1 // SPDX-License-Identifier: GPL-2.0+
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
22 #define pr_fmt(fmt) "ipmi_si: " fmt
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
43 #include "ipmi_si_sm.h"
44 #include <linux/string.h>
45 #include <linux/ctype.h>
47 /* Measure times between events in the driver. */
50 /* Call every 10 ms. */
51 #define SI_TIMEOUT_TIME_USEC 10000
52 #define SI_USEC_PER_JIFFY (1000000/HZ)
53 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
65 /* FIXME - add watchdog stuff. */
68 /* Some BT-specific defines we need here. */
69 #define IPMI_BT_INTMASK_REG 2
70 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
71 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
73 static const char * const si_to_str
[] = { "invalid", "kcs", "smic", "bt" };
75 static bool initialized
;
78 * Indexes into stats[] in smi_info below.
80 enum si_stat_indexes
{
82 * Number of times the driver requested a timer while an operation
85 SI_STAT_short_timeouts
= 0,
88 * Number of times the driver requested a timer while nothing was in
91 SI_STAT_long_timeouts
,
93 /* Number of times the interface was idle while being polled. */
96 /* Number of interrupts the driver handled. */
99 /* Number of time the driver got an ATTN from the hardware. */
102 /* Number of times the driver requested flags from the hardware. */
103 SI_STAT_flag_fetches
,
105 /* Number of times the hardware didn't follow the state machine. */
108 /* Number of completed messages. */
109 SI_STAT_complete_transactions
,
111 /* Number of IPMI events received from the hardware. */
114 /* Number of watchdog pretimeouts. */
115 SI_STAT_watchdog_pretimeouts
,
117 /* Number of asynchronous messages received. */
118 SI_STAT_incoming_messages
,
121 /* This *must* remain last, add new values above this. */
127 struct ipmi_smi
*intf
;
128 struct si_sm_data
*si_sm
;
129 const struct si_sm_handlers
*handlers
;
131 struct ipmi_smi_msg
*waiting_msg
;
132 struct ipmi_smi_msg
*curr_msg
;
133 enum si_intf_state si_state
;
136 * Used to handle the various types of I/O that can occur with
142 * Per-OEM handler, called from handle_flags(). Returns 1
143 * when handle_flags() needs to be re-run or 0 indicating it
144 * set si_state itself.
146 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
149 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
150 * is set to hold the flags until we are done handling everything
153 #define RECEIVE_MSG_AVAIL 0x01
154 #define EVENT_MSG_BUFFER_FULL 0x02
155 #define WDT_PRE_TIMEOUT_INT 0x08
156 #define OEM0_DATA_AVAIL 0x20
157 #define OEM1_DATA_AVAIL 0x40
158 #define OEM2_DATA_AVAIL 0x80
159 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
162 unsigned char msg_flags
;
164 /* Does the BMC have an event buffer? */
165 bool has_event_buffer
;
168 * If set to true, this will request events the next time the
169 * state machine is idle.
174 * If true, run the state machine to completion on every send
175 * call. Generally used after a panic to make sure stuff goes
178 bool run_to_completion
;
180 /* The timer for this si. */
181 struct timer_list si_timer
;
183 /* This flag is set, if the timer can be set */
184 bool timer_can_start
;
186 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
189 /* The time (in jiffies) the last timeout occurred at. */
190 unsigned long last_timeout_jiffies
;
192 /* Are we waiting for the events, pretimeouts, received msgs? */
196 * The driver will disable interrupts when it gets into a
197 * situation where it cannot handle messages due to lack of
198 * memory. Once that situation clears up, it will re-enable
201 bool interrupt_disabled
;
204 * Does the BMC support events?
206 bool supports_event_msg_buff
;
209 * Can we disable interrupts the global enables receive irq
210 * bit? There are currently two forms of brokenness, some
211 * systems cannot disable the bit (which is technically within
212 * the spec but a bad idea) and some systems have the bit
213 * forced to zero even though interrupts work (which is
214 * clearly outside the spec). The next bool tells which form
215 * of brokenness is present.
217 bool cannot_disable_irq
;
220 * Some systems are broken and cannot set the irq enable
221 * bit, even if they support interrupts.
223 bool irq_enable_broken
;
225 /* Is the driver in maintenance mode? */
226 bool in_maintenance_mode
;
229 * Did we get an attention that we did not handle?
233 /* From the get device id response... */
234 struct ipmi_device_id device_id
;
236 /* Have we added the device group to the device? */
237 bool dev_group_added
;
239 /* Counters and things for the proc filesystem. */
240 atomic_t stats
[SI_NUM_STATS
];
242 struct task_struct
*thread
;
244 struct list_head link
;
247 #define smi_inc_stat(smi, stat) \
248 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
249 #define smi_get_stat(smi, stat) \
250 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
252 #define IPMI_MAX_INTFS 4
253 static int force_kipmid
[IPMI_MAX_INTFS
];
254 static int num_force_kipmid
;
256 static unsigned int kipmid_max_busy_us
[IPMI_MAX_INTFS
];
257 static int num_max_busy_us
;
259 static bool unload_when_empty
= true;
261 static int try_smi_init(struct smi_info
*smi
);
262 static void cleanup_one_si(struct smi_info
*smi_info
);
263 static void cleanup_ipmi_si(void);
266 void debug_timestamp(char *msg
)
271 pr_debug("**%s: %lld.%9.9ld\n", msg
, t
.tv_sec
, t
.tv_nsec
);
274 #define debug_timestamp(x)
277 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
278 static int register_xaction_notifier(struct notifier_block
*nb
)
280 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
283 static void deliver_recv_msg(struct smi_info
*smi_info
,
284 struct ipmi_smi_msg
*msg
)
286 /* Deliver the message to the upper layer. */
287 ipmi_smi_msg_received(smi_info
->intf
, msg
);
290 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
292 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
294 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
295 cCode
= IPMI_ERR_UNSPECIFIED
;
296 /* else use it as is */
298 /* Make it a response */
299 msg
->rsp
[0] = msg
->data
[0] | 4;
300 msg
->rsp
[1] = msg
->data
[1];
304 smi_info
->curr_msg
= NULL
;
305 deliver_recv_msg(smi_info
, msg
);
308 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
312 if (!smi_info
->waiting_msg
) {
313 smi_info
->curr_msg
= NULL
;
318 smi_info
->curr_msg
= smi_info
->waiting_msg
;
319 smi_info
->waiting_msg
= NULL
;
320 debug_timestamp("Start2");
321 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
323 if (err
& NOTIFY_STOP_MASK
) {
324 rv
= SI_SM_CALL_WITHOUT_DELAY
;
327 err
= smi_info
->handlers
->start_transaction(
329 smi_info
->curr_msg
->data
,
330 smi_info
->curr_msg
->data_size
);
332 return_hosed_msg(smi_info
, err
);
334 rv
= SI_SM_CALL_WITHOUT_DELAY
;
340 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
342 if (!smi_info
->timer_can_start
)
344 smi_info
->last_timeout_jiffies
= jiffies
;
345 mod_timer(&smi_info
->si_timer
, new_val
);
346 smi_info
->timer_running
= true;
350 * Start a new message and (re)start the timer and thread.
352 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
355 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
357 if (smi_info
->thread
)
358 wake_up_process(smi_info
->thread
);
360 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
363 static void start_check_enables(struct smi_info
*smi_info
)
365 unsigned char msg
[2];
367 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
368 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
370 start_new_msg(smi_info
, msg
, 2);
371 smi_info
->si_state
= SI_CHECKING_ENABLES
;
374 static void start_clear_flags(struct smi_info
*smi_info
)
376 unsigned char msg
[3];
378 /* Make sure the watchdog pre-timeout flag is not set at startup. */
379 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
380 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
381 msg
[2] = WDT_PRE_TIMEOUT_INT
;
383 start_new_msg(smi_info
, msg
, 3);
384 smi_info
->si_state
= SI_CLEARING_FLAGS
;
387 static void start_getting_msg_queue(struct smi_info
*smi_info
)
389 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
390 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
391 smi_info
->curr_msg
->data_size
= 2;
393 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
394 smi_info
->curr_msg
->data_size
);
395 smi_info
->si_state
= SI_GETTING_MESSAGES
;
398 static void start_getting_events(struct smi_info
*smi_info
)
400 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
401 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
402 smi_info
->curr_msg
->data_size
= 2;
404 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
405 smi_info
->curr_msg
->data_size
);
406 smi_info
->si_state
= SI_GETTING_EVENTS
;
410 * When we have a situtaion where we run out of memory and cannot
411 * allocate messages, we just leave them in the BMC and run the system
412 * polled until we can allocate some memory. Once we have some
413 * memory, we will re-enable the interrupt.
415 * Note that we cannot just use disable_irq(), since the interrupt may
418 static inline bool disable_si_irq(struct smi_info
*smi_info
)
420 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
421 smi_info
->interrupt_disabled
= true;
422 start_check_enables(smi_info
);
428 static inline bool enable_si_irq(struct smi_info
*smi_info
)
430 if ((smi_info
->io
.irq
) && (smi_info
->interrupt_disabled
)) {
431 smi_info
->interrupt_disabled
= false;
432 start_check_enables(smi_info
);
439 * Allocate a message. If unable to allocate, start the interrupt
440 * disable process and return NULL. If able to allocate but
441 * interrupts are disabled, free the message and return NULL after
442 * starting the interrupt enable process.
444 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
446 struct ipmi_smi_msg
*msg
;
448 msg
= ipmi_alloc_smi_msg();
450 if (!disable_si_irq(smi_info
))
451 smi_info
->si_state
= SI_NORMAL
;
452 } else if (enable_si_irq(smi_info
)) {
453 ipmi_free_smi_msg(msg
);
459 static void handle_flags(struct smi_info
*smi_info
)
462 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
463 /* Watchdog pre-timeout */
464 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
466 start_clear_flags(smi_info
);
467 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
468 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
469 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
470 /* Messages available. */
471 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
472 if (!smi_info
->curr_msg
)
475 start_getting_msg_queue(smi_info
);
476 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
477 /* Events available. */
478 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
479 if (!smi_info
->curr_msg
)
482 start_getting_events(smi_info
);
483 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
484 smi_info
->oem_data_avail_handler
) {
485 if (smi_info
->oem_data_avail_handler(smi_info
))
488 smi_info
->si_state
= SI_NORMAL
;
492 * Global enables we care about.
494 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
495 IPMI_BMC_EVT_MSG_INTR)
497 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
502 if (smi_info
->supports_event_msg_buff
)
503 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
505 if (((smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
) ||
506 smi_info
->cannot_disable_irq
) &&
507 !smi_info
->irq_enable_broken
)
508 enables
|= IPMI_BMC_RCV_MSG_INTR
;
510 if (smi_info
->supports_event_msg_buff
&&
511 smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
&&
512 !smi_info
->irq_enable_broken
)
513 enables
|= IPMI_BMC_EVT_MSG_INTR
;
515 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
520 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
522 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
524 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
526 if ((bool)irqstate
== irq_on
)
530 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
531 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
533 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
536 static void handle_transaction_done(struct smi_info
*smi_info
)
538 struct ipmi_smi_msg
*msg
;
540 debug_timestamp("Done");
541 switch (smi_info
->si_state
) {
543 if (!smi_info
->curr_msg
)
546 smi_info
->curr_msg
->rsp_size
547 = smi_info
->handlers
->get_result(
549 smi_info
->curr_msg
->rsp
,
550 IPMI_MAX_MSG_LENGTH
);
553 * Do this here becase deliver_recv_msg() releases the
554 * lock, and a new message can be put in during the
555 * time the lock is released.
557 msg
= smi_info
->curr_msg
;
558 smi_info
->curr_msg
= NULL
;
559 deliver_recv_msg(smi_info
, msg
);
562 case SI_GETTING_FLAGS
:
564 unsigned char msg
[4];
567 /* We got the flags from the SMI, now handle them. */
568 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
570 /* Error fetching flags, just give up for now. */
571 smi_info
->si_state
= SI_NORMAL
;
572 } else if (len
< 4) {
574 * Hmm, no flags. That's technically illegal, but
575 * don't use uninitialized data.
577 smi_info
->si_state
= SI_NORMAL
;
579 smi_info
->msg_flags
= msg
[3];
580 handle_flags(smi_info
);
585 case SI_CLEARING_FLAGS
:
587 unsigned char msg
[3];
589 /* We cleared the flags. */
590 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
592 /* Error clearing flags */
593 dev_warn(smi_info
->io
.dev
,
594 "Error clearing flags: %2.2x\n", msg
[2]);
596 smi_info
->si_state
= SI_NORMAL
;
600 case SI_GETTING_EVENTS
:
602 smi_info
->curr_msg
->rsp_size
603 = smi_info
->handlers
->get_result(
605 smi_info
->curr_msg
->rsp
,
606 IPMI_MAX_MSG_LENGTH
);
609 * Do this here becase deliver_recv_msg() releases the
610 * lock, and a new message can be put in during the
611 * time the lock is released.
613 msg
= smi_info
->curr_msg
;
614 smi_info
->curr_msg
= NULL
;
615 if (msg
->rsp
[2] != 0) {
616 /* Error getting event, probably done. */
619 /* Take off the event flag. */
620 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
621 handle_flags(smi_info
);
623 smi_inc_stat(smi_info
, events
);
626 * Do this before we deliver the message
627 * because delivering the message releases the
628 * lock and something else can mess with the
631 handle_flags(smi_info
);
633 deliver_recv_msg(smi_info
, msg
);
638 case SI_GETTING_MESSAGES
:
640 smi_info
->curr_msg
->rsp_size
641 = smi_info
->handlers
->get_result(
643 smi_info
->curr_msg
->rsp
,
644 IPMI_MAX_MSG_LENGTH
);
647 * Do this here becase deliver_recv_msg() releases the
648 * lock, and a new message can be put in during the
649 * time the lock is released.
651 msg
= smi_info
->curr_msg
;
652 smi_info
->curr_msg
= NULL
;
653 if (msg
->rsp
[2] != 0) {
654 /* Error getting event, probably done. */
657 /* Take off the msg flag. */
658 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
659 handle_flags(smi_info
);
661 smi_inc_stat(smi_info
, incoming_messages
);
664 * Do this before we deliver the message
665 * because delivering the message releases the
666 * lock and something else can mess with the
669 handle_flags(smi_info
);
671 deliver_recv_msg(smi_info
, msg
);
676 case SI_CHECKING_ENABLES
:
678 unsigned char msg
[4];
682 /* We got the flags from the SMI, now handle them. */
683 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
685 dev_warn(smi_info
->io
.dev
,
686 "Couldn't get irq info: %x.\n", msg
[2]);
687 dev_warn(smi_info
->io
.dev
,
688 "Maybe ok, but ipmi might run very slowly.\n");
689 smi_info
->si_state
= SI_NORMAL
;
692 enables
= current_global_enables(smi_info
, 0, &irq_on
);
693 if (smi_info
->io
.si_type
== SI_BT
)
694 /* BT has its own interrupt enable bit. */
695 check_bt_irq(smi_info
, irq_on
);
696 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
697 /* Enables are not correct, fix them. */
698 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
699 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
700 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
701 smi_info
->handlers
->start_transaction(
702 smi_info
->si_sm
, msg
, 3);
703 smi_info
->si_state
= SI_SETTING_ENABLES
;
704 } else if (smi_info
->supports_event_msg_buff
) {
705 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
706 if (!smi_info
->curr_msg
) {
707 smi_info
->si_state
= SI_NORMAL
;
710 start_getting_events(smi_info
);
712 smi_info
->si_state
= SI_NORMAL
;
717 case SI_SETTING_ENABLES
:
719 unsigned char msg
[4];
721 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
723 dev_warn(smi_info
->io
.dev
,
724 "Could not set the global enables: 0x%x.\n",
727 if (smi_info
->supports_event_msg_buff
) {
728 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
729 if (!smi_info
->curr_msg
) {
730 smi_info
->si_state
= SI_NORMAL
;
733 start_getting_events(smi_info
);
735 smi_info
->si_state
= SI_NORMAL
;
743 * Called on timeouts and events. Timeouts should pass the elapsed
744 * time, interrupts should pass in zero. Must be called with
745 * si_lock held and interrupts disabled.
747 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
750 enum si_sm_result si_sm_result
;
754 * There used to be a loop here that waited a little while
755 * (around 25us) before giving up. That turned out to be
756 * pointless, the minimum delays I was seeing were in the 300us
757 * range, which is far too long to wait in an interrupt. So
758 * we just run until the state machine tells us something
759 * happened or it needs a delay.
761 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
763 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
764 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
766 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
767 smi_inc_stat(smi_info
, complete_transactions
);
769 handle_transaction_done(smi_info
);
771 } else if (si_sm_result
== SI_SM_HOSED
) {
772 smi_inc_stat(smi_info
, hosed_count
);
775 * Do the before return_hosed_msg, because that
778 smi_info
->si_state
= SI_NORMAL
;
779 if (smi_info
->curr_msg
!= NULL
) {
781 * If we were handling a user message, format
782 * a response to send to the upper layer to
783 * tell it about the error.
785 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
791 * We prefer handling attn over new messages. But don't do
792 * this if there is not yet an upper layer to handle anything.
794 if (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
) {
795 unsigned char msg
[2];
797 if (smi_info
->si_state
!= SI_NORMAL
) {
799 * We got an ATTN, but we are doing something else.
800 * Handle the ATTN later.
802 smi_info
->got_attn
= true;
804 smi_info
->got_attn
= false;
805 smi_inc_stat(smi_info
, attentions
);
808 * Got a attn, send down a get message flags to see
809 * what's causing it. It would be better to handle
810 * this in the upper layer, but due to the way
811 * interrupts work with the SMI, that's not really
814 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
815 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
817 start_new_msg(smi_info
, msg
, 2);
818 smi_info
->si_state
= SI_GETTING_FLAGS
;
823 /* If we are currently idle, try to start the next message. */
824 if (si_sm_result
== SI_SM_IDLE
) {
825 smi_inc_stat(smi_info
, idles
);
827 si_sm_result
= start_next_msg(smi_info
);
828 if (si_sm_result
!= SI_SM_IDLE
)
832 if ((si_sm_result
== SI_SM_IDLE
)
833 && (atomic_read(&smi_info
->req_events
))) {
835 * We are idle and the upper layer requested that I fetch
838 atomic_set(&smi_info
->req_events
, 0);
841 * Take this opportunity to check the interrupt and
842 * message enable state for the BMC. The BMC can be
843 * asynchronously reset, and may thus get interrupts
844 * disable and messages disabled.
846 if (smi_info
->supports_event_msg_buff
|| smi_info
->io
.irq
) {
847 start_check_enables(smi_info
);
849 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
850 if (!smi_info
->curr_msg
)
853 start_getting_events(smi_info
);
858 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
859 /* Ok it if fails, the timer will just go off. */
860 if (del_timer(&smi_info
->si_timer
))
861 smi_info
->timer_running
= false;
868 static void check_start_timer_thread(struct smi_info
*smi_info
)
870 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
871 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
873 if (smi_info
->thread
)
874 wake_up_process(smi_info
->thread
);
876 start_next_msg(smi_info
);
877 smi_event_handler(smi_info
, 0);
881 static void flush_messages(void *send_info
)
883 struct smi_info
*smi_info
= send_info
;
884 enum si_sm_result result
;
887 * Currently, this function is called only in run-to-completion
888 * mode. This means we are single-threaded, no need for locks.
890 result
= smi_event_handler(smi_info
, 0);
891 while (result
!= SI_SM_IDLE
) {
892 udelay(SI_SHORT_TIMEOUT_USEC
);
893 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
897 static void sender(void *send_info
,
898 struct ipmi_smi_msg
*msg
)
900 struct smi_info
*smi_info
= send_info
;
903 debug_timestamp("Enqueue");
905 if (smi_info
->run_to_completion
) {
907 * If we are running to completion, start it. Upper
908 * layer will call flush_messages to clear it out.
910 smi_info
->waiting_msg
= msg
;
914 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
916 * The following two lines don't need to be under the lock for
917 * the lock's sake, but they do need SMP memory barriers to
918 * avoid getting things out of order. We are already claiming
919 * the lock, anyway, so just do it under the lock to avoid the
922 BUG_ON(smi_info
->waiting_msg
);
923 smi_info
->waiting_msg
= msg
;
924 check_start_timer_thread(smi_info
);
925 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
928 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
930 struct smi_info
*smi_info
= send_info
;
932 smi_info
->run_to_completion
= i_run_to_completion
;
933 if (i_run_to_completion
)
934 flush_messages(smi_info
);
938 * Use -1 as a special constant to tell that we are spinning in kipmid
939 * looking for something and not delaying between checks
941 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
942 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result
,
943 const struct smi_info
*smi_info
,
946 unsigned int max_busy_us
= 0;
948 if (smi_info
->si_num
< num_max_busy_us
)
949 max_busy_us
= kipmid_max_busy_us
[smi_info
->si_num
];
950 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
951 *busy_until
= IPMI_TIME_NOT_BUSY
;
952 else if (*busy_until
== IPMI_TIME_NOT_BUSY
) {
953 *busy_until
= ktime_get() + max_busy_us
* NSEC_PER_USEC
;
955 if (unlikely(ktime_get() > *busy_until
)) {
956 *busy_until
= IPMI_TIME_NOT_BUSY
;
965 * A busy-waiting loop for speeding up IPMI operation.
967 * Lousy hardware makes this hard. This is only enabled for systems
968 * that are not BT and do not have interrupts. It starts spinning
969 * when an operation is complete or until max_busy tells it to stop
970 * (if that is enabled). See the paragraph on kimid_max_busy_us in
971 * Documentation/driver-api/ipmi.rst for details.
973 static int ipmi_thread(void *data
)
975 struct smi_info
*smi_info
= data
;
977 enum si_sm_result smi_result
;
978 ktime_t busy_until
= IPMI_TIME_NOT_BUSY
;
980 set_user_nice(current
, MAX_NICE
);
981 while (!kthread_should_stop()) {
984 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
985 smi_result
= smi_event_handler(smi_info
, 0);
988 * If the driver is doing something, there is a possible
989 * race with the timer. If the timer handler see idle,
990 * and the thread here sees something else, the timer
991 * handler won't restart the timer even though it is
992 * required. So start it here if necessary.
994 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
995 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
997 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
998 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1000 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
1002 } else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
) {
1004 * In maintenance mode we run as fast as
1005 * possible to allow firmware updates to
1006 * complete as fast as possible, but normally
1007 * don't bang on the scheduler.
1009 if (smi_info
->in_maintenance_mode
)
1012 usleep_range(100, 200);
1013 } else if (smi_result
== SI_SM_IDLE
) {
1014 if (atomic_read(&smi_info
->need_watch
)) {
1015 schedule_timeout_interruptible(100);
1017 /* Wait to be woken up when we are needed. */
1018 __set_current_state(TASK_INTERRUPTIBLE
);
1022 schedule_timeout_interruptible(1);
1029 static void poll(void *send_info
)
1031 struct smi_info
*smi_info
= send_info
;
1032 unsigned long flags
= 0;
1033 bool run_to_completion
= smi_info
->run_to_completion
;
1036 * Make sure there is some delay in the poll loop so we can
1037 * drive time forward and timeout things.
1040 if (!run_to_completion
)
1041 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1042 smi_event_handler(smi_info
, 10);
1043 if (!run_to_completion
)
1044 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1047 static void request_events(void *send_info
)
1049 struct smi_info
*smi_info
= send_info
;
1051 if (!smi_info
->has_event_buffer
)
1054 atomic_set(&smi_info
->req_events
, 1);
1057 static void set_need_watch(void *send_info
, unsigned int watch_mask
)
1059 struct smi_info
*smi_info
= send_info
;
1060 unsigned long flags
;
1063 enable
= !!watch_mask
;
1065 atomic_set(&smi_info
->need_watch
, enable
);
1066 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1067 check_start_timer_thread(smi_info
);
1068 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1071 static void smi_timeout(struct timer_list
*t
)
1073 struct smi_info
*smi_info
= from_timer(smi_info
, t
, si_timer
);
1074 enum si_sm_result smi_result
;
1075 unsigned long flags
;
1076 unsigned long jiffies_now
;
1080 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1081 debug_timestamp("Timer");
1083 jiffies_now
= jiffies
;
1084 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1085 * SI_USEC_PER_JIFFY
);
1086 smi_result
= smi_event_handler(smi_info
, time_diff
);
1088 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
1089 /* Running with interrupts, only do long timeouts. */
1090 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1091 smi_inc_stat(smi_info
, long_timeouts
);
1096 * If the state machine asks for a short delay, then shorten
1097 * the timer timeout.
1099 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1100 smi_inc_stat(smi_info
, short_timeouts
);
1101 timeout
= jiffies
+ 1;
1103 smi_inc_stat(smi_info
, long_timeouts
);
1104 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1108 if (smi_result
!= SI_SM_IDLE
)
1109 smi_mod_timer(smi_info
, timeout
);
1111 smi_info
->timer_running
= false;
1112 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1115 irqreturn_t
ipmi_si_irq_handler(int irq
, void *data
)
1117 struct smi_info
*smi_info
= data
;
1118 unsigned long flags
;
1120 if (smi_info
->io
.si_type
== SI_BT
)
1121 /* We need to clear the IRQ flag for the BT interface. */
1122 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1123 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1126 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1128 smi_inc_stat(smi_info
, interrupts
);
1130 debug_timestamp("Interrupt");
1132 smi_event_handler(smi_info
, 0);
1133 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1137 static int smi_start_processing(void *send_info
,
1138 struct ipmi_smi
*intf
)
1140 struct smi_info
*new_smi
= send_info
;
1143 new_smi
->intf
= intf
;
1145 /* Set up the timer that drives the interface. */
1146 timer_setup(&new_smi
->si_timer
, smi_timeout
, 0);
1147 new_smi
->timer_can_start
= true;
1148 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1150 /* Try to claim any interrupts. */
1151 if (new_smi
->io
.irq_setup
) {
1152 new_smi
->io
.irq_handler_data
= new_smi
;
1153 new_smi
->io
.irq_setup(&new_smi
->io
);
1157 * Check if the user forcefully enabled the daemon.
1159 if (new_smi
->si_num
< num_force_kipmid
)
1160 enable
= force_kipmid
[new_smi
->si_num
];
1162 * The BT interface is efficient enough to not need a thread,
1163 * and there is no need for a thread if we have interrupts.
1165 else if ((new_smi
->io
.si_type
!= SI_BT
) && (!new_smi
->io
.irq
))
1169 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1170 "kipmi%d", new_smi
->si_num
);
1171 if (IS_ERR(new_smi
->thread
)) {
1172 dev_notice(new_smi
->io
.dev
, "Could not start"
1173 " kernel thread due to error %ld, only using"
1174 " timers to drive the interface\n",
1175 PTR_ERR(new_smi
->thread
));
1176 new_smi
->thread
= NULL
;
1183 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1185 struct smi_info
*smi
= send_info
;
1187 data
->addr_src
= smi
->io
.addr_source
;
1188 data
->dev
= smi
->io
.dev
;
1189 data
->addr_info
= smi
->io
.addr_info
;
1190 get_device(smi
->io
.dev
);
1195 static void set_maintenance_mode(void *send_info
, bool enable
)
1197 struct smi_info
*smi_info
= send_info
;
1200 atomic_set(&smi_info
->req_events
, 0);
1201 smi_info
->in_maintenance_mode
= enable
;
1204 static void shutdown_smi(void *send_info
);
1205 static const struct ipmi_smi_handlers handlers
= {
1206 .owner
= THIS_MODULE
,
1207 .start_processing
= smi_start_processing
,
1208 .shutdown
= shutdown_smi
,
1209 .get_smi_info
= get_smi_info
,
1211 .request_events
= request_events
,
1212 .set_need_watch
= set_need_watch
,
1213 .set_maintenance_mode
= set_maintenance_mode
,
1214 .set_run_to_completion
= set_run_to_completion
,
1215 .flush_messages
= flush_messages
,
1219 static LIST_HEAD(smi_infos
);
1220 static DEFINE_MUTEX(smi_infos_lock
);
1221 static int smi_num
; /* Used to sequence the SMIs */
1223 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1225 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1226 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1227 " disabled(0). Normally the IPMI driver auto-detects"
1228 " this, but the value may be overridden by this parm.");
1229 module_param(unload_when_empty
, bool, 0);
1230 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1231 " specified or found, default is 1. Setting to 0"
1232 " is useful for hot add of devices using hotmod.");
1233 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1234 MODULE_PARM_DESC(kipmid_max_busy_us
,
1235 "Max time (in microseconds) to busy-wait for IPMI data before"
1236 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1237 " if kipmid is using up a lot of CPU time.");
1239 void ipmi_irq_finish_setup(struct si_sm_io
*io
)
1241 if (io
->si_type
== SI_BT
)
1242 /* Enable the interrupt in the BT interface. */
1243 io
->outputb(io
, IPMI_BT_INTMASK_REG
,
1244 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1247 void ipmi_irq_start_cleanup(struct si_sm_io
*io
)
1249 if (io
->si_type
== SI_BT
)
1250 /* Disable the interrupt in the BT interface. */
1251 io
->outputb(io
, IPMI_BT_INTMASK_REG
, 0);
1254 static void std_irq_cleanup(struct si_sm_io
*io
)
1256 ipmi_irq_start_cleanup(io
);
1257 free_irq(io
->irq
, io
->irq_handler_data
);
1260 int ipmi_std_irq_setup(struct si_sm_io
*io
)
1267 rv
= request_irq(io
->irq
,
1268 ipmi_si_irq_handler
,
1271 io
->irq_handler_data
);
1273 dev_warn(io
->dev
, "%s unable to claim interrupt %d,"
1274 " running polled\n",
1275 SI_DEVICE_NAME
, io
->irq
);
1278 io
->irq_cleanup
= std_irq_cleanup
;
1279 ipmi_irq_finish_setup(io
);
1280 dev_info(io
->dev
, "Using irq %d\n", io
->irq
);
1286 static int wait_for_msg_done(struct smi_info
*smi_info
)
1288 enum si_sm_result smi_result
;
1290 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
1292 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
1293 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
1294 schedule_timeout_uninterruptible(1);
1295 smi_result
= smi_info
->handlers
->event(
1296 smi_info
->si_sm
, jiffies_to_usecs(1));
1297 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
1298 smi_result
= smi_info
->handlers
->event(
1299 smi_info
->si_sm
, 0);
1303 if (smi_result
== SI_SM_HOSED
)
1305 * We couldn't get the state machine to run, so whatever's at
1306 * the port is probably not an IPMI SMI interface.
1313 static int try_get_dev_id(struct smi_info
*smi_info
)
1315 unsigned char msg
[2];
1316 unsigned char *resp
;
1317 unsigned long resp_len
;
1319 unsigned int retry_count
= 0;
1321 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1326 * Do a Get Device ID command, since it comes back with some
1329 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1330 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
1333 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1335 rv
= wait_for_msg_done(smi_info
);
1339 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1340 resp
, IPMI_MAX_MSG_LENGTH
);
1342 /* Check and record info from the get device id, in case we need it. */
1343 rv
= ipmi_demangle_device_id(resp
[0] >> 2, resp
[1],
1344 resp
+ 2, resp_len
- 2, &smi_info
->device_id
);
1346 /* record completion code */
1347 unsigned char cc
= *(resp
+ 2);
1349 if ((cc
== IPMI_DEVICE_IN_FW_UPDATE_ERR
1350 || cc
== IPMI_DEVICE_IN_INIT_ERR
1351 || cc
== IPMI_NOT_IN_MY_STATE_ERR
)
1352 && ++retry_count
<= GET_DEVICE_ID_MAX_RETRY
) {
1353 dev_warn(smi_info
->io
.dev
,
1354 "BMC returned 0x%2.2x, retry get bmc device id\n",
1365 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
1367 unsigned char msg
[3];
1368 unsigned char *resp
;
1369 unsigned long resp_len
;
1372 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1376 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1377 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1378 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1380 rv
= wait_for_msg_done(smi_info
);
1382 dev_warn(smi_info
->io
.dev
,
1383 "Error getting response from get global enables command: %d\n",
1388 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1389 resp
, IPMI_MAX_MSG_LENGTH
);
1392 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1393 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1395 dev_warn(smi_info
->io
.dev
,
1396 "Invalid return from get global enables command: %ld %x %x %x\n",
1397 resp_len
, resp
[0], resp
[1], resp
[2]);
1410 * Returns 1 if it gets an error from the command.
1412 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
1414 unsigned char msg
[3];
1415 unsigned char *resp
;
1416 unsigned long resp_len
;
1419 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1423 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1424 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1426 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1428 rv
= wait_for_msg_done(smi_info
);
1430 dev_warn(smi_info
->io
.dev
,
1431 "Error getting response from set global enables command: %d\n",
1436 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1437 resp
, IPMI_MAX_MSG_LENGTH
);
1440 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1441 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1442 dev_warn(smi_info
->io
.dev
,
1443 "Invalid return from set global enables command: %ld %x %x\n",
1444 resp_len
, resp
[0], resp
[1]);
1458 * Some BMCs do not support clearing the receive irq bit in the global
1459 * enables (even if they don't support interrupts on the BMC). Check
1460 * for this and handle it properly.
1462 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
1467 rv
= get_global_enables(smi_info
, &enables
);
1469 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
1470 /* Already clear, should work ok. */
1473 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
1474 rv
= set_global_enables(smi_info
, enables
);
1478 dev_err(smi_info
->io
.dev
,
1479 "Cannot check clearing the rcv irq: %d\n", rv
);
1485 * An error when setting the event buffer bit means
1486 * clearing the bit is not supported.
1488 dev_warn(smi_info
->io
.dev
,
1489 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1490 smi_info
->cannot_disable_irq
= true;
1495 * Some BMCs do not support setting the interrupt bits in the global
1496 * enables even if they support interrupts. Clearly bad, but we can
1499 static void check_set_rcv_irq(struct smi_info
*smi_info
)
1504 if (!smi_info
->io
.irq
)
1507 rv
= get_global_enables(smi_info
, &enables
);
1509 enables
|= IPMI_BMC_RCV_MSG_INTR
;
1510 rv
= set_global_enables(smi_info
, enables
);
1514 dev_err(smi_info
->io
.dev
,
1515 "Cannot check setting the rcv irq: %d\n", rv
);
1521 * An error when setting the event buffer bit means
1522 * setting the bit is not supported.
1524 dev_warn(smi_info
->io
.dev
,
1525 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1526 smi_info
->cannot_disable_irq
= true;
1527 smi_info
->irq_enable_broken
= true;
1531 static int try_enable_event_buffer(struct smi_info
*smi_info
)
1533 unsigned char msg
[3];
1534 unsigned char *resp
;
1535 unsigned long resp_len
;
1538 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1542 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1543 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1544 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1546 rv
= wait_for_msg_done(smi_info
);
1548 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1552 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1553 resp
, IPMI_MAX_MSG_LENGTH
);
1556 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1557 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1559 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1564 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
1565 /* buffer is already enabled, nothing to do. */
1566 smi_info
->supports_event_msg_buff
= true;
1570 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1571 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1572 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
1573 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1575 rv
= wait_for_msg_done(smi_info
);
1577 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1581 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1582 resp
, IPMI_MAX_MSG_LENGTH
);
1585 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1586 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1587 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1594 * An error when setting the event buffer bit means
1595 * that the event buffer is not supported.
1599 smi_info
->supports_event_msg_buff
= true;
1606 #define IPMI_SI_ATTR(name) \
1607 static ssize_t name##_show(struct device *dev, \
1608 struct device_attribute *attr, \
1611 struct smi_info *smi_info = dev_get_drvdata(dev); \
1613 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1615 static DEVICE_ATTR(name, 0444, name##_show, NULL)
1617 static ssize_t
type_show(struct device
*dev
,
1618 struct device_attribute
*attr
,
1621 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1623 return snprintf(buf
, 10, "%s\n", si_to_str
[smi_info
->io
.si_type
]);
1625 static DEVICE_ATTR(type
, 0444, type_show
, NULL
);
1627 static ssize_t
interrupts_enabled_show(struct device
*dev
,
1628 struct device_attribute
*attr
,
1631 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1632 int enabled
= smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
;
1634 return snprintf(buf
, 10, "%d\n", enabled
);
1636 static DEVICE_ATTR(interrupts_enabled
, 0444,
1637 interrupts_enabled_show
, NULL
);
1639 IPMI_SI_ATTR(short_timeouts
);
1640 IPMI_SI_ATTR(long_timeouts
);
1641 IPMI_SI_ATTR(idles
);
1642 IPMI_SI_ATTR(interrupts
);
1643 IPMI_SI_ATTR(attentions
);
1644 IPMI_SI_ATTR(flag_fetches
);
1645 IPMI_SI_ATTR(hosed_count
);
1646 IPMI_SI_ATTR(complete_transactions
);
1647 IPMI_SI_ATTR(events
);
1648 IPMI_SI_ATTR(watchdog_pretimeouts
);
1649 IPMI_SI_ATTR(incoming_messages
);
1651 static ssize_t
params_show(struct device
*dev
,
1652 struct device_attribute
*attr
,
1655 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1657 return snprintf(buf
, 200,
1658 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1659 si_to_str
[smi_info
->io
.si_type
],
1660 addr_space_to_str
[smi_info
->io
.addr_space
],
1661 smi_info
->io
.addr_data
,
1662 smi_info
->io
.regspacing
,
1663 smi_info
->io
.regsize
,
1664 smi_info
->io
.regshift
,
1666 smi_info
->io
.slave_addr
);
1668 static DEVICE_ATTR(params
, 0444, params_show
, NULL
);
1670 static struct attribute
*ipmi_si_dev_attrs
[] = {
1671 &dev_attr_type
.attr
,
1672 &dev_attr_interrupts_enabled
.attr
,
1673 &dev_attr_short_timeouts
.attr
,
1674 &dev_attr_long_timeouts
.attr
,
1675 &dev_attr_idles
.attr
,
1676 &dev_attr_interrupts
.attr
,
1677 &dev_attr_attentions
.attr
,
1678 &dev_attr_flag_fetches
.attr
,
1679 &dev_attr_hosed_count
.attr
,
1680 &dev_attr_complete_transactions
.attr
,
1681 &dev_attr_events
.attr
,
1682 &dev_attr_watchdog_pretimeouts
.attr
,
1683 &dev_attr_incoming_messages
.attr
,
1684 &dev_attr_params
.attr
,
1688 static const struct attribute_group ipmi_si_dev_attr_group
= {
1689 .attrs
= ipmi_si_dev_attrs
,
1693 * oem_data_avail_to_receive_msg_avail
1694 * @info - smi_info structure with msg_flags set
1696 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1697 * Returns 1 indicating need to re-run handle_flags().
1699 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
1701 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
1707 * setup_dell_poweredge_oem_data_handler
1708 * @info - smi_info.device_id must be populated
1710 * Systems that match, but have firmware version < 1.40 may assert
1711 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1712 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1713 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1714 * as RECEIVE_MSG_AVAIL instead.
1716 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1717 * assert the OEM[012] bits, and if it did, the driver would have to
1718 * change to handle that properly, we don't actually check for the
1720 * Device ID = 0x20 BMC on PowerEdge 8G servers
1721 * Device Revision = 0x80
1722 * Firmware Revision1 = 0x01 BMC version 1.40
1723 * Firmware Revision2 = 0x40 BCD encoded
1724 * IPMI Version = 0x51 IPMI 1.5
1725 * Manufacturer ID = A2 02 00 Dell IANA
1727 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1728 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1731 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1732 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1733 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1734 #define DELL_IANA_MFR_ID 0x0002a2
1735 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
1737 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1738 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
1739 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
1740 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
1741 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
1742 smi_info
->oem_data_avail_handler
=
1743 oem_data_avail_to_receive_msg_avail
;
1744 } else if (ipmi_version_major(id
) < 1 ||
1745 (ipmi_version_major(id
) == 1 &&
1746 ipmi_version_minor(id
) < 5)) {
1747 smi_info
->oem_data_avail_handler
=
1748 oem_data_avail_to_receive_msg_avail
;
1753 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1754 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
1756 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
1758 /* Make it a response */
1759 msg
->rsp
[0] = msg
->data
[0] | 4;
1760 msg
->rsp
[1] = msg
->data
[1];
1761 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
1763 smi_info
->curr_msg
= NULL
;
1764 deliver_recv_msg(smi_info
, msg
);
1768 * dell_poweredge_bt_xaction_handler
1769 * @info - smi_info.device_id must be populated
1771 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1772 * not respond to a Get SDR command if the length of the data
1773 * requested is exactly 0x3A, which leads to command timeouts and no
1774 * data returned. This intercepts such commands, and causes userspace
1775 * callers to try again with a different-sized buffer, which succeeds.
1778 #define STORAGE_NETFN 0x0A
1779 #define STORAGE_CMD_GET_SDR 0x23
1780 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
1781 unsigned long unused
,
1784 struct smi_info
*smi_info
= in
;
1785 unsigned char *data
= smi_info
->curr_msg
->data
;
1786 unsigned int size
= smi_info
->curr_msg
->data_size
;
1788 (data
[0]>>2) == STORAGE_NETFN
&&
1789 data
[1] == STORAGE_CMD_GET_SDR
&&
1791 return_hosed_msg_badsize(smi_info
);
1797 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
1798 .notifier_call
= dell_poweredge_bt_xaction_handler
,
1802 * setup_dell_poweredge_bt_xaction_handler
1803 * @info - smi_info.device_id must be filled in already
1805 * Fills in smi_info.device_id.start_transaction_pre_hook
1806 * when we know what function to use there.
1809 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
1811 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1812 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
1813 smi_info
->io
.si_type
== SI_BT
)
1814 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
1818 * setup_oem_data_handler
1819 * @info - smi_info.device_id must be filled in already
1821 * Fills in smi_info.device_id.oem_data_available_handler
1822 * when we know what function to use there.
1825 static void setup_oem_data_handler(struct smi_info
*smi_info
)
1827 setup_dell_poweredge_oem_data_handler(smi_info
);
1830 static void setup_xaction_handlers(struct smi_info
*smi_info
)
1832 setup_dell_poweredge_bt_xaction_handler(smi_info
);
1835 static void check_for_broken_irqs(struct smi_info
*smi_info
)
1837 check_clr_rcv_irq(smi_info
);
1838 check_set_rcv_irq(smi_info
);
1841 static inline void stop_timer_and_thread(struct smi_info
*smi_info
)
1843 if (smi_info
->thread
!= NULL
) {
1844 kthread_stop(smi_info
->thread
);
1845 smi_info
->thread
= NULL
;
1848 smi_info
->timer_can_start
= false;
1849 del_timer_sync(&smi_info
->si_timer
);
1852 static struct smi_info
*find_dup_si(struct smi_info
*info
)
1856 list_for_each_entry(e
, &smi_infos
, link
) {
1857 if (e
->io
.addr_space
!= info
->io
.addr_space
)
1859 if (e
->io
.addr_data
== info
->io
.addr_data
) {
1861 * This is a cheap hack, ACPI doesn't have a defined
1862 * slave address but SMBIOS does. Pick it up from
1863 * any source that has it available.
1865 if (info
->io
.slave_addr
&& !e
->io
.slave_addr
)
1866 e
->io
.slave_addr
= info
->io
.slave_addr
;
1874 int ipmi_si_add_smi(struct si_sm_io
*io
)
1877 struct smi_info
*new_smi
, *dup
;
1880 * If the user gave us a hard-coded device at the same
1881 * address, they presumably want us to use it and not what is
1884 if (io
->addr_source
!= SI_HARDCODED
&& io
->addr_source
!= SI_HOTMOD
&&
1885 ipmi_si_hardcode_match(io
->addr_space
, io
->addr_data
)) {
1887 "Hard-coded device at this address already exists");
1891 if (!io
->io_setup
) {
1892 if (io
->addr_space
== IPMI_IO_ADDR_SPACE
) {
1893 io
->io_setup
= ipmi_si_port_setup
;
1894 } else if (io
->addr_space
== IPMI_MEM_ADDR_SPACE
) {
1895 io
->io_setup
= ipmi_si_mem_setup
;
1901 new_smi
= kzalloc(sizeof(*new_smi
), GFP_KERNEL
);
1904 spin_lock_init(&new_smi
->si_lock
);
1908 mutex_lock(&smi_infos_lock
);
1909 dup
= find_dup_si(new_smi
);
1911 if (new_smi
->io
.addr_source
== SI_ACPI
&&
1912 dup
->io
.addr_source
== SI_SMBIOS
) {
1913 /* We prefer ACPI over SMBIOS. */
1914 dev_info(dup
->io
.dev
,
1915 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1916 si_to_str
[new_smi
->io
.si_type
]);
1917 cleanup_one_si(dup
);
1919 dev_info(new_smi
->io
.dev
,
1920 "%s-specified %s state machine: duplicate\n",
1921 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1922 si_to_str
[new_smi
->io
.si_type
]);
1929 pr_info("Adding %s-specified %s state machine\n",
1930 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1931 si_to_str
[new_smi
->io
.si_type
]);
1933 list_add_tail(&new_smi
->link
, &smi_infos
);
1936 rv
= try_smi_init(new_smi
);
1938 mutex_unlock(&smi_infos_lock
);
1943 * Try to start up an interface. Must be called with smi_infos_lock
1944 * held, primarily to keep smi_num consistent, we only one to do these
1947 static int try_smi_init(struct smi_info
*new_smi
)
1952 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1953 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1954 si_to_str
[new_smi
->io
.si_type
],
1955 addr_space_to_str
[new_smi
->io
.addr_space
],
1956 new_smi
->io
.addr_data
,
1957 new_smi
->io
.slave_addr
, new_smi
->io
.irq
);
1959 switch (new_smi
->io
.si_type
) {
1961 new_smi
->handlers
= &kcs_smi_handlers
;
1965 new_smi
->handlers
= &smic_smi_handlers
;
1969 new_smi
->handlers
= &bt_smi_handlers
;
1973 /* No support for anything else yet. */
1978 new_smi
->si_num
= smi_num
;
1980 /* Do this early so it's available for logs. */
1981 if (!new_smi
->io
.dev
) {
1982 pr_err("IPMI interface added with no device\n");
1987 /* Allocate the state machine's data and initialize it. */
1988 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
1989 if (!new_smi
->si_sm
) {
1993 new_smi
->io
.io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
1996 /* Now that we know the I/O size, we can set up the I/O. */
1997 rv
= new_smi
->io
.io_setup(&new_smi
->io
);
1999 dev_err(new_smi
->io
.dev
, "Could not set up I/O space\n");
2003 /* Do low-level detection first. */
2004 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
2005 if (new_smi
->io
.addr_source
)
2006 dev_err(new_smi
->io
.dev
,
2007 "Interface detection failed\n");
2013 * Attempt a get device id command. If it fails, we probably
2014 * don't have a BMC here.
2016 rv
= try_get_dev_id(new_smi
);
2018 if (new_smi
->io
.addr_source
)
2019 dev_err(new_smi
->io
.dev
,
2020 "There appears to be no BMC at this location\n");
2024 setup_oem_data_handler(new_smi
);
2025 setup_xaction_handlers(new_smi
);
2026 check_for_broken_irqs(new_smi
);
2028 new_smi
->waiting_msg
= NULL
;
2029 new_smi
->curr_msg
= NULL
;
2030 atomic_set(&new_smi
->req_events
, 0);
2031 new_smi
->run_to_completion
= false;
2032 for (i
= 0; i
< SI_NUM_STATS
; i
++)
2033 atomic_set(&new_smi
->stats
[i
], 0);
2035 new_smi
->interrupt_disabled
= true;
2036 atomic_set(&new_smi
->need_watch
, 0);
2038 rv
= try_enable_event_buffer(new_smi
);
2040 new_smi
->has_event_buffer
= true;
2043 * Start clearing the flags before we enable interrupts or the
2044 * timer to avoid racing with the timer.
2046 start_clear_flags(new_smi
);
2049 * IRQ is defined to be set when non-zero. req_events will
2050 * cause a global flags check that will enable interrupts.
2052 if (new_smi
->io
.irq
) {
2053 new_smi
->interrupt_disabled
= false;
2054 atomic_set(&new_smi
->req_events
, 1);
2057 dev_set_drvdata(new_smi
->io
.dev
, new_smi
);
2058 rv
= device_add_group(new_smi
->io
.dev
, &ipmi_si_dev_attr_group
);
2060 dev_err(new_smi
->io
.dev
,
2061 "Unable to add device attributes: error %d\n",
2065 new_smi
->dev_group_added
= true;
2067 rv
= ipmi_register_smi(&handlers
,
2070 new_smi
->io
.slave_addr
);
2072 dev_err(new_smi
->io
.dev
,
2073 "Unable to register device: error %d\n",
2078 /* Don't increment till we know we have succeeded. */
2081 dev_info(new_smi
->io
.dev
, "IPMI %s interface initialized\n",
2082 si_to_str
[new_smi
->io
.si_type
]);
2084 WARN_ON(new_smi
->io
.dev
->init_name
!= NULL
);
2087 if (rv
&& new_smi
->io
.io_cleanup
) {
2088 new_smi
->io
.io_cleanup(&new_smi
->io
);
2089 new_smi
->io
.io_cleanup
= NULL
;
2095 static int __init
init_ipmi_si(void)
2098 enum ipmi_addr_src type
= SI_INVALID
;
2103 ipmi_hardcode_init();
2105 pr_info("IPMI System Interface driver\n");
2107 ipmi_si_platform_init();
2111 ipmi_si_parisc_init();
2113 /* We prefer devices with interrupts, but in the case of a machine
2114 with multiple BMCs we assume that there will be several instances
2115 of a given type so if we succeed in registering a type then also
2116 try to register everything else of the same type */
2117 mutex_lock(&smi_infos_lock
);
2118 list_for_each_entry(e
, &smi_infos
, link
) {
2119 /* Try to register a device if it has an IRQ and we either
2120 haven't successfully registered a device yet or this
2121 device has the same type as one we successfully registered */
2122 if (e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2123 if (!try_smi_init(e
)) {
2124 type
= e
->io
.addr_source
;
2129 /* type will only have been set if we successfully registered an si */
2131 goto skip_fallback_noirq
;
2133 /* Fall back to the preferred device */
2135 list_for_each_entry(e
, &smi_infos
, link
) {
2136 if (!e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2137 if (!try_smi_init(e
)) {
2138 type
= e
->io
.addr_source
;
2143 skip_fallback_noirq
:
2145 mutex_unlock(&smi_infos_lock
);
2150 mutex_lock(&smi_infos_lock
);
2151 if (unload_when_empty
&& list_empty(&smi_infos
)) {
2152 mutex_unlock(&smi_infos_lock
);
2154 pr_warn("Unable to find any System Interface(s)\n");
2157 mutex_unlock(&smi_infos_lock
);
2161 module_init(init_ipmi_si
);
2163 static void shutdown_smi(void *send_info
)
2165 struct smi_info
*smi_info
= send_info
;
2167 if (smi_info
->dev_group_added
) {
2168 device_remove_group(smi_info
->io
.dev
, &ipmi_si_dev_attr_group
);
2169 smi_info
->dev_group_added
= false;
2171 if (smi_info
->io
.dev
)
2172 dev_set_drvdata(smi_info
->io
.dev
, NULL
);
2175 * Make sure that interrupts, the timer and the thread are
2176 * stopped and will not run again.
2178 smi_info
->interrupt_disabled
= true;
2179 if (smi_info
->io
.irq_cleanup
) {
2180 smi_info
->io
.irq_cleanup(&smi_info
->io
);
2181 smi_info
->io
.irq_cleanup
= NULL
;
2183 stop_timer_and_thread(smi_info
);
2186 * Wait until we know that we are out of any interrupt
2187 * handlers might have been running before we freed the
2193 * Timeouts are stopped, now make sure the interrupts are off
2194 * in the BMC. Note that timers and CPU interrupts are off,
2195 * so no need for locks.
2197 while (smi_info
->curr_msg
|| (smi_info
->si_state
!= SI_NORMAL
)) {
2199 schedule_timeout_uninterruptible(1);
2201 if (smi_info
->handlers
)
2202 disable_si_irq(smi_info
);
2203 while (smi_info
->curr_msg
|| (smi_info
->si_state
!= SI_NORMAL
)) {
2205 schedule_timeout_uninterruptible(1);
2207 if (smi_info
->handlers
)
2208 smi_info
->handlers
->cleanup(smi_info
->si_sm
);
2210 if (smi_info
->io
.addr_source_cleanup
) {
2211 smi_info
->io
.addr_source_cleanup(&smi_info
->io
);
2212 smi_info
->io
.addr_source_cleanup
= NULL
;
2214 if (smi_info
->io
.io_cleanup
) {
2215 smi_info
->io
.io_cleanup(&smi_info
->io
);
2216 smi_info
->io
.io_cleanup
= NULL
;
2219 kfree(smi_info
->si_sm
);
2220 smi_info
->si_sm
= NULL
;
2222 smi_info
->intf
= NULL
;
2226 * Must be called with smi_infos_lock held, to serialize the
2227 * smi_info->intf check.
2229 static void cleanup_one_si(struct smi_info
*smi_info
)
2234 list_del(&smi_info
->link
);
2237 ipmi_unregister_smi(smi_info
->intf
);
2242 int ipmi_si_remove_by_dev(struct device
*dev
)
2247 mutex_lock(&smi_infos_lock
);
2248 list_for_each_entry(e
, &smi_infos
, link
) {
2249 if (e
->io
.dev
== dev
) {
2255 mutex_unlock(&smi_infos_lock
);
2260 struct device
*ipmi_si_remove_by_data(int addr_space
, enum si_type si_type
,
2264 struct smi_info
*e
, *tmp_e
;
2265 struct device
*dev
= NULL
;
2267 mutex_lock(&smi_infos_lock
);
2268 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
2269 if (e
->io
.addr_space
!= addr_space
)
2271 if (e
->io
.si_type
!= si_type
)
2273 if (e
->io
.addr_data
== addr
) {
2274 dev
= get_device(e
->io
.dev
);
2278 mutex_unlock(&smi_infos_lock
);
2283 static void cleanup_ipmi_si(void)
2285 struct smi_info
*e
, *tmp_e
;
2290 ipmi_si_pci_shutdown();
2292 ipmi_si_parisc_shutdown();
2294 ipmi_si_platform_shutdown();
2296 mutex_lock(&smi_infos_lock
);
2297 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
2299 mutex_unlock(&smi_infos_lock
);
2301 ipmi_si_hardcode_exit();
2302 ipmi_si_hotmod_exit();
2304 module_exit(cleanup_ipmi_si
);
2306 MODULE_ALIAS("platform:dmi-ipmi-si");
2307 MODULE_LICENSE("GPL");
2308 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2309 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2310 " system interfaces.");