise we need to remember CPU0's state and restore
379 * to that state and resolve racy conditions etc.
381 _debug_hotplug_cpu(0, 0);
387 return notifier_from_errno(ret
);
390 static int __init
bsp_pm_check_init(void)
393 * Set this bsp_pm_callback as lower priority than
394 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
395 * earlier to disable cpu hotplug before bsp online check.
397 pm_notifier(bsp_pm_callback
, -INT_MAX
);
401 core_initcall(bsp_pm_check_init
);
403 static int msr_build_context(const u32
*msr_id
, const int num
)
405 struct saved_msrs
*saved_msrs
= &saved_context
.saved_msrs
;
406 struct saved_msr
*msr_array
;
410 total_num
= saved_msrs
->num
+ num
;
412 msr_array
= kmalloc_array(total_num
, sizeof(struct saved_msr
), GFP_KERNEL
);
414 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
418 if (saved_msrs
->array
) {
420 * Multiple callbacks can invoke this function, so copy any
421 * MSR save requests from previous invocations.
423 memcpy(msr_array
, saved_msrs
->array
,
424 sizeof(struct saved_msr
) * saved_msrs
->num
);
426 kfree(saved_msrs
->array
);
429 for (i
= saved_msrs
->num
, j
= 0; i
< total_num
; i
++, j
++) {
430 msr_array
[i
].info
.msr_no
= msr_id
[j
];
431 msr_array
[i
].valid
= false;
432 msr_array
[i
].info
.reg
.q
= 0;
434 saved_msrs
->num
= total_num
;
435 saved_msrs
->array
= msr_array
;
441 * The following sections are a quirk framework for problematic BIOSen:
442 * Sometimes MSRs are modified by the BIOSen after suspended to
443 * RAM, this might cause unexpected behavior after wakeup.
444 * Thus we save/restore these specified MSRs across suspend/resume
445 * in order to work around it.
447 * For any further problematic BIOSen/platforms,
448 * please add your own function similar to msr_initialize_bdw.
450 static int msr_initialize_bdw(const struct dmi_system_id
*d
)
452 /* Add any extra MSR ids into this array. */
453 u32 bdw_msr_id
[] = { MSR_IA32_THERM_CONTROL
};
455 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d
->ident
);
456 return msr_build_context(bdw_msr_id
, ARRAY_SIZE(bdw_msr_id
));
459 static const struct dmi_system_id msr_save_dmi_table
[] = {
461 .callback
= msr_initialize_bdw
,
462 .ident
= "BROADWELL BDX_EP",
464 DMI_MATCH(DMI_PRODUCT_NAME
, "GRANTLEY"),
465 DMI_MATCH(DMI_PRODUCT_VERSION
, "E63448-400"),
471 static int msr_save_cpuid_features(const struct x86_cpu_id
*c
)
473 u32 cpuid_msr_id
[] = {
474 MSR_AMD64_CPUID_FN_1
,
477 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
480 return msr_build_context(cpuid_msr_id
, ARRAY_SIZE(cpuid_msr_id
));
483 static const struct x86_cpu_id msr_save_cpu_table
[] = {
484 X86_MATCH_VENDOR_FAM(AMD
, 0x15, &msr_save_cpuid_features
),
485 X86_MATCH_VENDOR_FAM(AMD
, 0x16, &msr_save_cpuid_features
),
489 typedef int (*pm_cpu_match_t
)(const struct x86_cpu_id
*);
490 static int pm_cpu_check(const struct x86_cpu_id
*c
)
492 const struct x86_cpu_id
*m
;
495 m
= x86_match_cpu(msr_save_cpu_table
);
499 fn
= (pm_cpu_match_t
)m
->driver_data
;
506 static int pm_check_save_msr(void)
508 dmi_check_system(msr_save_dmi_table
);
509 pm_cpu_check(msr_save_cpu_table
);
514 device_initcall(pm_check_save_msr
);