WIP FPC-III support
[linux/fpc-iii.git] / drivers / block / zram / zram_drv.c
blobe2933cb7a82a3366f9ed3e589ad7980e9e6a499e
1 /*
2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 #include <linux/part_stat.h>
38 #include "zram_drv.h"
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
44 static int zram_major;
45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
50 * Pages that compress to sizes equals or greater than this are stored
51 * uncompressed in memory.
53 static size_t huge_class_size;
55 static const struct block_device_operations zram_devops;
56 static const struct block_device_operations zram_wb_devops;
58 static void zram_free_page(struct zram *zram, size_t index);
59 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
60 u32 index, int offset, struct bio *bio);
63 static int zram_slot_trylock(struct zram *zram, u32 index)
65 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
68 static void zram_slot_lock(struct zram *zram, u32 index)
70 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
73 static void zram_slot_unlock(struct zram *zram, u32 index)
75 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
78 static inline bool init_done(struct zram *zram)
80 return zram->disksize;
83 static inline struct zram *dev_to_zram(struct device *dev)
85 return (struct zram *)dev_to_disk(dev)->private_data;
88 static unsigned long zram_get_handle(struct zram *zram, u32 index)
90 return zram->table[index].handle;
93 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
95 zram->table[index].handle = handle;
98 /* flag operations require table entry bit_spin_lock() being held */
99 static bool zram_test_flag(struct zram *zram, u32 index,
100 enum zram_pageflags flag)
102 return zram->table[index].flags & BIT(flag);
105 static void zram_set_flag(struct zram *zram, u32 index,
106 enum zram_pageflags flag)
108 zram->table[index].flags |= BIT(flag);
111 static void zram_clear_flag(struct zram *zram, u32 index,
112 enum zram_pageflags flag)
114 zram->table[index].flags &= ~BIT(flag);
117 static inline void zram_set_element(struct zram *zram, u32 index,
118 unsigned long element)
120 zram->table[index].element = element;
123 static unsigned long zram_get_element(struct zram *zram, u32 index)
125 return zram->table[index].element;
128 static size_t zram_get_obj_size(struct zram *zram, u32 index)
130 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
133 static void zram_set_obj_size(struct zram *zram,
134 u32 index, size_t size)
136 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
138 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
141 static inline bool zram_allocated(struct zram *zram, u32 index)
143 return zram_get_obj_size(zram, index) ||
144 zram_test_flag(zram, index, ZRAM_SAME) ||
145 zram_test_flag(zram, index, ZRAM_WB);
148 #if PAGE_SIZE != 4096
149 static inline bool is_partial_io(struct bio_vec *bvec)
151 return bvec->bv_len != PAGE_SIZE;
153 #else
154 static inline bool is_partial_io(struct bio_vec *bvec)
156 return false;
158 #endif
161 * Check if request is within bounds and aligned on zram logical blocks.
163 static inline bool valid_io_request(struct zram *zram,
164 sector_t start, unsigned int size)
166 u64 end, bound;
168 /* unaligned request */
169 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
170 return false;
171 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
172 return false;
174 end = start + (size >> SECTOR_SHIFT);
175 bound = zram->disksize >> SECTOR_SHIFT;
176 /* out of range range */
177 if (unlikely(start >= bound || end > bound || start > end))
178 return false;
180 /* I/O request is valid */
181 return true;
184 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
186 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
187 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
190 static inline void update_used_max(struct zram *zram,
191 const unsigned long pages)
193 unsigned long old_max, cur_max;
195 old_max = atomic_long_read(&zram->stats.max_used_pages);
197 do {
198 cur_max = old_max;
199 if (pages > cur_max)
200 old_max = atomic_long_cmpxchg(
201 &zram->stats.max_used_pages, cur_max, pages);
202 } while (old_max != cur_max);
205 static inline void zram_fill_page(void *ptr, unsigned long len,
206 unsigned long value)
208 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
209 memset_l(ptr, value, len / sizeof(unsigned long));
212 static bool page_same_filled(void *ptr, unsigned long *element)
214 unsigned long *page;
215 unsigned long val;
216 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
218 page = (unsigned long *)ptr;
219 val = page[0];
221 if (val != page[last_pos])
222 return false;
224 for (pos = 1; pos < last_pos; pos++) {
225 if (val != page[pos])
226 return false;
229 *element = val;
231 return true;
234 static ssize_t initstate_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 u32 val;
238 struct zram *zram = dev_to_zram(dev);
240 down_read(&zram->init_lock);
241 val = init_done(zram);
242 up_read(&zram->init_lock);
244 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
247 static ssize_t disksize_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
250 struct zram *zram = dev_to_zram(dev);
252 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
255 static ssize_t mem_limit_store(struct device *dev,
256 struct device_attribute *attr, const char *buf, size_t len)
258 u64 limit;
259 char *tmp;
260 struct zram *zram = dev_to_zram(dev);
262 limit = memparse(buf, &tmp);
263 if (buf == tmp) /* no chars parsed, invalid input */
264 return -EINVAL;
266 down_write(&zram->init_lock);
267 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
268 up_write(&zram->init_lock);
270 return len;
273 static ssize_t mem_used_max_store(struct device *dev,
274 struct device_attribute *attr, const char *buf, size_t len)
276 int err;
277 unsigned long val;
278 struct zram *zram = dev_to_zram(dev);
280 err = kstrtoul(buf, 10, &val);
281 if (err || val != 0)
282 return -EINVAL;
284 down_read(&zram->init_lock);
285 if (init_done(zram)) {
286 atomic_long_set(&zram->stats.max_used_pages,
287 zs_get_total_pages(zram->mem_pool));
289 up_read(&zram->init_lock);
291 return len;
294 static ssize_t idle_store(struct device *dev,
295 struct device_attribute *attr, const char *buf, size_t len)
297 struct zram *zram = dev_to_zram(dev);
298 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
299 int index;
301 if (!sysfs_streq(buf, "all"))
302 return -EINVAL;
304 down_read(&zram->init_lock);
305 if (!init_done(zram)) {
306 up_read(&zram->init_lock);
307 return -EINVAL;
310 for (index = 0; index < nr_pages; index++) {
312 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
313 * See the comment in writeback_store.
315 zram_slot_lock(zram, index);
316 if (zram_allocated(zram, index) &&
317 !zram_test_flag(zram, index, ZRAM_UNDER_WB))
318 zram_set_flag(zram, index, ZRAM_IDLE);
319 zram_slot_unlock(zram, index);
322 up_read(&zram->init_lock);
324 return len;
327 #ifdef CONFIG_ZRAM_WRITEBACK
328 static ssize_t writeback_limit_enable_store(struct device *dev,
329 struct device_attribute *attr, const char *buf, size_t len)
331 struct zram *zram = dev_to_zram(dev);
332 u64 val;
333 ssize_t ret = -EINVAL;
335 if (kstrtoull(buf, 10, &val))
336 return ret;
338 down_read(&zram->init_lock);
339 spin_lock(&zram->wb_limit_lock);
340 zram->wb_limit_enable = val;
341 spin_unlock(&zram->wb_limit_lock);
342 up_read(&zram->init_lock);
343 ret = len;
345 return ret;
348 static ssize_t writeback_limit_enable_show(struct device *dev,
349 struct device_attribute *attr, char *buf)
351 bool val;
352 struct zram *zram = dev_to_zram(dev);
354 down_read(&zram->init_lock);
355 spin_lock(&zram->wb_limit_lock);
356 val = zram->wb_limit_enable;
357 spin_unlock(&zram->wb_limit_lock);
358 up_read(&zram->init_lock);
360 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
363 static ssize_t writeback_limit_store(struct device *dev,
364 struct device_attribute *attr, const char *buf, size_t len)
366 struct zram *zram = dev_to_zram(dev);
367 u64 val;
368 ssize_t ret = -EINVAL;
370 if (kstrtoull(buf, 10, &val))
371 return ret;
373 down_read(&zram->init_lock);
374 spin_lock(&zram->wb_limit_lock);
375 zram->bd_wb_limit = val;
376 spin_unlock(&zram->wb_limit_lock);
377 up_read(&zram->init_lock);
378 ret = len;
380 return ret;
383 static ssize_t writeback_limit_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
386 u64 val;
387 struct zram *zram = dev_to_zram(dev);
389 down_read(&zram->init_lock);
390 spin_lock(&zram->wb_limit_lock);
391 val = zram->bd_wb_limit;
392 spin_unlock(&zram->wb_limit_lock);
393 up_read(&zram->init_lock);
395 return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
398 static void reset_bdev(struct zram *zram)
400 struct block_device *bdev;
402 if (!zram->backing_dev)
403 return;
405 bdev = zram->bdev;
406 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
407 /* hope filp_close flush all of IO */
408 filp_close(zram->backing_dev, NULL);
409 zram->backing_dev = NULL;
410 zram->bdev = NULL;
411 zram->disk->fops = &zram_devops;
412 kvfree(zram->bitmap);
413 zram->bitmap = NULL;
416 static ssize_t backing_dev_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
419 struct file *file;
420 struct zram *zram = dev_to_zram(dev);
421 char *p;
422 ssize_t ret;
424 down_read(&zram->init_lock);
425 file = zram->backing_dev;
426 if (!file) {
427 memcpy(buf, "none\n", 5);
428 up_read(&zram->init_lock);
429 return 5;
432 p = file_path(file, buf, PAGE_SIZE - 1);
433 if (IS_ERR(p)) {
434 ret = PTR_ERR(p);
435 goto out;
438 ret = strlen(p);
439 memmove(buf, p, ret);
440 buf[ret++] = '\n';
441 out:
442 up_read(&zram->init_lock);
443 return ret;
446 static ssize_t backing_dev_store(struct device *dev,
447 struct device_attribute *attr, const char *buf, size_t len)
449 char *file_name;
450 size_t sz;
451 struct file *backing_dev = NULL;
452 struct inode *inode;
453 struct address_space *mapping;
454 unsigned int bitmap_sz;
455 unsigned long nr_pages, *bitmap = NULL;
456 struct block_device *bdev = NULL;
457 int err;
458 struct zram *zram = dev_to_zram(dev);
460 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
461 if (!file_name)
462 return -ENOMEM;
464 down_write(&zram->init_lock);
465 if (init_done(zram)) {
466 pr_info("Can't setup backing device for initialized device\n");
467 err = -EBUSY;
468 goto out;
471 strlcpy(file_name, buf, PATH_MAX);
472 /* ignore trailing newline */
473 sz = strlen(file_name);
474 if (sz > 0 && file_name[sz - 1] == '\n')
475 file_name[sz - 1] = 0x00;
477 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
478 if (IS_ERR(backing_dev)) {
479 err = PTR_ERR(backing_dev);
480 backing_dev = NULL;
481 goto out;
484 mapping = backing_dev->f_mapping;
485 inode = mapping->host;
487 /* Support only block device in this moment */
488 if (!S_ISBLK(inode->i_mode)) {
489 err = -ENOTBLK;
490 goto out;
493 bdev = blkdev_get_by_dev(inode->i_rdev,
494 FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
495 if (IS_ERR(bdev)) {
496 err = PTR_ERR(bdev);
497 bdev = NULL;
498 goto out;
501 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
502 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
503 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
504 if (!bitmap) {
505 err = -ENOMEM;
506 goto out;
509 reset_bdev(zram);
511 zram->bdev = bdev;
512 zram->backing_dev = backing_dev;
513 zram->bitmap = bitmap;
514 zram->nr_pages = nr_pages;
516 * With writeback feature, zram does asynchronous IO so it's no longer
517 * synchronous device so let's remove synchronous io flag. Othewise,
518 * upper layer(e.g., swap) could wait IO completion rather than
519 * (submit and return), which will cause system sluggish.
520 * Furthermore, when the IO function returns(e.g., swap_readpage),
521 * upper layer expects IO was done so it could deallocate the page
522 * freely but in fact, IO is going on so finally could cause
523 * use-after-free when the IO is really done.
525 zram->disk->fops = &zram_wb_devops;
526 up_write(&zram->init_lock);
528 pr_info("setup backing device %s\n", file_name);
529 kfree(file_name);
531 return len;
532 out:
533 if (bitmap)
534 kvfree(bitmap);
536 if (bdev)
537 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
539 if (backing_dev)
540 filp_close(backing_dev, NULL);
542 up_write(&zram->init_lock);
544 kfree(file_name);
546 return err;
549 static unsigned long alloc_block_bdev(struct zram *zram)
551 unsigned long blk_idx = 1;
552 retry:
553 /* skip 0 bit to confuse zram.handle = 0 */
554 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
555 if (blk_idx == zram->nr_pages)
556 return 0;
558 if (test_and_set_bit(blk_idx, zram->bitmap))
559 goto retry;
561 atomic64_inc(&zram->stats.bd_count);
562 return blk_idx;
565 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
567 int was_set;
569 was_set = test_and_clear_bit(blk_idx, zram->bitmap);
570 WARN_ON_ONCE(!was_set);
571 atomic64_dec(&zram->stats.bd_count);
574 static void zram_page_end_io(struct bio *bio)
576 struct page *page = bio_first_page_all(bio);
578 page_endio(page, op_is_write(bio_op(bio)),
579 blk_status_to_errno(bio->bi_status));
580 bio_put(bio);
584 * Returns 1 if the submission is successful.
586 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
587 unsigned long entry, struct bio *parent)
589 struct bio *bio;
591 bio = bio_alloc(GFP_ATOMIC, 1);
592 if (!bio)
593 return -ENOMEM;
595 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
596 bio_set_dev(bio, zram->bdev);
597 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
598 bio_put(bio);
599 return -EIO;
602 if (!parent) {
603 bio->bi_opf = REQ_OP_READ;
604 bio->bi_end_io = zram_page_end_io;
605 } else {
606 bio->bi_opf = parent->bi_opf;
607 bio_chain(bio, parent);
610 submit_bio(bio);
611 return 1;
614 #define PAGE_WB_SIG "page_index="
616 #define PAGE_WRITEBACK 0
617 #define HUGE_WRITEBACK 1
618 #define IDLE_WRITEBACK 2
621 static ssize_t writeback_store(struct device *dev,
622 struct device_attribute *attr, const char *buf, size_t len)
624 struct zram *zram = dev_to_zram(dev);
625 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
626 unsigned long index = 0;
627 struct bio bio;
628 struct bio_vec bio_vec;
629 struct page *page;
630 ssize_t ret = len;
631 int mode;
632 unsigned long blk_idx = 0;
634 if (sysfs_streq(buf, "idle"))
635 mode = IDLE_WRITEBACK;
636 else if (sysfs_streq(buf, "huge"))
637 mode = HUGE_WRITEBACK;
638 else {
639 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
640 return -EINVAL;
642 ret = kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index);
643 if (ret || index >= nr_pages)
644 return -EINVAL;
646 nr_pages = 1;
647 mode = PAGE_WRITEBACK;
650 down_read(&zram->init_lock);
651 if (!init_done(zram)) {
652 ret = -EINVAL;
653 goto release_init_lock;
656 if (!zram->backing_dev) {
657 ret = -ENODEV;
658 goto release_init_lock;
661 page = alloc_page(GFP_KERNEL);
662 if (!page) {
663 ret = -ENOMEM;
664 goto release_init_lock;
667 while (nr_pages--) {
668 struct bio_vec bvec;
670 bvec.bv_page = page;
671 bvec.bv_len = PAGE_SIZE;
672 bvec.bv_offset = 0;
674 spin_lock(&zram->wb_limit_lock);
675 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
676 spin_unlock(&zram->wb_limit_lock);
677 ret = -EIO;
678 break;
680 spin_unlock(&zram->wb_limit_lock);
682 if (!blk_idx) {
683 blk_idx = alloc_block_bdev(zram);
684 if (!blk_idx) {
685 ret = -ENOSPC;
686 break;
690 zram_slot_lock(zram, index);
691 if (!zram_allocated(zram, index))
692 goto next;
694 if (zram_test_flag(zram, index, ZRAM_WB) ||
695 zram_test_flag(zram, index, ZRAM_SAME) ||
696 zram_test_flag(zram, index, ZRAM_UNDER_WB))
697 goto next;
699 if (mode == IDLE_WRITEBACK &&
700 !zram_test_flag(zram, index, ZRAM_IDLE))
701 goto next;
702 if (mode == HUGE_WRITEBACK &&
703 !zram_test_flag(zram, index, ZRAM_HUGE))
704 goto next;
706 * Clearing ZRAM_UNDER_WB is duty of caller.
707 * IOW, zram_free_page never clear it.
709 zram_set_flag(zram, index, ZRAM_UNDER_WB);
710 /* Need for hugepage writeback racing */
711 zram_set_flag(zram, index, ZRAM_IDLE);
712 zram_slot_unlock(zram, index);
713 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
714 zram_slot_lock(zram, index);
715 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
716 zram_clear_flag(zram, index, ZRAM_IDLE);
717 zram_slot_unlock(zram, index);
718 continue;
721 bio_init(&bio, &bio_vec, 1);
722 bio_set_dev(&bio, zram->bdev);
723 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
724 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
726 bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
727 bvec.bv_offset);
729 * XXX: A single page IO would be inefficient for write
730 * but it would be not bad as starter.
732 ret = submit_bio_wait(&bio);
733 if (ret) {
734 zram_slot_lock(zram, index);
735 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
736 zram_clear_flag(zram, index, ZRAM_IDLE);
737 zram_slot_unlock(zram, index);
738 continue;
741 atomic64_inc(&zram->stats.bd_writes);
743 * We released zram_slot_lock so need to check if the slot was
744 * changed. If there is freeing for the slot, we can catch it
745 * easily by zram_allocated.
746 * A subtle case is the slot is freed/reallocated/marked as
747 * ZRAM_IDLE again. To close the race, idle_store doesn't
748 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
749 * Thus, we could close the race by checking ZRAM_IDLE bit.
751 zram_slot_lock(zram, index);
752 if (!zram_allocated(zram, index) ||
753 !zram_test_flag(zram, index, ZRAM_IDLE)) {
754 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
755 zram_clear_flag(zram, index, ZRAM_IDLE);
756 goto next;
759 zram_free_page(zram, index);
760 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
761 zram_set_flag(zram, index, ZRAM_WB);
762 zram_set_element(zram, index, blk_idx);
763 blk_idx = 0;
764 atomic64_inc(&zram->stats.pages_stored);
765 spin_lock(&zram->wb_limit_lock);
766 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
767 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
768 spin_unlock(&zram->wb_limit_lock);
769 next:
770 zram_slot_unlock(zram, index);
773 if (blk_idx)
774 free_block_bdev(zram, blk_idx);
775 __free_page(page);
776 release_init_lock:
777 up_read(&zram->init_lock);
779 return ret;
782 struct zram_work {
783 struct work_struct work;
784 struct zram *zram;
785 unsigned long entry;
786 struct bio *bio;
787 struct bio_vec bvec;
790 #if PAGE_SIZE != 4096
791 static void zram_sync_read(struct work_struct *work)
793 struct zram_work *zw = container_of(work, struct zram_work, work);
794 struct zram *zram = zw->zram;
795 unsigned long entry = zw->entry;
796 struct bio *bio = zw->bio;
798 read_from_bdev_async(zram, &zw->bvec, entry, bio);
802 * Block layer want one ->submit_bio to be active at a time, so if we use
803 * chained IO with parent IO in same context, it's a deadlock. To avoid that,
804 * use a worker thread context.
806 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
807 unsigned long entry, struct bio *bio)
809 struct zram_work work;
811 work.bvec = *bvec;
812 work.zram = zram;
813 work.entry = entry;
814 work.bio = bio;
816 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
817 queue_work(system_unbound_wq, &work.work);
818 flush_work(&work.work);
819 destroy_work_on_stack(&work.work);
821 return 1;
823 #else
824 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
825 unsigned long entry, struct bio *bio)
827 WARN_ON(1);
828 return -EIO;
830 #endif
832 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
833 unsigned long entry, struct bio *parent, bool sync)
835 atomic64_inc(&zram->stats.bd_reads);
836 if (sync)
837 return read_from_bdev_sync(zram, bvec, entry, parent);
838 else
839 return read_from_bdev_async(zram, bvec, entry, parent);
841 #else
842 static inline void reset_bdev(struct zram *zram) {};
843 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
844 unsigned long entry, struct bio *parent, bool sync)
846 return -EIO;
849 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
850 #endif
852 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
854 static struct dentry *zram_debugfs_root;
856 static void zram_debugfs_create(void)
858 zram_debugfs_root = debugfs_create_dir("zram", NULL);
861 static void zram_debugfs_destroy(void)
863 debugfs_remove_recursive(zram_debugfs_root);
866 static void zram_accessed(struct zram *zram, u32 index)
868 zram_clear_flag(zram, index, ZRAM_IDLE);
869 zram->table[index].ac_time = ktime_get_boottime();
872 static ssize_t read_block_state(struct file *file, char __user *buf,
873 size_t count, loff_t *ppos)
875 char *kbuf;
876 ssize_t index, written = 0;
877 struct zram *zram = file->private_data;
878 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
879 struct timespec64 ts;
881 kbuf = kvmalloc(count, GFP_KERNEL);
882 if (!kbuf)
883 return -ENOMEM;
885 down_read(&zram->init_lock);
886 if (!init_done(zram)) {
887 up_read(&zram->init_lock);
888 kvfree(kbuf);
889 return -EINVAL;
892 for (index = *ppos; index < nr_pages; index++) {
893 int copied;
895 zram_slot_lock(zram, index);
896 if (!zram_allocated(zram, index))
897 goto next;
899 ts = ktime_to_timespec64(zram->table[index].ac_time);
900 copied = snprintf(kbuf + written, count,
901 "%12zd %12lld.%06lu %c%c%c%c\n",
902 index, (s64)ts.tv_sec,
903 ts.tv_nsec / NSEC_PER_USEC,
904 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
905 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
906 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
907 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
909 if (count < copied) {
910 zram_slot_unlock(zram, index);
911 break;
913 written += copied;
914 count -= copied;
915 next:
916 zram_slot_unlock(zram, index);
917 *ppos += 1;
920 up_read(&zram->init_lock);
921 if (copy_to_user(buf, kbuf, written))
922 written = -EFAULT;
923 kvfree(kbuf);
925 return written;
928 static const struct file_operations proc_zram_block_state_op = {
929 .open = simple_open,
930 .read = read_block_state,
931 .llseek = default_llseek,
934 static void zram_debugfs_register(struct zram *zram)
936 if (!zram_debugfs_root)
937 return;
939 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
940 zram_debugfs_root);
941 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
942 zram, &proc_zram_block_state_op);
945 static void zram_debugfs_unregister(struct zram *zram)
947 debugfs_remove_recursive(zram->debugfs_dir);
949 #else
950 static void zram_debugfs_create(void) {};
951 static void zram_debugfs_destroy(void) {};
952 static void zram_accessed(struct zram *zram, u32 index)
954 zram_clear_flag(zram, index, ZRAM_IDLE);
956 static void zram_debugfs_register(struct zram *zram) {};
957 static void zram_debugfs_unregister(struct zram *zram) {};
958 #endif
961 * We switched to per-cpu streams and this attr is not needed anymore.
962 * However, we will keep it around for some time, because:
963 * a) we may revert per-cpu streams in the future
964 * b) it's visible to user space and we need to follow our 2 years
965 * retirement rule; but we already have a number of 'soon to be
966 * altered' attrs, so max_comp_streams need to wait for the next
967 * layoff cycle.
969 static ssize_t max_comp_streams_show(struct device *dev,
970 struct device_attribute *attr, char *buf)
972 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
975 static ssize_t max_comp_streams_store(struct device *dev,
976 struct device_attribute *attr, const char *buf, size_t len)
978 return len;
981 static ssize_t comp_algorithm_show(struct device *dev,
982 struct device_attribute *attr, char *buf)
984 size_t sz;
985 struct zram *zram = dev_to_zram(dev);
987 down_read(&zram->init_lock);
988 sz = zcomp_available_show(zram->compressor, buf);
989 up_read(&zram->init_lock);
991 return sz;
994 static ssize_t comp_algorithm_store(struct device *dev,
995 struct device_attribute *attr, const char *buf, size_t len)
997 struct zram *zram = dev_to_zram(dev);
998 char compressor[ARRAY_SIZE(zram->compressor)];
999 size_t sz;
1001 strlcpy(compressor, buf, sizeof(compressor));
1002 /* ignore trailing newline */
1003 sz = strlen(compressor);
1004 if (sz > 0 && compressor[sz - 1] == '\n')
1005 compressor[sz - 1] = 0x00;
1007 if (!zcomp_available_algorithm(compressor))
1008 return -EINVAL;
1010 down_write(&zram->init_lock);
1011 if (init_done(zram)) {
1012 up_write(&zram->init_lock);
1013 pr_info("Can't change algorithm for initialized device\n");
1014 return -EBUSY;
1017 strcpy(zram->compressor, compressor);
1018 up_write(&zram->init_lock);
1019 return len;
1022 static ssize_t compact_store(struct device *dev,
1023 struct device_attribute *attr, const char *buf, size_t len)
1025 struct zram *zram = dev_to_zram(dev);
1027 down_read(&zram->init_lock);
1028 if (!init_done(zram)) {
1029 up_read(&zram->init_lock);
1030 return -EINVAL;
1033 zs_compact(zram->mem_pool);
1034 up_read(&zram->init_lock);
1036 return len;
1039 static ssize_t io_stat_show(struct device *dev,
1040 struct device_attribute *attr, char *buf)
1042 struct zram *zram = dev_to_zram(dev);
1043 ssize_t ret;
1045 down_read(&zram->init_lock);
1046 ret = scnprintf(buf, PAGE_SIZE,
1047 "%8llu %8llu %8llu %8llu\n",
1048 (u64)atomic64_read(&zram->stats.failed_reads),
1049 (u64)atomic64_read(&zram->stats.failed_writes),
1050 (u64)atomic64_read(&zram->stats.invalid_io),
1051 (u64)atomic64_read(&zram->stats.notify_free));
1052 up_read(&zram->init_lock);
1054 return ret;
1057 static ssize_t mm_stat_show(struct device *dev,
1058 struct device_attribute *attr, char *buf)
1060 struct zram *zram = dev_to_zram(dev);
1061 struct zs_pool_stats pool_stats;
1062 u64 orig_size, mem_used = 0;
1063 long max_used;
1064 ssize_t ret;
1066 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1068 down_read(&zram->init_lock);
1069 if (init_done(zram)) {
1070 mem_used = zs_get_total_pages(zram->mem_pool);
1071 zs_pool_stats(zram->mem_pool, &pool_stats);
1074 orig_size = atomic64_read(&zram->stats.pages_stored);
1075 max_used = atomic_long_read(&zram->stats.max_used_pages);
1077 ret = scnprintf(buf, PAGE_SIZE,
1078 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1079 orig_size << PAGE_SHIFT,
1080 (u64)atomic64_read(&zram->stats.compr_data_size),
1081 mem_used << PAGE_SHIFT,
1082 zram->limit_pages << PAGE_SHIFT,
1083 max_used << PAGE_SHIFT,
1084 (u64)atomic64_read(&zram->stats.same_pages),
1085 pool_stats.pages_compacted,
1086 (u64)atomic64_read(&zram->stats.huge_pages),
1087 (u64)atomic64_read(&zram->stats.huge_pages_since));
1088 up_read(&zram->init_lock);
1090 return ret;
1093 #ifdef CONFIG_ZRAM_WRITEBACK
1094 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1095 static ssize_t bd_stat_show(struct device *dev,
1096 struct device_attribute *attr, char *buf)
1098 struct zram *zram = dev_to_zram(dev);
1099 ssize_t ret;
1101 down_read(&zram->init_lock);
1102 ret = scnprintf(buf, PAGE_SIZE,
1103 "%8llu %8llu %8llu\n",
1104 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1105 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1106 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1107 up_read(&zram->init_lock);
1109 return ret;
1111 #endif
1113 static ssize_t debug_stat_show(struct device *dev,
1114 struct device_attribute *attr, char *buf)
1116 int version = 1;
1117 struct zram *zram = dev_to_zram(dev);
1118 ssize_t ret;
1120 down_read(&zram->init_lock);
1121 ret = scnprintf(buf, PAGE_SIZE,
1122 "version: %d\n%8llu %8llu\n",
1123 version,
1124 (u64)atomic64_read(&zram->stats.writestall),
1125 (u64)atomic64_read(&zram->stats.miss_free));
1126 up_read(&zram->init_lock);
1128 return ret;
1131 static DEVICE_ATTR_RO(io_stat);
1132 static DEVICE_ATTR_RO(mm_stat);
1133 #ifdef CONFIG_ZRAM_WRITEBACK
1134 static DEVICE_ATTR_RO(bd_stat);
1135 #endif
1136 static DEVICE_ATTR_RO(debug_stat);
1138 static void zram_meta_free(struct zram *zram, u64 disksize)
1140 size_t num_pages = disksize >> PAGE_SHIFT;
1141 size_t index;
1143 /* Free all pages that are still in this zram device */
1144 for (index = 0; index < num_pages; index++)
1145 zram_free_page(zram, index);
1147 zs_destroy_pool(zram->mem_pool);
1148 vfree(zram->table);
1151 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1153 size_t num_pages;
1155 num_pages = disksize >> PAGE_SHIFT;
1156 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1157 if (!zram->table)
1158 return false;
1160 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1161 if (!zram->mem_pool) {
1162 vfree(zram->table);
1163 return false;
1166 if (!huge_class_size)
1167 huge_class_size = zs_huge_class_size(zram->mem_pool);
1168 return true;
1172 * To protect concurrent access to the same index entry,
1173 * caller should hold this table index entry's bit_spinlock to
1174 * indicate this index entry is accessing.
1176 static void zram_free_page(struct zram *zram, size_t index)
1178 unsigned long handle;
1180 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1181 zram->table[index].ac_time = 0;
1182 #endif
1183 if (zram_test_flag(zram, index, ZRAM_IDLE))
1184 zram_clear_flag(zram, index, ZRAM_IDLE);
1186 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1187 zram_clear_flag(zram, index, ZRAM_HUGE);
1188 atomic64_dec(&zram->stats.huge_pages);
1191 if (zram_test_flag(zram, index, ZRAM_WB)) {
1192 zram_clear_flag(zram, index, ZRAM_WB);
1193 free_block_bdev(zram, zram_get_element(zram, index));
1194 goto out;
1198 * No memory is allocated for same element filled pages.
1199 * Simply clear same page flag.
1201 if (zram_test_flag(zram, index, ZRAM_SAME)) {
1202 zram_clear_flag(zram, index, ZRAM_SAME);
1203 atomic64_dec(&zram->stats.same_pages);
1204 goto out;
1207 handle = zram_get_handle(zram, index);
1208 if (!handle)
1209 return;
1211 zs_free(zram->mem_pool, handle);
1213 atomic64_sub(zram_get_obj_size(zram, index),
1214 &zram->stats.compr_data_size);
1215 out:
1216 atomic64_dec(&zram->stats.pages_stored);
1217 zram_set_handle(zram, index, 0);
1218 zram_set_obj_size(zram, index, 0);
1219 WARN_ON_ONCE(zram->table[index].flags &
1220 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1223 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1224 struct bio *bio, bool partial_io)
1226 struct zcomp_strm *zstrm;
1227 unsigned long handle;
1228 unsigned int size;
1229 void *src, *dst;
1230 int ret;
1232 zram_slot_lock(zram, index);
1233 if (zram_test_flag(zram, index, ZRAM_WB)) {
1234 struct bio_vec bvec;
1236 zram_slot_unlock(zram, index);
1238 bvec.bv_page = page;
1239 bvec.bv_len = PAGE_SIZE;
1240 bvec.bv_offset = 0;
1241 return read_from_bdev(zram, &bvec,
1242 zram_get_element(zram, index),
1243 bio, partial_io);
1246 handle = zram_get_handle(zram, index);
1247 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1248 unsigned long value;
1249 void *mem;
1251 value = handle ? zram_get_element(zram, index) : 0;
1252 mem = kmap_atomic(page);
1253 zram_fill_page(mem, PAGE_SIZE, value);
1254 kunmap_atomic(mem);
1255 zram_slot_unlock(zram, index);
1256 return 0;
1259 size = zram_get_obj_size(zram, index);
1261 if (size != PAGE_SIZE)
1262 zstrm = zcomp_stream_get(zram->comp);
1264 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1265 if (size == PAGE_SIZE) {
1266 dst = kmap_atomic(page);
1267 memcpy(dst, src, PAGE_SIZE);
1268 kunmap_atomic(dst);
1269 ret = 0;
1270 } else {
1271 dst = kmap_atomic(page);
1272 ret = zcomp_decompress(zstrm, src, size, dst);
1273 kunmap_atomic(dst);
1274 zcomp_stream_put(zram->comp);
1276 zs_unmap_object(zram->mem_pool, handle);
1277 zram_slot_unlock(zram, index);
1279 /* Should NEVER happen. Return bio error if it does. */
1280 if (WARN_ON(ret))
1281 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1283 return ret;
1286 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1287 u32 index, int offset, struct bio *bio)
1289 int ret;
1290 struct page *page;
1292 page = bvec->bv_page;
1293 if (is_partial_io(bvec)) {
1294 /* Use a temporary buffer to decompress the page */
1295 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1296 if (!page)
1297 return -ENOMEM;
1300 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1301 if (unlikely(ret))
1302 goto out;
1304 if (is_partial_io(bvec)) {
1305 void *dst = kmap_atomic(bvec->bv_page);
1306 void *src = kmap_atomic(page);
1308 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1309 kunmap_atomic(src);
1310 kunmap_atomic(dst);
1312 out:
1313 if (is_partial_io(bvec))
1314 __free_page(page);
1316 return ret;
1319 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1320 u32 index, struct bio *bio)
1322 int ret = 0;
1323 unsigned long alloced_pages;
1324 unsigned long handle = 0;
1325 unsigned int comp_len = 0;
1326 void *src, *dst, *mem;
1327 struct zcomp_strm *zstrm;
1328 struct page *page = bvec->bv_page;
1329 unsigned long element = 0;
1330 enum zram_pageflags flags = 0;
1332 mem = kmap_atomic(page);
1333 if (page_same_filled(mem, &element)) {
1334 kunmap_atomic(mem);
1335 /* Free memory associated with this sector now. */
1336 flags = ZRAM_SAME;
1337 atomic64_inc(&zram->stats.same_pages);
1338 goto out;
1340 kunmap_atomic(mem);
1342 compress_again:
1343 zstrm = zcomp_stream_get(zram->comp);
1344 src = kmap_atomic(page);
1345 ret = zcomp_compress(zstrm, src, &comp_len);
1346 kunmap_atomic(src);
1348 if (unlikely(ret)) {
1349 zcomp_stream_put(zram->comp);
1350 pr_err("Compression failed! err=%d\n", ret);
1351 zs_free(zram->mem_pool, handle);
1352 return ret;
1355 if (comp_len >= huge_class_size)
1356 comp_len = PAGE_SIZE;
1358 * handle allocation has 2 paths:
1359 * a) fast path is executed with preemption disabled (for
1360 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1361 * since we can't sleep;
1362 * b) slow path enables preemption and attempts to allocate
1363 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1364 * put per-cpu compression stream and, thus, to re-do
1365 * the compression once handle is allocated.
1367 * if we have a 'non-null' handle here then we are coming
1368 * from the slow path and handle has already been allocated.
1370 if (!handle)
1371 handle = zs_malloc(zram->mem_pool, comp_len,
1372 __GFP_KSWAPD_RECLAIM |
1373 __GFP_NOWARN |
1374 __GFP_HIGHMEM |
1375 __GFP_MOVABLE);
1376 if (!handle) {
1377 zcomp_stream_put(zram->comp);
1378 atomic64_inc(&zram->stats.writestall);
1379 handle = zs_malloc(zram->mem_pool, comp_len,
1380 GFP_NOIO | __GFP_HIGHMEM |
1381 __GFP_MOVABLE);
1382 if (handle)
1383 goto compress_again;
1384 return -ENOMEM;
1387 alloced_pages = zs_get_total_pages(zram->mem_pool);
1388 update_used_max(zram, alloced_pages);
1390 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1391 zcomp_stream_put(zram->comp);
1392 zs_free(zram->mem_pool, handle);
1393 return -ENOMEM;
1396 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1398 src = zstrm->buffer;
1399 if (comp_len == PAGE_SIZE)
1400 src = kmap_atomic(page);
1401 memcpy(dst, src, comp_len);
1402 if (comp_len == PAGE_SIZE)
1403 kunmap_atomic(src);
1405 zcomp_stream_put(zram->comp);
1406 zs_unmap_object(zram->mem_pool, handle);
1407 atomic64_add(comp_len, &zram->stats.compr_data_size);
1408 out:
1410 * Free memory associated with this sector
1411 * before overwriting unused sectors.
1413 zram_slot_lock(zram, index);
1414 zram_free_page(zram, index);
1416 if (comp_len == PAGE_SIZE) {
1417 zram_set_flag(zram, index, ZRAM_HUGE);
1418 atomic64_inc(&zram->stats.huge_pages);
1419 atomic64_inc(&zram->stats.huge_pages_since);
1422 if (flags) {
1423 zram_set_flag(zram, index, flags);
1424 zram_set_element(zram, index, element);
1425 } else {
1426 zram_set_handle(zram, index, handle);
1427 zram_set_obj_size(zram, index, comp_len);
1429 zram_slot_unlock(zram, index);
1431 /* Update stats */
1432 atomic64_inc(&zram->stats.pages_stored);
1433 return ret;
1436 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1437 u32 index, int offset, struct bio *bio)
1439 int ret;
1440 struct page *page = NULL;
1441 void *src;
1442 struct bio_vec vec;
1444 vec = *bvec;
1445 if (is_partial_io(bvec)) {
1446 void *dst;
1448 * This is a partial IO. We need to read the full page
1449 * before to write the changes.
1451 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1452 if (!page)
1453 return -ENOMEM;
1455 ret = __zram_bvec_read(zram, page, index, bio, true);
1456 if (ret)
1457 goto out;
1459 src = kmap_atomic(bvec->bv_page);
1460 dst = kmap_atomic(page);
1461 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1462 kunmap_atomic(dst);
1463 kunmap_atomic(src);
1465 vec.bv_page = page;
1466 vec.bv_len = PAGE_SIZE;
1467 vec.bv_offset = 0;
1470 ret = __zram_bvec_write(zram, &vec, index, bio);
1471 out:
1472 if (is_partial_io(bvec))
1473 __free_page(page);
1474 return ret;
1478 * zram_bio_discard - handler on discard request
1479 * @index: physical block index in PAGE_SIZE units
1480 * @offset: byte offset within physical block
1482 static void zram_bio_discard(struct zram *zram, u32 index,
1483 int offset, struct bio *bio)
1485 size_t n = bio->bi_iter.bi_size;
1488 * zram manages data in physical block size units. Because logical block
1489 * size isn't identical with physical block size on some arch, we
1490 * could get a discard request pointing to a specific offset within a
1491 * certain physical block. Although we can handle this request by
1492 * reading that physiclal block and decompressing and partially zeroing
1493 * and re-compressing and then re-storing it, this isn't reasonable
1494 * because our intent with a discard request is to save memory. So
1495 * skipping this logical block is appropriate here.
1497 if (offset) {
1498 if (n <= (PAGE_SIZE - offset))
1499 return;
1501 n -= (PAGE_SIZE - offset);
1502 index++;
1505 while (n >= PAGE_SIZE) {
1506 zram_slot_lock(zram, index);
1507 zram_free_page(zram, index);
1508 zram_slot_unlock(zram, index);
1509 atomic64_inc(&zram->stats.notify_free);
1510 index++;
1511 n -= PAGE_SIZE;
1516 * Returns errno if it has some problem. Otherwise return 0 or 1.
1517 * Returns 0 if IO request was done synchronously
1518 * Returns 1 if IO request was successfully submitted.
1520 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1521 int offset, unsigned int op, struct bio *bio)
1523 int ret;
1525 if (!op_is_write(op)) {
1526 atomic64_inc(&zram->stats.num_reads);
1527 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1528 flush_dcache_page(bvec->bv_page);
1529 } else {
1530 atomic64_inc(&zram->stats.num_writes);
1531 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1534 zram_slot_lock(zram, index);
1535 zram_accessed(zram, index);
1536 zram_slot_unlock(zram, index);
1538 if (unlikely(ret < 0)) {
1539 if (!op_is_write(op))
1540 atomic64_inc(&zram->stats.failed_reads);
1541 else
1542 atomic64_inc(&zram->stats.failed_writes);
1545 return ret;
1548 static void __zram_make_request(struct zram *zram, struct bio *bio)
1550 int offset;
1551 u32 index;
1552 struct bio_vec bvec;
1553 struct bvec_iter iter;
1554 unsigned long start_time;
1556 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1557 offset = (bio->bi_iter.bi_sector &
1558 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1560 switch (bio_op(bio)) {
1561 case REQ_OP_DISCARD:
1562 case REQ_OP_WRITE_ZEROES:
1563 zram_bio_discard(zram, index, offset, bio);
1564 bio_endio(bio);
1565 return;
1566 default:
1567 break;
1570 start_time = bio_start_io_acct(bio);
1571 bio_for_each_segment(bvec, bio, iter) {
1572 struct bio_vec bv = bvec;
1573 unsigned int unwritten = bvec.bv_len;
1575 do {
1576 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1577 unwritten);
1578 if (zram_bvec_rw(zram, &bv, index, offset,
1579 bio_op(bio), bio) < 0) {
1580 bio->bi_status = BLK_STS_IOERR;
1581 break;
1584 bv.bv_offset += bv.bv_len;
1585 unwritten -= bv.bv_len;
1587 update_position(&index, &offset, &bv);
1588 } while (unwritten);
1590 bio_end_io_acct(bio, start_time);
1591 bio_endio(bio);
1595 * Handler function for all zram I/O requests.
1597 static blk_qc_t zram_submit_bio(struct bio *bio)
1599 struct zram *zram = bio->bi_disk->private_data;
1601 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1602 bio->bi_iter.bi_size)) {
1603 atomic64_inc(&zram->stats.invalid_io);
1604 goto error;
1607 __zram_make_request(zram, bio);
1608 return BLK_QC_T_NONE;
1610 error:
1611 bio_io_error(bio);
1612 return BLK_QC_T_NONE;
1615 static void zram_slot_free_notify(struct block_device *bdev,
1616 unsigned long index)
1618 struct zram *zram;
1620 zram = bdev->bd_disk->private_data;
1622 atomic64_inc(&zram->stats.notify_free);
1623 if (!zram_slot_trylock(zram, index)) {
1624 atomic64_inc(&zram->stats.miss_free);
1625 return;
1628 zram_free_page(zram, index);
1629 zram_slot_unlock(zram, index);
1632 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1633 struct page *page, unsigned int op)
1635 int offset, ret;
1636 u32 index;
1637 struct zram *zram;
1638 struct bio_vec bv;
1639 unsigned long start_time;
1641 if (PageTransHuge(page))
1642 return -ENOTSUPP;
1643 zram = bdev->bd_disk->private_data;
1645 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1646 atomic64_inc(&zram->stats.invalid_io);
1647 ret = -EINVAL;
1648 goto out;
1651 index = sector >> SECTORS_PER_PAGE_SHIFT;
1652 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1654 bv.bv_page = page;
1655 bv.bv_len = PAGE_SIZE;
1656 bv.bv_offset = 0;
1658 start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1659 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1660 disk_end_io_acct(bdev->bd_disk, op, start_time);
1661 out:
1663 * If I/O fails, just return error(ie, non-zero) without
1664 * calling page_endio.
1665 * It causes resubmit the I/O with bio request by upper functions
1666 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1667 * bio->bi_end_io does things to handle the error
1668 * (e.g., SetPageError, set_page_dirty and extra works).
1670 if (unlikely(ret < 0))
1671 return ret;
1673 switch (ret) {
1674 case 0:
1675 page_endio(page, op_is_write(op), 0);
1676 break;
1677 case 1:
1678 ret = 0;
1679 break;
1680 default:
1681 WARN_ON(1);
1683 return ret;
1686 static void zram_reset_device(struct zram *zram)
1688 struct zcomp *comp;
1689 u64 disksize;
1691 down_write(&zram->init_lock);
1693 zram->limit_pages = 0;
1695 if (!init_done(zram)) {
1696 up_write(&zram->init_lock);
1697 return;
1700 comp = zram->comp;
1701 disksize = zram->disksize;
1702 zram->disksize = 0;
1704 set_capacity_and_notify(zram->disk, 0);
1705 part_stat_set_all(zram->disk->part0, 0);
1707 up_write(&zram->init_lock);
1708 /* I/O operation under all of CPU are done so let's free */
1709 zram_meta_free(zram, disksize);
1710 memset(&zram->stats, 0, sizeof(zram->stats));
1711 zcomp_destroy(comp);
1712 reset_bdev(zram);
1715 static ssize_t disksize_store(struct device *dev,
1716 struct device_attribute *attr, const char *buf, size_t len)
1718 u64 disksize;
1719 struct zcomp *comp;
1720 struct zram *zram = dev_to_zram(dev);
1721 int err;
1723 disksize = memparse(buf, NULL);
1724 if (!disksize)
1725 return -EINVAL;
1727 down_write(&zram->init_lock);
1728 if (init_done(zram)) {
1729 pr_info("Cannot change disksize for initialized device\n");
1730 err = -EBUSY;
1731 goto out_unlock;
1734 disksize = PAGE_ALIGN(disksize);
1735 if (!zram_meta_alloc(zram, disksize)) {
1736 err = -ENOMEM;
1737 goto out_unlock;
1740 comp = zcomp_create(zram->compressor);
1741 if (IS_ERR(comp)) {
1742 pr_err("Cannot initialise %s compressing backend\n",
1743 zram->compressor);
1744 err = PTR_ERR(comp);
1745 goto out_free_meta;
1748 zram->comp = comp;
1749 zram->disksize = disksize;
1750 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
1751 up_write(&zram->init_lock);
1753 return len;
1755 out_free_meta:
1756 zram_meta_free(zram, disksize);
1757 out_unlock:
1758 up_write(&zram->init_lock);
1759 return err;
1762 static ssize_t reset_store(struct device *dev,
1763 struct device_attribute *attr, const char *buf, size_t len)
1765 int ret;
1766 unsigned short do_reset;
1767 struct zram *zram;
1768 struct block_device *bdev;
1770 ret = kstrtou16(buf, 10, &do_reset);
1771 if (ret)
1772 return ret;
1774 if (!do_reset)
1775 return -EINVAL;
1777 zram = dev_to_zram(dev);
1778 bdev = zram->disk->part0;
1780 mutex_lock(&bdev->bd_mutex);
1781 /* Do not reset an active device or claimed device */
1782 if (bdev->bd_openers || zram->claim) {
1783 mutex_unlock(&bdev->bd_mutex);
1784 return -EBUSY;
1787 /* From now on, anyone can't open /dev/zram[0-9] */
1788 zram->claim = true;
1789 mutex_unlock(&bdev->bd_mutex);
1791 /* Make sure all the pending I/O are finished */
1792 fsync_bdev(bdev);
1793 zram_reset_device(zram);
1795 mutex_lock(&bdev->bd_mutex);
1796 zram->claim = false;
1797 mutex_unlock(&bdev->bd_mutex);
1799 return len;
1802 static int zram_open(struct block_device *bdev, fmode_t mode)
1804 int ret = 0;
1805 struct zram *zram;
1807 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1809 zram = bdev->bd_disk->private_data;
1810 /* zram was claimed to reset so open request fails */
1811 if (zram->claim)
1812 ret = -EBUSY;
1814 return ret;
1817 static const struct block_device_operations zram_devops = {
1818 .open = zram_open,
1819 .submit_bio = zram_submit_bio,
1820 .swap_slot_free_notify = zram_slot_free_notify,
1821 .rw_page = zram_rw_page,
1822 .owner = THIS_MODULE
1825 static const struct block_device_operations zram_wb_devops = {
1826 .open = zram_open,
1827 .submit_bio = zram_submit_bio,
1828 .swap_slot_free_notify = zram_slot_free_notify,
1829 .owner = THIS_MODULE
1832 static DEVICE_ATTR_WO(compact);
1833 static DEVICE_ATTR_RW(disksize);
1834 static DEVICE_ATTR_RO(initstate);
1835 static DEVICE_ATTR_WO(reset);
1836 static DEVICE_ATTR_WO(mem_limit);
1837 static DEVICE_ATTR_WO(mem_used_max);
1838 static DEVICE_ATTR_WO(idle);
1839 static DEVICE_ATTR_RW(max_comp_streams);
1840 static DEVICE_ATTR_RW(comp_algorithm);
1841 #ifdef CONFIG_ZRAM_WRITEBACK
1842 static DEVICE_ATTR_RW(backing_dev);
1843 static DEVICE_ATTR_WO(writeback);
1844 static DEVICE_ATTR_RW(writeback_limit);
1845 static DEVICE_ATTR_RW(writeback_limit_enable);
1846 #endif
1848 static struct attribute *zram_disk_attrs[] = {
1849 &dev_attr_disksize.attr,
1850 &dev_attr_initstate.attr,
1851 &dev_attr_reset.attr,
1852 &dev_attr_compact.attr,
1853 &dev_attr_mem_limit.attr,
1854 &dev_attr_mem_used_max.attr,
1855 &dev_attr_idle.attr,
1856 &dev_attr_max_comp_streams.attr,
1857 &dev_attr_comp_algorithm.attr,
1858 #ifdef CONFIG_ZRAM_WRITEBACK
1859 &dev_attr_backing_dev.attr,
1860 &dev_attr_writeback.attr,
1861 &dev_attr_writeback_limit.attr,
1862 &dev_attr_writeback_limit_enable.attr,
1863 #endif
1864 &dev_attr_io_stat.attr,
1865 &dev_attr_mm_stat.attr,
1866 #ifdef CONFIG_ZRAM_WRITEBACK
1867 &dev_attr_bd_stat.attr,
1868 #endif
1869 &dev_attr_debug_stat.attr,
1870 NULL,
1873 static const struct attribute_group zram_disk_attr_group = {
1874 .attrs = zram_disk_attrs,
1877 static const struct attribute_group *zram_disk_attr_groups[] = {
1878 &zram_disk_attr_group,
1879 NULL,
1883 * Allocate and initialize new zram device. the function returns
1884 * '>= 0' device_id upon success, and negative value otherwise.
1886 static int zram_add(void)
1888 struct zram *zram;
1889 struct request_queue *queue;
1890 int ret, device_id;
1892 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1893 if (!zram)
1894 return -ENOMEM;
1896 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1897 if (ret < 0)
1898 goto out_free_dev;
1899 device_id = ret;
1901 init_rwsem(&zram->init_lock);
1902 #ifdef CONFIG_ZRAM_WRITEBACK
1903 spin_lock_init(&zram->wb_limit_lock);
1904 #endif
1905 queue = blk_alloc_queue(NUMA_NO_NODE);
1906 if (!queue) {
1907 pr_err("Error allocating disk queue for device %d\n",
1908 device_id);
1909 ret = -ENOMEM;
1910 goto out_free_idr;
1913 /* gendisk structure */
1914 zram->disk = alloc_disk(1);
1915 if (!zram->disk) {
1916 pr_err("Error allocating disk structure for device %d\n",
1917 device_id);
1918 ret = -ENOMEM;
1919 goto out_free_queue;
1922 zram->disk->major = zram_major;
1923 zram->disk->first_minor = device_id;
1924 zram->disk->fops = &zram_devops;
1925 zram->disk->queue = queue;
1926 zram->disk->private_data = zram;
1927 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1929 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1930 set_capacity(zram->disk, 0);
1931 /* zram devices sort of resembles non-rotational disks */
1932 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1933 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1936 * To ensure that we always get PAGE_SIZE aligned
1937 * and n*PAGE_SIZED sized I/O requests.
1939 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1940 blk_queue_logical_block_size(zram->disk->queue,
1941 ZRAM_LOGICAL_BLOCK_SIZE);
1942 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1943 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1944 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1945 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1946 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1949 * zram_bio_discard() will clear all logical blocks if logical block
1950 * size is identical with physical block size(PAGE_SIZE). But if it is
1951 * different, we will skip discarding some parts of logical blocks in
1952 * the part of the request range which isn't aligned to physical block
1953 * size. So we can't ensure that all discarded logical blocks are
1954 * zeroed.
1956 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1957 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1959 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1960 device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1962 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1964 zram_debugfs_register(zram);
1965 pr_info("Added device: %s\n", zram->disk->disk_name);
1966 return device_id;
1968 out_free_queue:
1969 blk_cleanup_queue(queue);
1970 out_free_idr:
1971 idr_remove(&zram_index_idr, device_id);
1972 out_free_dev:
1973 kfree(zram);
1974 return ret;
1977 static int zram_remove(struct zram *zram)
1979 struct block_device *bdev = zram->disk->part0;
1981 mutex_lock(&bdev->bd_mutex);
1982 if (bdev->bd_openers || zram->claim) {
1983 mutex_unlock(&bdev->bd_mutex);
1984 return -EBUSY;
1987 zram->claim = true;
1988 mutex_unlock(&bdev->bd_mutex);
1990 zram_debugfs_unregister(zram);
1992 /* Make sure all the pending I/O are finished */
1993 fsync_bdev(bdev);
1994 zram_reset_device(zram);
1996 pr_info("Removed device: %s\n", zram->disk->disk_name);
1998 del_gendisk(zram->disk);
1999 blk_cleanup_queue(zram->disk->queue);
2000 put_disk(zram->disk);
2001 kfree(zram);
2002 return 0;
2005 /* zram-control sysfs attributes */
2008 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2009 * sense that reading from this file does alter the state of your system -- it
2010 * creates a new un-initialized zram device and returns back this device's
2011 * device_id (or an error code if it fails to create a new device).
2013 static ssize_t hot_add_show(struct class *class,
2014 struct class_attribute *attr,
2015 char *buf)
2017 int ret;
2019 mutex_lock(&zram_index_mutex);
2020 ret = zram_add();
2021 mutex_unlock(&zram_index_mutex);
2023 if (ret < 0)
2024 return ret;
2025 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2027 static struct class_attribute class_attr_hot_add =
2028 __ATTR(hot_add, 0400, hot_add_show, NULL);
2030 static ssize_t hot_remove_store(struct class *class,
2031 struct class_attribute *attr,
2032 const char *buf,
2033 size_t count)
2035 struct zram *zram;
2036 int ret, dev_id;
2038 /* dev_id is gendisk->first_minor, which is `int' */
2039 ret = kstrtoint(buf, 10, &dev_id);
2040 if (ret)
2041 return ret;
2042 if (dev_id < 0)
2043 return -EINVAL;
2045 mutex_lock(&zram_index_mutex);
2047 zram = idr_find(&zram_index_idr, dev_id);
2048 if (zram) {
2049 ret = zram_remove(zram);
2050 if (!ret)
2051 idr_remove(&zram_index_idr, dev_id);
2052 } else {
2053 ret = -ENODEV;
2056 mutex_unlock(&zram_index_mutex);
2057 return ret ? ret : count;
2059 static CLASS_ATTR_WO(hot_remove);
2061 static struct attribute *zram_control_class_attrs[] = {
2062 &class_attr_hot_add.attr,
2063 &class_attr_hot_remove.attr,
2064 NULL,
2066 ATTRIBUTE_GROUPS(zram_control_class);
2068 static struct class zram_control_class = {
2069 .name = "zram-control",
2070 .owner = THIS_MODULE,
2071 .class_groups = zram_control_class_groups,
2074 static int zram_remove_cb(int id, void *ptr, void *data)
2076 zram_remove(ptr);
2077 return 0;
2080 static void destroy_devices(void)
2082 class_unregister(&zram_control_class);
2083 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2084 zram_debugfs_destroy();
2085 idr_destroy(&zram_index_idr);
2086 unregister_blkdev(zram_major, "zram");
2087 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2090 static int __init zram_init(void)
2092 int ret;
2094 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2095 zcomp_cpu_up_prepare, zcomp_cpu_dead);
2096 if (ret < 0)
2097 return ret;
2099 ret = class_register(&zram_control_class);
2100 if (ret) {
2101 pr_err("Unable to register zram-control class\n");
2102 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2103 return ret;
2106 zram_debugfs_create();
2107 zram_major = register_blkdev(0, "zram");
2108 if (zram_major <= 0) {
2109 pr_err("Unable to get major number\n");
2110 class_unregister(&zram_control_class);
2111 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2112 return -EBUSY;
2115 while (num_devices != 0) {
2116 mutex_lock(&zram_index_mutex);
2117 ret = zram_add();
2118 mutex_unlock(&zram_index_mutex);
2119 if (ret < 0)
2120 goto out_error;
2121 num_devices--;
2124 return 0;
2126 out_error:
2127 destroy_devices();
2128 return ret;
2131 static void __exit zram_exit(void)
2133 destroy_devices();
2136 module_init(zram_init);
2137 module_exit(zram_exit);
2139 module_param(num_devices, uint, 0);
2140 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2142 MODULE_LICENSE("Dual BSD/GPL");
2143 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2144 MODULE_DESCRIPTION("Compressed RAM Block Device");