WIP FPC-III support
[linux/fpc-iii.git] / drivers / base / regmap / regmap-spi-avmm.c
blobad1da83e849fe14e93b3eb09d77ea54cb75ff65c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API - SPI AVMM support
4 //
5 // Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
7 #include <linux/module.h>
8 #include <linux/regmap.h>
9 #include <linux/spi/spi.h>
12 * This driver implements the regmap operations for a generic SPI
13 * master to access the registers of the spi slave chip which has an
14 * Avalone bus in it.
16 * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
17 * in the spi slave chip. The IP acts as a bridge to convert encoded streams of
18 * bytes from the host to the internal register read/write on Avalon bus. In
19 * order to issue register access requests to the slave chip, the host should
20 * send formatted bytes that conform to the transfer protocol.
21 * The transfer protocol contains 3 layers: transaction layer, packet layer
22 * and physical layer.
24 * Reference Documents could be found at:
25 * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
27 * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
28 * introduction to the protocol.
30 * Chapter "Avalon Packets to Transactions Converter Core" describes
31 * the transaction layer.
33 * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
34 * describes the packet layer.
36 * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
37 * physical layer.
40 * When host issues a regmap read/write, the driver will transform the request
41 * to byte stream layer by layer. It formats the register addr, value and
42 * length to the transaction layer request, then converts the request to packet
43 * layer bytes stream and then to physical layer bytes stream. Finally the
44 * driver sends the formatted byte stream over SPI bus to the slave chip.
46 * The spi-avmm IP on the slave chip decodes the byte stream and initiates
47 * register read/write on its internal Avalon bus, and then encodes the
48 * response to byte stream and sends back to host.
50 * The driver receives the byte stream, reverses the 3 layers transformation,
51 * and finally gets the response value (read out data for register read,
52 * successful written size for register write).
55 #define PKT_SOP 0x7a
56 #define PKT_EOP 0x7b
57 #define PKT_CHANNEL 0x7c
58 #define PKT_ESC 0x7d
60 #define PHY_IDLE 0x4a
61 #define PHY_ESC 0x4d
63 #define TRANS_CODE_WRITE 0x0
64 #define TRANS_CODE_SEQ_WRITE 0x4
65 #define TRANS_CODE_READ 0x10
66 #define TRANS_CODE_SEQ_READ 0x14
67 #define TRANS_CODE_NO_TRANS 0x7f
69 #define SPI_AVMM_XFER_TIMEOUT (msecs_to_jiffies(200))
71 /* slave's register addr is 32 bits */
72 #define SPI_AVMM_REG_SIZE 4UL
73 /* slave's register value is 32 bits */
74 #define SPI_AVMM_VAL_SIZE 4UL
77 * max rx size could be larger. But considering the buffer consuming,
78 * it is proper that we limit 1KB xfer at max.
80 #define MAX_READ_CNT 256UL
81 #define MAX_WRITE_CNT 1UL
83 struct trans_req_header {
84 u8 code;
85 u8 rsvd;
86 __be16 size;
87 __be32 addr;
88 } __packed;
90 struct trans_resp_header {
91 u8 r_code;
92 u8 rsvd;
93 __be16 size;
94 } __packed;
96 #define TRANS_REQ_HD_SIZE (sizeof(struct trans_req_header))
97 #define TRANS_RESP_HD_SIZE (sizeof(struct trans_resp_header))
100 * In transaction layer,
101 * the write request format is: Transaction request header + data
102 * the read request format is: Transaction request header
103 * the write response format is: Transaction response header
104 * the read response format is: pure data, no Transaction response header
106 #define TRANS_WR_TX_SIZE(n) (TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
107 #define TRANS_RD_TX_SIZE TRANS_REQ_HD_SIZE
108 #define TRANS_TX_MAX TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
110 #define TRANS_RD_RX_SIZE(n) (SPI_AVMM_VAL_SIZE * (n))
111 #define TRANS_WR_RX_SIZE TRANS_RESP_HD_SIZE
112 #define TRANS_RX_MAX TRANS_RD_RX_SIZE(MAX_READ_CNT)
114 /* tx & rx share one transaction layer buffer */
115 #define TRANS_BUF_SIZE ((TRANS_TX_MAX > TRANS_RX_MAX) ? \
116 TRANS_TX_MAX : TRANS_RX_MAX)
119 * In tx phase, the host prepares all the phy layer bytes of a request in the
120 * phy buffer and sends them in a batch.
122 * The packet layer and physical layer defines several special chars for
123 * various purpose, when a transaction layer byte hits one of these special
124 * chars, it should be escaped. The escape rule is, "Escape char first,
125 * following the byte XOR'ed with 0x20".
127 * This macro defines the max possible length of the phy data. In the worst
128 * case, all transaction layer bytes need to be escaped (so the data length
129 * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
130 * we should make sure the length is aligned to SPI BPW.
132 #define PHY_TX_MAX ALIGN(2 * TRANS_TX_MAX + 4, 4)
135 * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
136 * length of the rx bit stream is unpredictable. So the driver reads the words
137 * one by one, and parses each word immediately into transaction layer buffer.
138 * Only one word length of phy buffer is used for rx.
140 #define PHY_BUF_SIZE PHY_TX_MAX
143 * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
145 * @spi: spi slave associated with this bridge.
146 * @word_len: bytes of word for spi transfer.
147 * @trans_len: length of valid data in trans_buf.
148 * @phy_len: length of valid data in phy_buf.
149 * @trans_buf: the bridge buffer for transaction layer data.
150 * @phy_buf: the bridge buffer for physical layer data.
151 * @swap_words: the word swapping cb for phy data. NULL if not needed.
153 * As a device's registers are implemented on the AVMM bus address space, it
154 * requires the driver to issue formatted requests to spi slave to AVMM bus
155 * master bridge to perform register access.
157 struct spi_avmm_bridge {
158 struct spi_device *spi;
159 unsigned char word_len;
160 unsigned int trans_len;
161 unsigned int phy_len;
162 /* bridge buffer used in translation between protocol layers */
163 char trans_buf[TRANS_BUF_SIZE];
164 char phy_buf[PHY_BUF_SIZE];
165 void (*swap_words)(char *buf, unsigned int len);
168 static void br_swap_words_32(char *buf, unsigned int len)
170 u32 *p = (u32 *)buf;
171 unsigned int count;
173 count = len / 4;
174 while (count--) {
175 *p = swab32p(p);
176 p++;
181 * Format transaction layer data in br->trans_buf according to the register
182 * access request, Store valid transaction layer data length in br->trans_len.
184 static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
185 u32 *wr_val, u32 count)
187 struct trans_req_header *header;
188 unsigned int trans_len;
189 u8 code;
190 __le32 *data;
191 int i;
193 if (is_read) {
194 if (count == 1)
195 code = TRANS_CODE_READ;
196 else
197 code = TRANS_CODE_SEQ_READ;
198 } else {
199 if (count == 1)
200 code = TRANS_CODE_WRITE;
201 else
202 code = TRANS_CODE_SEQ_WRITE;
205 header = (struct trans_req_header *)br->trans_buf;
206 header->code = code;
207 header->rsvd = 0;
208 header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
209 header->addr = cpu_to_be32(reg);
211 trans_len = TRANS_REQ_HD_SIZE;
213 if (!is_read) {
214 trans_len += SPI_AVMM_VAL_SIZE * count;
215 if (trans_len > sizeof(br->trans_buf))
216 return -ENOMEM;
218 data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
220 for (i = 0; i < count; i++)
221 *data++ = cpu_to_le32(*wr_val++);
224 /* Store valid trans data length for next layer */
225 br->trans_len = trans_len;
227 return 0;
231 * Convert transaction layer data (in br->trans_buf) to phy layer data, store
232 * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
233 * layer data length in br->phy_len.
235 * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
236 * with PHY_IDLE, then the slave will just drop them.
238 * The driver will not simply pad 4a at the tail. The concern is that driver
239 * will not store MISO data during tx phase, if the driver pads 4a at the tail,
240 * it is possible that if the slave is fast enough to response at the padding
241 * time. As a result these rx bytes are lost. In the following case, 7a,7c,00
242 * will lost.
243 * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
244 * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
246 * So the driver moves EOP and bytes after EOP to the end of the aligned size,
247 * then fill the hole with PHY_IDLE. As following:
248 * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
249 * after pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
250 * Then if the slave will not get the entire packet before the tx phase is
251 * over, it can't responsed to anything either.
253 static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
255 char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
256 unsigned int aligned_phy_len, move_size;
257 bool need_esc = false;
259 tb = br->trans_buf;
260 tb_end = tb + br->trans_len;
261 pb = br->phy_buf;
262 pb_limit = pb + ARRAY_SIZE(br->phy_buf);
264 *pb++ = PKT_SOP;
267 * The driver doesn't support multiple channels so the channel number
268 * is always 0.
270 *pb++ = PKT_CHANNEL;
271 *pb++ = 0x0;
273 for (; pb < pb_limit && tb < tb_end; pb++) {
274 if (need_esc) {
275 *pb = *tb++ ^ 0x20;
276 need_esc = false;
277 continue;
280 /* EOP should be inserted before the last valid char */
281 if (tb == tb_end - 1 && !pb_eop) {
282 *pb = PKT_EOP;
283 pb_eop = pb;
284 continue;
288 * insert an ESCAPE char if the data value equals any special
289 * char.
291 switch (*tb) {
292 case PKT_SOP:
293 case PKT_EOP:
294 case PKT_CHANNEL:
295 case PKT_ESC:
296 *pb = PKT_ESC;
297 need_esc = true;
298 break;
299 case PHY_IDLE:
300 case PHY_ESC:
301 *pb = PHY_ESC;
302 need_esc = true;
303 break;
304 default:
305 *pb = *tb++;
306 break;
310 /* The phy buffer is used out but transaction layer data remains */
311 if (tb < tb_end)
312 return -ENOMEM;
314 /* Store valid phy data length for spi transfer */
315 br->phy_len = pb - br->phy_buf;
317 if (br->word_len == 1)
318 return 0;
320 /* Do phy buf padding if word_len > 1 byte. */
321 aligned_phy_len = ALIGN(br->phy_len, br->word_len);
322 if (aligned_phy_len > sizeof(br->phy_buf))
323 return -ENOMEM;
325 if (aligned_phy_len == br->phy_len)
326 return 0;
328 /* move EOP and bytes after EOP to the end of aligned size */
329 move_size = pb - pb_eop;
330 memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
332 /* fill the hole with PHY_IDLEs */
333 memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
335 /* update the phy data length */
336 br->phy_len = aligned_phy_len;
338 return 0;
342 * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
343 * ignore rx in tx phase.
345 static int br_do_tx(struct spi_avmm_bridge *br)
347 /* reorder words for spi transfer */
348 if (br->swap_words)
349 br->swap_words(br->phy_buf, br->phy_len);
351 /* send all data in phy_buf */
352 return spi_write(br->spi, br->phy_buf, br->phy_len);
356 * This function read the rx byte stream from SPI word by word and convert
357 * them to transaction layer data in br->trans_buf. It also stores the length
358 * of rx transaction layer data in br->trans_len
360 * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
361 * prepare a fixed length buffer to receive all of the rx data in a batch. We
362 * have to read word by word and convert them to transaction layer data at
363 * once.
365 static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
367 bool eop_found = false, channel_found = false, esc_found = false;
368 bool valid_word = false, last_try = false;
369 struct device *dev = &br->spi->dev;
370 char *pb, *tb_limit, *tb = NULL;
371 unsigned long poll_timeout;
372 int ret, i;
374 tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
375 pb = br->phy_buf;
376 poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
377 while (tb < tb_limit) {
378 ret = spi_read(br->spi, pb, br->word_len);
379 if (ret)
380 return ret;
382 /* reorder the word back */
383 if (br->swap_words)
384 br->swap_words(pb, br->word_len);
386 valid_word = false;
387 for (i = 0; i < br->word_len; i++) {
388 /* drop everything before first SOP */
389 if (!tb && pb[i] != PKT_SOP)
390 continue;
392 /* drop PHY_IDLE */
393 if (pb[i] == PHY_IDLE)
394 continue;
396 valid_word = true;
399 * We don't support multiple channels, so error out if
400 * a non-zero channel number is found.
402 if (channel_found) {
403 if (pb[i] != 0) {
404 dev_err(dev, "%s channel num != 0\n",
405 __func__);
406 return -EFAULT;
409 channel_found = false;
410 continue;
413 switch (pb[i]) {
414 case PKT_SOP:
416 * reset the parsing if a second SOP appears.
418 tb = br->trans_buf;
419 eop_found = false;
420 channel_found = false;
421 esc_found = false;
422 break;
423 case PKT_EOP:
425 * No special char is expected after ESC char.
426 * No special char (except ESC & PHY_IDLE) is
427 * expected after EOP char.
429 * The special chars are all dropped.
431 if (esc_found || eop_found)
432 return -EFAULT;
434 eop_found = true;
435 break;
436 case PKT_CHANNEL:
437 if (esc_found || eop_found)
438 return -EFAULT;
440 channel_found = true;
441 break;
442 case PKT_ESC:
443 case PHY_ESC:
444 if (esc_found)
445 return -EFAULT;
447 esc_found = true;
448 break;
449 default:
450 /* Record the normal byte in trans_buf. */
451 if (esc_found) {
452 *tb++ = pb[i] ^ 0x20;
453 esc_found = false;
454 } else {
455 *tb++ = pb[i];
459 * We get the last normal byte after EOP, it is
460 * time we finish. Normally the function should
461 * return here.
463 if (eop_found) {
464 br->trans_len = tb - br->trans_buf;
465 return 0;
470 if (valid_word) {
471 /* update poll timeout when we get valid word */
472 poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
473 last_try = false;
474 } else {
476 * We timeout when rx keeps invalid for some time. But
477 * it is possible we are scheduled out for long time
478 * after a spi_read. So when we are scheduled in, a SW
479 * timeout happens. But actually HW may have worked fine and
480 * has been ready long time ago. So we need to do an extra
481 * read, if we get a valid word then we could continue rx,
482 * otherwise real a HW issue happens.
484 if (last_try)
485 return -ETIMEDOUT;
487 if (time_after(jiffies, poll_timeout))
488 last_try = true;
493 * We have used out all transfer layer buffer but cannot find the end
494 * of the byte stream.
496 dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
497 __func__);
499 return -EFAULT;
503 * For read transactions, the avmm bus will directly return register values
504 * without transaction response header.
506 static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
507 u32 *val, unsigned int expected_count)
509 unsigned int i, trans_len = br->trans_len;
510 __le32 *data;
512 if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
513 return -EFAULT;
515 data = (__le32 *)br->trans_buf;
516 for (i = 0; i < expected_count; i++)
517 *val++ = le32_to_cpu(*data++);
519 return 0;
523 * For write transactions, the slave will return a transaction response
524 * header.
526 static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
527 unsigned int expected_count)
529 unsigned int trans_len = br->trans_len;
530 struct trans_resp_header *resp;
531 u8 code;
532 u16 val_len;
534 if (trans_len != TRANS_RESP_HD_SIZE)
535 return -EFAULT;
537 resp = (struct trans_resp_header *)br->trans_buf;
539 code = resp->r_code ^ 0x80;
540 val_len = be16_to_cpu(resp->size);
541 if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
542 return -EFAULT;
544 /* error out if the trans code doesn't align with the val size */
545 if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
546 (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
547 return -EFAULT;
549 return 0;
552 static int do_reg_access(void *context, bool is_read, unsigned int reg,
553 unsigned int *value, unsigned int count)
555 struct spi_avmm_bridge *br = context;
556 int ret;
558 /* invalidate bridge buffers first */
559 br->trans_len = 0;
560 br->phy_len = 0;
562 ret = br_trans_tx_prepare(br, is_read, reg, value, count);
563 if (ret)
564 return ret;
566 ret = br_pkt_phy_tx_prepare(br);
567 if (ret)
568 return ret;
570 ret = br_do_tx(br);
571 if (ret)
572 return ret;
574 ret = br_do_rx_and_pkt_phy_parse(br);
575 if (ret)
576 return ret;
578 if (is_read)
579 return br_rd_trans_rx_parse(br, value, count);
580 else
581 return br_wr_trans_rx_parse(br, count);
584 static int regmap_spi_avmm_gather_write(void *context,
585 const void *reg_buf, size_t reg_len,
586 const void *val_buf, size_t val_len)
588 if (reg_len != SPI_AVMM_REG_SIZE)
589 return -EINVAL;
591 if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
592 return -EINVAL;
594 return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
595 val_len / SPI_AVMM_VAL_SIZE);
598 static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
600 if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
601 return -EINVAL;
603 return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
604 data + SPI_AVMM_REG_SIZE,
605 bytes - SPI_AVMM_REG_SIZE);
608 static int regmap_spi_avmm_read(void *context,
609 const void *reg_buf, size_t reg_len,
610 void *val_buf, size_t val_len)
612 if (reg_len != SPI_AVMM_REG_SIZE)
613 return -EINVAL;
615 if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
616 return -EINVAL;
618 return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
619 (val_len / SPI_AVMM_VAL_SIZE));
622 static struct spi_avmm_bridge *
623 spi_avmm_bridge_ctx_gen(struct spi_device *spi)
625 struct spi_avmm_bridge *br;
627 if (!spi)
628 return ERR_PTR(-ENODEV);
630 /* Only support BPW == 8 or 32 now. Try 32 BPW first. */
631 spi->mode = SPI_MODE_1;
632 spi->bits_per_word = 32;
633 if (spi_setup(spi)) {
634 spi->bits_per_word = 8;
635 if (spi_setup(spi))
636 return ERR_PTR(-EINVAL);
639 br = kzalloc(sizeof(*br), GFP_KERNEL);
640 if (!br)
641 return ERR_PTR(-ENOMEM);
643 br->spi = spi;
644 br->word_len = spi->bits_per_word / 8;
645 if (br->word_len == 4) {
647 * The protocol requires little endian byte order but MSB
648 * first. So driver needs to swap the byte order word by word
649 * if word length > 1.
651 br->swap_words = br_swap_words_32;
654 return br;
657 static void spi_avmm_bridge_ctx_free(void *context)
659 kfree(context);
662 static const struct regmap_bus regmap_spi_avmm_bus = {
663 .write = regmap_spi_avmm_write,
664 .gather_write = regmap_spi_avmm_gather_write,
665 .read = regmap_spi_avmm_read,
666 .reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
667 .val_format_endian_default = REGMAP_ENDIAN_NATIVE,
668 .max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
669 .max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
670 .free_context = spi_avmm_bridge_ctx_free,
673 struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
674 const struct regmap_config *config,
675 struct lock_class_key *lock_key,
676 const char *lock_name)
678 struct spi_avmm_bridge *bridge;
679 struct regmap *map;
681 bridge = spi_avmm_bridge_ctx_gen(spi);
682 if (IS_ERR(bridge))
683 return ERR_CAST(bridge);
685 map = __regmap_init(&spi->dev, &regmap_spi_avmm_bus,
686 bridge, config, lock_key, lock_name);
687 if (IS_ERR(map)) {
688 spi_avmm_bridge_ctx_free(bridge);
689 return ERR_CAST(map);
692 return map;
694 EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
696 struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
697 const struct regmap_config *config,
698 struct lock_class_key *lock_key,
699 const char *lock_name)
701 struct spi_avmm_bridge *bridge;
702 struct regmap *map;
704 bridge = spi_avmm_bridge_ctx_gen(spi);
705 if (IS_ERR(bridge))
706 return ERR_CAST(bridge);
708 map = __devm_regmap_init(&spi->dev, &regmap_spi_avmm_bus,
709 bridge, config, lock_key, lock_name);
710 if (IS_ERR(map)) {
711 spi_avmm_bridge_ctx_free(bridge);
712 return ERR_CAST(map);
715 return map;
717 EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
719 MODULE_LICENSE("GPL v2");