1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
2 /*******************************************************************************
4 * Module Name: utmath - Integer math support routines
6 ******************************************************************************/
11 #define _COMPONENT ACPI_UTILITIES
12 ACPI_MODULE_NAME("utmath")
14 /* Structures used only for 64-bit divide */
15 typedef struct uint64_struct
{
21 typedef union uint64_overlay
{
23 struct uint64_struct part
;
28 * Optional support for 64-bit double-precision integer multiply and shift.
29 * This code is configurable and is implemented in order to support 32-bit
30 * kernel environments where a 64-bit double-precision math library is not
33 #ifndef ACPI_USE_NATIVE_MATH64
35 /*******************************************************************************
37 * FUNCTION: acpi_ut_short_multiply
39 * PARAMETERS: multiplicand - 64-bit multiplicand
40 * multiplier - 32-bit multiplier
41 * out_product - Pointer to where the product is returned
43 * DESCRIPTION: Perform a short multiply.
45 ******************************************************************************/
48 acpi_ut_short_multiply(u64 multiplicand
, u32 multiplier
, u64
*out_product
)
50 union uint64_overlay multiplicand_ovl
;
51 union uint64_overlay product
;
54 ACPI_FUNCTION_TRACE(ut_short_multiply
);
56 multiplicand_ovl
.full
= multiplicand
;
59 * The Product is 64 bits, the carry is always 32 bits,
60 * and is generated by the second multiply.
62 ACPI_MUL_64_BY_32(0, multiplicand_ovl
.part
.hi
, multiplier
,
63 product
.part
.hi
, carry32
);
65 ACPI_MUL_64_BY_32(0, multiplicand_ovl
.part
.lo
, multiplier
,
66 product
.part
.lo
, carry32
);
68 product
.part
.hi
+= carry32
;
70 /* Return only what was requested */
73 *out_product
= product
.full
;
76 return_ACPI_STATUS(AE_OK
);
79 /*******************************************************************************
81 * FUNCTION: acpi_ut_short_shift_left
83 * PARAMETERS: operand - 64-bit shift operand
84 * count - 32-bit shift count
85 * out_result - Pointer to where the result is returned
87 * DESCRIPTION: Perform a short left shift.
89 ******************************************************************************/
91 acpi_status
acpi_ut_short_shift_left(u64 operand
, u32 count
, u64
*out_result
)
93 union uint64_overlay operand_ovl
;
95 ACPI_FUNCTION_TRACE(ut_short_shift_left
);
97 operand_ovl
.full
= operand
;
99 if ((count
& 63) >= 32) {
100 operand_ovl
.part
.hi
= operand_ovl
.part
.lo
;
101 operand_ovl
.part
.lo
= 0;
102 count
= (count
& 63) - 32;
104 ACPI_SHIFT_LEFT_64_BY_32(operand_ovl
.part
.hi
,
105 operand_ovl
.part
.lo
, count
);
107 /* Return only what was requested */
110 *out_result
= operand_ovl
.full
;
113 return_ACPI_STATUS(AE_OK
);
116 /*******************************************************************************
118 * FUNCTION: acpi_ut_short_shift_right
120 * PARAMETERS: operand - 64-bit shift operand
121 * count - 32-bit shift count
122 * out_result - Pointer to where the result is returned
124 * DESCRIPTION: Perform a short right shift.
126 ******************************************************************************/
128 acpi_status
acpi_ut_short_shift_right(u64 operand
, u32 count
, u64
*out_result
)
130 union uint64_overlay operand_ovl
;
132 ACPI_FUNCTION_TRACE(ut_short_shift_right
);
134 operand_ovl
.full
= operand
;
136 if ((count
& 63) >= 32) {
137 operand_ovl
.part
.lo
= operand_ovl
.part
.hi
;
138 operand_ovl
.part
.hi
= 0;
139 count
= (count
& 63) - 32;
141 ACPI_SHIFT_RIGHT_64_BY_32(operand_ovl
.part
.hi
,
142 operand_ovl
.part
.lo
, count
);
144 /* Return only what was requested */
147 *out_result
= operand_ovl
.full
;
150 return_ACPI_STATUS(AE_OK
);
154 /*******************************************************************************
156 * FUNCTION: acpi_ut_short_multiply
158 * PARAMETERS: See function headers above
160 * DESCRIPTION: Native version of the ut_short_multiply function.
162 ******************************************************************************/
165 acpi_ut_short_multiply(u64 multiplicand
, u32 multiplier
, u64
*out_product
)
168 ACPI_FUNCTION_TRACE(ut_short_multiply
);
170 /* Return only what was requested */
173 *out_product
= multiplicand
* multiplier
;
176 return_ACPI_STATUS(AE_OK
);
179 /*******************************************************************************
181 * FUNCTION: acpi_ut_short_shift_left
183 * PARAMETERS: See function headers above
185 * DESCRIPTION: Native version of the ut_short_shift_left function.
187 ******************************************************************************/
189 acpi_status
acpi_ut_short_shift_left(u64 operand
, u32 count
, u64
*out_result
)
192 ACPI_FUNCTION_TRACE(ut_short_shift_left
);
194 /* Return only what was requested */
197 *out_result
= operand
<< count
;
200 return_ACPI_STATUS(AE_OK
);
203 /*******************************************************************************
205 * FUNCTION: acpi_ut_short_shift_right
207 * PARAMETERS: See function headers above
209 * DESCRIPTION: Native version of the ut_short_shift_right function.
211 ******************************************************************************/
213 acpi_status
acpi_ut_short_shift_right(u64 operand
, u32 count
, u64
*out_result
)
216 ACPI_FUNCTION_TRACE(ut_short_shift_right
);
218 /* Return only what was requested */
221 *out_result
= operand
>> count
;
224 return_ACPI_STATUS(AE_OK
);
229 * Optional support for 64-bit double-precision integer divide. This code
230 * is configurable and is implemented in order to support 32-bit kernel
231 * environments where a 64-bit double-precision math library is not available.
233 * Support for a more normal 64-bit divide/modulo (with check for a divide-
234 * by-zero) appears after this optional section of code.
236 #ifndef ACPI_USE_NATIVE_DIVIDE
238 /*******************************************************************************
240 * FUNCTION: acpi_ut_short_divide
242 * PARAMETERS: dividend - 64-bit dividend
243 * divisor - 32-bit divisor
244 * out_quotient - Pointer to where the quotient is returned
245 * out_remainder - Pointer to where the remainder is returned
247 * RETURN: Status (Checks for divide-by-zero)
249 * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
250 * divide and modulo. The result is a 64-bit quotient and a
253 ******************************************************************************/
256 acpi_ut_short_divide(u64 dividend
,
257 u32 divisor
, u64
*out_quotient
, u32
*out_remainder
)
259 union uint64_overlay dividend_ovl
;
260 union uint64_overlay quotient
;
263 ACPI_FUNCTION_TRACE(ut_short_divide
);
265 /* Always check for a zero divisor */
268 ACPI_ERROR((AE_INFO
, "Divide by zero"));
269 return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO
);
272 dividend_ovl
.full
= dividend
;
275 * The quotient is 64 bits, the remainder is always 32 bits,
276 * and is generated by the second divide.
278 ACPI_DIV_64_BY_32(0, dividend_ovl
.part
.hi
, divisor
,
279 quotient
.part
.hi
, remainder32
);
281 ACPI_DIV_64_BY_32(remainder32
, dividend_ovl
.part
.lo
, divisor
,
282 quotient
.part
.lo
, remainder32
);
284 /* Return only what was requested */
287 *out_quotient
= quotient
.full
;
290 *out_remainder
= remainder32
;
293 return_ACPI_STATUS(AE_OK
);
296 /*******************************************************************************
298 * FUNCTION: acpi_ut_divide
300 * PARAMETERS: in_dividend - Dividend
301 * in_divisor - Divisor
302 * out_quotient - Pointer to where the quotient is returned
303 * out_remainder - Pointer to where the remainder is returned
305 * RETURN: Status (Checks for divide-by-zero)
307 * DESCRIPTION: Perform a divide and modulo.
309 ******************************************************************************/
312 acpi_ut_divide(u64 in_dividend
,
313 u64 in_divisor
, u64
*out_quotient
, u64
*out_remainder
)
315 union uint64_overlay dividend
;
316 union uint64_overlay divisor
;
317 union uint64_overlay quotient
;
318 union uint64_overlay remainder
;
319 union uint64_overlay normalized_dividend
;
320 union uint64_overlay normalized_divisor
;
322 union uint64_overlay partial2
;
323 union uint64_overlay partial3
;
325 ACPI_FUNCTION_TRACE(ut_divide
);
327 /* Always check for a zero divisor */
329 if (in_divisor
== 0) {
330 ACPI_ERROR((AE_INFO
, "Divide by zero"));
331 return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO
);
334 divisor
.full
= in_divisor
;
335 dividend
.full
= in_dividend
;
336 if (divisor
.part
.hi
== 0) {
338 * 1) Simplest case is where the divisor is 32 bits, we can
339 * just do two divides
341 remainder
.part
.hi
= 0;
344 * The quotient is 64 bits, the remainder is always 32 bits,
345 * and is generated by the second divide.
347 ACPI_DIV_64_BY_32(0, dividend
.part
.hi
, divisor
.part
.lo
,
348 quotient
.part
.hi
, partial1
);
350 ACPI_DIV_64_BY_32(partial1
, dividend
.part
.lo
, divisor
.part
.lo
,
351 quotient
.part
.lo
, remainder
.part
.lo
);
356 * 2) The general case where the divisor is a full 64 bits
359 quotient
.part
.hi
= 0;
360 normalized_dividend
= dividend
;
361 normalized_divisor
= divisor
;
363 /* Normalize the operands (shift until the divisor is < 32 bits) */
366 ACPI_SHIFT_RIGHT_64(normalized_divisor
.part
.hi
,
367 normalized_divisor
.part
.lo
);
368 ACPI_SHIFT_RIGHT_64(normalized_dividend
.part
.hi
,
369 normalized_dividend
.part
.lo
);
371 } while (normalized_divisor
.part
.hi
!= 0);
375 ACPI_DIV_64_BY_32(normalized_dividend
.part
.hi
,
376 normalized_dividend
.part
.lo
,
377 normalized_divisor
.part
.lo
, quotient
.part
.lo
,
381 * The quotient is always 32 bits, and simply requires
382 * adjustment. The 64-bit remainder must be generated.
384 partial1
= quotient
.part
.lo
* divisor
.part
.hi
;
385 partial2
.full
= (u64
) quotient
.part
.lo
* divisor
.part
.lo
;
386 partial3
.full
= (u64
) partial2
.part
.hi
+ partial1
;
388 remainder
.part
.hi
= partial3
.part
.lo
;
389 remainder
.part
.lo
= partial2
.part
.lo
;
391 if (partial3
.part
.hi
== 0) {
392 if (partial3
.part
.lo
>= dividend
.part
.hi
) {
393 if (partial3
.part
.lo
== dividend
.part
.hi
) {
394 if (partial2
.part
.lo
> dividend
.part
.lo
) {
396 remainder
.full
-= divisor
.full
;
400 remainder
.full
-= divisor
.full
;
404 remainder
.full
= remainder
.full
- dividend
.full
;
405 remainder
.part
.hi
= (u32
)-((s32
)remainder
.part
.hi
);
406 remainder
.part
.lo
= (u32
)-((s32
)remainder
.part
.lo
);
408 if (remainder
.part
.lo
) {
414 /* Return only what was requested */
417 *out_quotient
= quotient
.full
;
420 *out_remainder
= remainder
.full
;
423 return_ACPI_STATUS(AE_OK
);
428 /*******************************************************************************
430 * FUNCTION: acpi_ut_short_divide, acpi_ut_divide
432 * PARAMETERS: See function headers above
434 * DESCRIPTION: Native versions of the ut_divide functions. Use these if either
435 * 1) The target is a 64-bit platform and therefore 64-bit
436 * integer math is supported directly by the machine.
437 * 2) The target is a 32-bit or 16-bit platform, and the
438 * double-precision integer math library is available to
439 * perform the divide.
441 ******************************************************************************/
444 acpi_ut_short_divide(u64 in_dividend
,
445 u32 divisor
, u64
*out_quotient
, u32
*out_remainder
)
448 ACPI_FUNCTION_TRACE(ut_short_divide
);
450 /* Always check for a zero divisor */
453 ACPI_ERROR((AE_INFO
, "Divide by zero"));
454 return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO
);
457 /* Return only what was requested */
460 *out_quotient
= in_dividend
/ divisor
;
463 *out_remainder
= (u32
) (in_dividend
% divisor
);
466 return_ACPI_STATUS(AE_OK
);
470 acpi_ut_divide(u64 in_dividend
,
471 u64 in_divisor
, u64
*out_quotient
, u64
*out_remainder
)
473 ACPI_FUNCTION_TRACE(ut_divide
);
475 /* Always check for a zero divisor */
477 if (in_divisor
== 0) {
478 ACPI_ERROR((AE_INFO
, "Divide by zero"));
479 return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO
);
482 /* Return only what was requested */
485 *out_quotient
= in_dividend
/ in_divisor
;
488 *out_remainder
= in_dividend
% in_divisor
;
491 return_ACPI_STATUS(AE_OK
);