2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
17 #include <linux/delay.h>
19 #include <linux/kernel.h>
20 #include <linux/clk-provider.h>
23 * "Policies" affect the frequencies of bus clocks provided by a
24 * CCU. (I believe these polices are named "Deep Sleep", "Economy",
25 * "Normal", and "Turbo".) A lower policy number has lower power
26 * consumption, and policy 2 is the default.
28 #define CCU_POLICY_COUNT 4
30 #define CCU_ACCESS_PASSWORD 0xA5A500
31 #define CLK_GATE_DELAY_LOOP 2000
33 /* Bitfield operations */
35 /* Produces a mask of set bits covering a range of a 32-bit value */
36 static inline u32
bitfield_mask(u32 shift
, u32 width
)
38 return ((1 << width
) - 1) << shift
;
41 /* Extract the value of a bitfield found within a given register value */
42 static inline u32
bitfield_extract(u32 reg_val
, u32 shift
, u32 width
)
44 return (reg_val
& bitfield_mask(shift
, width
)) >> shift
;
47 /* Replace the value of a bitfield found within a given register value */
48 static inline u32
bitfield_replace(u32 reg_val
, u32 shift
, u32 width
, u32 val
)
50 u32 mask
= bitfield_mask(shift
, width
);
52 return (reg_val
& ~mask
) | (val
<< shift
);
55 /* Divider and scaling helpers */
57 /* Convert a divider into the scaled divisor value it represents. */
58 static inline u64
scaled_div_value(struct bcm_clk_div
*div
, u32 reg_div
)
60 return (u64
)reg_div
+ ((u64
)1 << div
->u
.s
.frac_width
);
64 * Build a scaled divider value as close as possible to the
65 * given whole part (div_value) and fractional part (expressed
68 u64
scaled_div_build(struct bcm_clk_div
*div
, u32 div_value
, u32 billionths
)
73 BUG_ON(billionths
>= BILLION
);
75 combined
= (u64
)div_value
* BILLION
+ billionths
;
76 combined
<<= div
->u
.s
.frac_width
;
78 return DIV_ROUND_CLOSEST_ULL(combined
, BILLION
);
81 /* The scaled minimum divisor representable by a divider */
83 scaled_div_min(struct bcm_clk_div
*div
)
85 if (divider_is_fixed(div
))
86 return (u64
)div
->u
.fixed
;
88 return scaled_div_value(div
, 0);
91 /* The scaled maximum divisor representable by a divider */
92 u64
scaled_div_max(struct bcm_clk_div
*div
)
96 if (divider_is_fixed(div
))
97 return (u64
)div
->u
.fixed
;
99 reg_div
= ((u32
)1 << div
->u
.s
.width
) - 1;
101 return scaled_div_value(div
, reg_div
);
105 * Convert a scaled divisor into its divider representation as
106 * stored in a divider register field.
109 divider(struct bcm_clk_div
*div
, u64 scaled_div
)
111 BUG_ON(scaled_div
< scaled_div_min(div
));
112 BUG_ON(scaled_div
> scaled_div_max(div
));
114 return (u32
)(scaled_div
- ((u64
)1 << div
->u
.s
.frac_width
));
117 /* Return a rate scaled for use when dividing by a scaled divisor. */
119 scale_rate(struct bcm_clk_div
*div
, u32 rate
)
121 if (divider_is_fixed(div
))
124 return (u64
)rate
<< div
->u
.s
.frac_width
;
129 /* Read a 32-bit register value from a CCU's address space. */
130 static inline u32
__ccu_read(struct ccu_data
*ccu
, u32 reg_offset
)
132 return readl(ccu
->base
+ reg_offset
);
135 /* Write a 32-bit register value into a CCU's address space. */
137 __ccu_write(struct ccu_data
*ccu
, u32 reg_offset
, u32 reg_val
)
139 writel(reg_val
, ccu
->base
+ reg_offset
);
142 static inline unsigned long ccu_lock(struct ccu_data
*ccu
)
146 spin_lock_irqsave(&ccu
->lock
, flags
);
150 static inline void ccu_unlock(struct ccu_data
*ccu
, unsigned long flags
)
152 spin_unlock_irqrestore(&ccu
->lock
, flags
);
156 * Enable/disable write access to CCU protected registers. The
157 * WR_ACCESS register for all CCUs is at offset 0.
159 static inline void __ccu_write_enable(struct ccu_data
*ccu
)
161 if (ccu
->write_enabled
) {
162 pr_err("%s: access already enabled for %s\n", __func__
,
166 ccu
->write_enabled
= true;
167 __ccu_write(ccu
, 0, CCU_ACCESS_PASSWORD
| 1);
170 static inline void __ccu_write_disable(struct ccu_data
*ccu
)
172 if (!ccu
->write_enabled
) {
173 pr_err("%s: access wasn't enabled for %s\n", __func__
,
178 __ccu_write(ccu
, 0, CCU_ACCESS_PASSWORD
);
179 ccu
->write_enabled
= false;
183 * Poll a register in a CCU's address space, returning when the
184 * specified bit in that register's value is set (or clear). Delay
185 * a microsecond after each read of the register. Returns true if
186 * successful, or false if we gave up trying.
188 * Caller must ensure the CCU lock is held.
191 __ccu_wait_bit(struct ccu_data
*ccu
, u32 reg_offset
, u32 bit
, bool want
)
194 u32 bit_mask
= 1 << bit
;
196 for (tries
= 0; tries
< CLK_GATE_DELAY_LOOP
; tries
++) {
200 val
= __ccu_read(ccu
, reg_offset
);
201 bit_val
= (val
& bit_mask
) != 0;
206 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__
,
207 ccu
->name
, reg_offset
, bit
, want
? "set" : "clear");
212 /* Policy operations */
214 static bool __ccu_policy_engine_start(struct ccu_data
*ccu
, bool sync
)
216 struct bcm_policy_ctl
*control
= &ccu
->policy
.control
;
222 /* If we don't need to control policy for this CCU, we're done. */
223 if (!policy_ctl_exists(control
))
226 offset
= control
->offset
;
227 go_bit
= control
->go_bit
;
229 /* Ensure we're not busy before we start */
230 ret
= __ccu_wait_bit(ccu
, offset
, go_bit
, false);
232 pr_err("%s: ccu %s policy engine wouldn't go idle\n",
233 __func__
, ccu
->name
);
238 * If it's a synchronous request, we'll wait for the voltage
239 * and frequency of the active load to stabilize before
240 * returning. To do this we select the active load by
241 * setting the ATL bit.
243 * An asynchronous request instead ramps the voltage in the
244 * background, and when that process stabilizes, the target
245 * load is copied to the active load and the CCU frequency
246 * is switched. We do this by selecting the target load
247 * (ATL bit clear) and setting the request auto-copy (AC bit
250 * Note, we do NOT read-modify-write this register.
252 mask
= (u32
)1 << go_bit
;
254 mask
|= 1 << control
->atl_bit
;
256 mask
|= 1 << control
->ac_bit
;
257 __ccu_write(ccu
, offset
, mask
);
259 /* Wait for indication that operation is complete. */
260 ret
= __ccu_wait_bit(ccu
, offset
, go_bit
, false);
262 pr_err("%s: ccu %s policy engine never started\n",
263 __func__
, ccu
->name
);
268 static bool __ccu_policy_engine_stop(struct ccu_data
*ccu
)
270 struct bcm_lvm_en
*enable
= &ccu
->policy
.enable
;
275 /* If we don't need to control policy for this CCU, we're done. */
276 if (!policy_lvm_en_exists(enable
))
279 /* Ensure we're not busy before we start */
280 offset
= enable
->offset
;
281 enable_bit
= enable
->bit
;
282 ret
= __ccu_wait_bit(ccu
, offset
, enable_bit
, false);
284 pr_err("%s: ccu %s policy engine already stopped\n",
285 __func__
, ccu
->name
);
289 /* Now set the bit to stop the engine (NO read-modify-write) */
290 __ccu_write(ccu
, offset
, (u32
)1 << enable_bit
);
292 /* Wait for indication that it has stopped. */
293 ret
= __ccu_wait_bit(ccu
, offset
, enable_bit
, false);
295 pr_err("%s: ccu %s policy engine never stopped\n",
296 __func__
, ccu
->name
);
302 * A CCU has four operating conditions ("policies"), and some clocks
303 * can be disabled or enabled based on which policy is currently in
304 * effect. Such clocks have a bit in a "policy mask" register for
305 * each policy indicating whether the clock is enabled for that
306 * policy or not. The bit position for a clock is the same for all
307 * four registers, and the 32-bit registers are at consecutive
310 static bool policy_init(struct ccu_data
*ccu
, struct bcm_clk_policy
*policy
)
317 if (!policy_exists(policy
))
321 * We need to stop the CCU policy engine to allow update
322 * of our policy bits.
324 if (!__ccu_policy_engine_stop(ccu
)) {
325 pr_err("%s: unable to stop CCU %s policy engine\n",
326 __func__
, ccu
->name
);
331 * For now, if a clock defines its policy bit we just mark
332 * it "enabled" for all four policies.
334 offset
= policy
->offset
;
335 mask
= (u32
)1 << policy
->bit
;
336 for (i
= 0; i
< CCU_POLICY_COUNT
; i
++) {
339 reg_val
= __ccu_read(ccu
, offset
);
341 __ccu_write(ccu
, offset
, reg_val
);
342 offset
+= sizeof(u32
);
345 /* We're done updating; fire up the policy engine again. */
346 ret
= __ccu_policy_engine_start(ccu
, true);
348 pr_err("%s: unable to restart CCU %s policy engine\n",
349 __func__
, ccu
->name
);
354 /* Gate operations */
356 /* Determine whether a clock is gated. CCU lock must be held. */
358 __is_clk_gate_enabled(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
)
363 /* If there is no gate we can assume it's enabled. */
364 if (!gate_exists(gate
))
367 bit_mask
= 1 << gate
->status_bit
;
368 reg_val
= __ccu_read(ccu
, gate
->offset
);
370 return (reg_val
& bit_mask
) != 0;
373 /* Determine whether a clock is gated. */
375 is_clk_gate_enabled(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
)
380 /* Avoid taking the lock if we can */
381 if (!gate_exists(gate
))
384 flags
= ccu_lock(ccu
);
385 ret
= __is_clk_gate_enabled(ccu
, gate
);
386 ccu_unlock(ccu
, flags
);
392 * Commit our desired gate state to the hardware.
393 * Returns true if successful, false otherwise.
396 __gate_commit(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
)
400 bool enabled
= false;
402 BUG_ON(!gate_exists(gate
));
403 if (!gate_is_sw_controllable(gate
))
404 return true; /* Nothing we can change */
406 reg_val
= __ccu_read(ccu
, gate
->offset
);
408 /* For a hardware/software gate, set which is in control */
409 if (gate_is_hw_controllable(gate
)) {
410 mask
= (u32
)1 << gate
->hw_sw_sel_bit
;
411 if (gate_is_sw_managed(gate
))
418 * If software is in control, enable or disable the gate.
419 * If hardware is, clear the enabled bit for good measure.
420 * If a software controlled gate can't be disabled, we're
421 * required to write a 0 into the enable bit (but the gate
424 mask
= (u32
)1 << gate
->en_bit
;
425 if (gate_is_sw_managed(gate
) && (enabled
= gate_is_enabled(gate
)) &&
426 !gate_is_no_disable(gate
))
431 __ccu_write(ccu
, gate
->offset
, reg_val
);
433 /* For a hardware controlled gate, we're done */
434 if (!gate_is_sw_managed(gate
))
437 /* Otherwise wait for the gate to be in desired state */
438 return __ccu_wait_bit(ccu
, gate
->offset
, gate
->status_bit
, enabled
);
442 * Initialize a gate. Our desired state (hardware/software select,
443 * and if software, its enable state) is committed to hardware
444 * without the usual checks to see if it's already set up that way.
445 * Returns true if successful, false otherwise.
447 static bool gate_init(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
)
449 if (!gate_exists(gate
))
451 return __gate_commit(ccu
, gate
);
455 * Set a gate to enabled or disabled state. Does nothing if the
456 * gate is not currently under software control, or if it is already
457 * in the requested state. Returns true if successful, false
458 * otherwise. CCU lock must be held.
461 __clk_gate(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
, bool enable
)
465 if (!gate_exists(gate
) || !gate_is_sw_managed(gate
))
466 return true; /* Nothing to do */
468 if (!enable
&& gate_is_no_disable(gate
)) {
469 pr_warn("%s: invalid gate disable request (ignoring)\n",
474 if (enable
== gate_is_enabled(gate
))
475 return true; /* No change */
477 gate_flip_enabled(gate
);
478 ret
= __gate_commit(ccu
, gate
);
480 gate_flip_enabled(gate
); /* Revert the change */
485 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */
486 static int clk_gate(struct ccu_data
*ccu
, const char *name
,
487 struct bcm_clk_gate
*gate
, bool enable
)
493 * Avoid taking the lock if we can. We quietly ignore
494 * requests to change state that don't make sense.
496 if (!gate_exists(gate
) || !gate_is_sw_managed(gate
))
498 if (!enable
&& gate_is_no_disable(gate
))
501 flags
= ccu_lock(ccu
);
502 __ccu_write_enable(ccu
);
504 success
= __clk_gate(ccu
, gate
, enable
);
506 __ccu_write_disable(ccu
);
507 ccu_unlock(ccu
, flags
);
512 pr_err("%s: failed to %s gate for %s\n", __func__
,
513 enable
? "enable" : "disable", name
);
518 /* Hysteresis operations */
521 * If a clock gate requires a turn-off delay it will have
522 * "hysteresis" register bits defined. The first, if set, enables
523 * the delay; and if enabled, the second bit determines whether the
524 * delay is "low" or "high" (1 means high). For now, if it's
525 * defined for a clock, we set it.
527 static bool hyst_init(struct ccu_data
*ccu
, struct bcm_clk_hyst
*hyst
)
533 if (!hyst_exists(hyst
))
536 offset
= hyst
->offset
;
537 mask
= (u32
)1 << hyst
->en_bit
;
538 mask
|= (u32
)1 << hyst
->val_bit
;
540 reg_val
= __ccu_read(ccu
, offset
);
542 __ccu_write(ccu
, offset
, reg_val
);
547 /* Trigger operations */
550 * Caller must ensure CCU lock is held and access is enabled.
551 * Returns true if successful, false otherwise.
553 static bool __clk_trigger(struct ccu_data
*ccu
, struct bcm_clk_trig
*trig
)
555 /* Trigger the clock and wait for it to finish */
556 __ccu_write(ccu
, trig
->offset
, 1 << trig
->bit
);
558 return __ccu_wait_bit(ccu
, trig
->offset
, trig
->bit
, false);
561 /* Divider operations */
563 /* Read a divider value and return the scaled divisor it represents. */
564 static u64
divider_read_scaled(struct ccu_data
*ccu
, struct bcm_clk_div
*div
)
570 if (divider_is_fixed(div
))
571 return (u64
)div
->u
.fixed
;
573 flags
= ccu_lock(ccu
);
574 reg_val
= __ccu_read(ccu
, div
->u
.s
.offset
);
575 ccu_unlock(ccu
, flags
);
577 /* Extract the full divider field from the register value */
578 reg_div
= bitfield_extract(reg_val
, div
->u
.s
.shift
, div
->u
.s
.width
);
580 /* Return the scaled divisor value it represents */
581 return scaled_div_value(div
, reg_div
);
585 * Convert a divider's scaled divisor value into its recorded form
586 * and commit it into the hardware divider register.
588 * Returns 0 on success. Returns -EINVAL for invalid arguments.
589 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
591 static int __div_commit(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
592 struct bcm_clk_div
*div
, struct bcm_clk_trig
*trig
)
599 BUG_ON(divider_is_fixed(div
));
602 * If we're just initializing the divider, and no initial
603 * state was defined in the device tree, we just find out
604 * what its current value is rather than updating it.
606 if (div
->u
.s
.scaled_div
== BAD_SCALED_DIV_VALUE
) {
607 reg_val
= __ccu_read(ccu
, div
->u
.s
.offset
);
608 reg_div
= bitfield_extract(reg_val
, div
->u
.s
.shift
,
610 div
->u
.s
.scaled_div
= scaled_div_value(div
, reg_div
);
615 /* Convert the scaled divisor to the value we need to record */
616 reg_div
= divider(div
, div
->u
.s
.scaled_div
);
618 /* Clock needs to be enabled before changing the rate */
619 enabled
= __is_clk_gate_enabled(ccu
, gate
);
620 if (!enabled
&& !__clk_gate(ccu
, gate
, true)) {
625 /* Replace the divider value and record the result */
626 reg_val
= __ccu_read(ccu
, div
->u
.s
.offset
);
627 reg_val
= bitfield_replace(reg_val
, div
->u
.s
.shift
, div
->u
.s
.width
,
629 __ccu_write(ccu
, div
->u
.s
.offset
, reg_val
);
631 /* If the trigger fails we still want to disable the gate */
632 if (!__clk_trigger(ccu
, trig
))
635 /* Disable the clock again if it was disabled to begin with */
636 if (!enabled
&& !__clk_gate(ccu
, gate
, false))
637 ret
= ret
? ret
: -ENXIO
; /* return first error */
643 * Initialize a divider by committing our desired state to hardware
644 * without the usual checks to see if it's already set up that way.
645 * Returns true if successful, false otherwise.
647 static bool div_init(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
648 struct bcm_clk_div
*div
, struct bcm_clk_trig
*trig
)
650 if (!divider_exists(div
) || divider_is_fixed(div
))
652 return !__div_commit(ccu
, gate
, div
, trig
);
655 static int divider_write(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
656 struct bcm_clk_div
*div
, struct bcm_clk_trig
*trig
,
663 BUG_ON(divider_is_fixed(div
));
665 previous
= div
->u
.s
.scaled_div
;
666 if (previous
== scaled_div
)
667 return 0; /* No change */
669 div
->u
.s
.scaled_div
= scaled_div
;
671 flags
= ccu_lock(ccu
);
672 __ccu_write_enable(ccu
);
674 ret
= __div_commit(ccu
, gate
, div
, trig
);
676 __ccu_write_disable(ccu
);
677 ccu_unlock(ccu
, flags
);
680 div
->u
.s
.scaled_div
= previous
; /* Revert the change */
686 /* Common clock rate helpers */
689 * Implement the common clock framework recalc_rate method, taking
690 * into account a divider and an optional pre-divider. The
691 * pre-divider register pointer may be NULL.
693 static unsigned long clk_recalc_rate(struct ccu_data
*ccu
,
694 struct bcm_clk_div
*div
, struct bcm_clk_div
*pre_div
,
695 unsigned long parent_rate
)
697 u64 scaled_parent_rate
;
701 if (!divider_exists(div
))
704 if (parent_rate
> (unsigned long)LONG_MAX
)
705 return 0; /* actually this would be a caller bug */
708 * If there is a pre-divider, divide the scaled parent rate
709 * by the pre-divider value first. In this case--to improve
710 * accuracy--scale the parent rate by *both* the pre-divider
711 * value and the divider before actually computing the
712 * result of the pre-divider.
714 * If there's only one divider, just scale the parent rate.
716 if (pre_div
&& divider_exists(pre_div
)) {
719 scaled_rate
= scale_rate(pre_div
, parent_rate
);
720 scaled_rate
= scale_rate(div
, scaled_rate
);
721 scaled_div
= divider_read_scaled(ccu
, pre_div
);
722 scaled_parent_rate
= DIV_ROUND_CLOSEST_ULL(scaled_rate
,
725 scaled_parent_rate
= scale_rate(div
, parent_rate
);
729 * Get the scaled divisor value, and divide the scaled
730 * parent rate by that to determine this clock's resulting
733 scaled_div
= divider_read_scaled(ccu
, div
);
734 result
= DIV_ROUND_CLOSEST_ULL(scaled_parent_rate
, scaled_div
);
736 return (unsigned long)result
;
740 * Compute the output rate produced when a given parent rate is fed
741 * into two dividers. The pre-divider can be NULL, and even if it's
742 * non-null it may be nonexistent. It's also OK for the divider to
743 * be nonexistent, and in that case the pre-divider is also ignored.
745 * If scaled_div is non-null, it is used to return the scaled divisor
746 * value used by the (downstream) divider to produce that rate.
748 static long round_rate(struct ccu_data
*ccu
, struct bcm_clk_div
*div
,
749 struct bcm_clk_div
*pre_div
,
750 unsigned long rate
, unsigned long parent_rate
,
753 u64 scaled_parent_rate
;
759 BUG_ON(!divider_exists(div
));
761 BUG_ON(parent_rate
> (u64
)LONG_MAX
);
764 * If there is a pre-divider, divide the scaled parent rate
765 * by the pre-divider value first. In this case--to improve
766 * accuracy--scale the parent rate by *both* the pre-divider
767 * value and the divider before actually computing the
768 * result of the pre-divider.
770 * If there's only one divider, just scale the parent rate.
772 * For simplicity we treat the pre-divider as fixed (for now).
774 if (divider_exists(pre_div
)) {
778 scaled_rate
= scale_rate(pre_div
, parent_rate
);
779 scaled_rate
= scale_rate(div
, scaled_rate
);
780 scaled_pre_div
= divider_read_scaled(ccu
, pre_div
);
781 scaled_parent_rate
= DIV_ROUND_CLOSEST_ULL(scaled_rate
,
784 scaled_parent_rate
= scale_rate(div
, parent_rate
);
788 * Compute the best possible divider and ensure it is in
789 * range. A fixed divider can't be changed, so just report
790 * the best we can do.
792 if (!divider_is_fixed(div
)) {
793 best_scaled_div
= DIV_ROUND_CLOSEST_ULL(scaled_parent_rate
,
795 min_scaled_div
= scaled_div_min(div
);
796 max_scaled_div
= scaled_div_max(div
);
797 if (best_scaled_div
> max_scaled_div
)
798 best_scaled_div
= max_scaled_div
;
799 else if (best_scaled_div
< min_scaled_div
)
800 best_scaled_div
= min_scaled_div
;
802 best_scaled_div
= divider_read_scaled(ccu
, div
);
805 /* OK, figure out the resulting rate */
806 result
= DIV_ROUND_CLOSEST_ULL(scaled_parent_rate
, best_scaled_div
);
809 *scaled_div
= best_scaled_div
;
814 /* Common clock parent helpers */
817 * For a given parent selector (register field) value, find the
818 * index into a selector's parent_sel array that contains it.
819 * Returns the index, or BAD_CLK_INDEX if it's not found.
821 static u8
parent_index(struct bcm_clk_sel
*sel
, u8 parent_sel
)
825 BUG_ON(sel
->parent_count
> (u32
)U8_MAX
);
826 for (i
= 0; i
< sel
->parent_count
; i
++)
827 if (sel
->parent_sel
[i
] == parent_sel
)
829 return BAD_CLK_INDEX
;
833 * Fetch the current value of the selector, and translate that into
834 * its corresponding index in the parent array we registered with
835 * the clock framework.
837 * Returns parent array index that corresponds with the value found,
838 * or BAD_CLK_INDEX if the found value is out of range.
840 static u8
selector_read_index(struct ccu_data
*ccu
, struct bcm_clk_sel
*sel
)
847 /* If there's no selector, there's only one parent */
848 if (!selector_exists(sel
))
851 /* Get the value in the selector register */
852 flags
= ccu_lock(ccu
);
853 reg_val
= __ccu_read(ccu
, sel
->offset
);
854 ccu_unlock(ccu
, flags
);
856 parent_sel
= bitfield_extract(reg_val
, sel
->shift
, sel
->width
);
858 /* Look up that selector's parent array index and return it */
859 index
= parent_index(sel
, parent_sel
);
860 if (index
== BAD_CLK_INDEX
)
861 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
862 __func__
, parent_sel
, ccu
->name
, sel
->offset
);
868 * Commit our desired selector value to the hardware.
870 * Returns 0 on success. Returns -EINVAL for invalid arguments.
871 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
874 __sel_commit(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
875 struct bcm_clk_sel
*sel
, struct bcm_clk_trig
*trig
)
882 BUG_ON(!selector_exists(sel
));
885 * If we're just initializing the selector, and no initial
886 * state was defined in the device tree, we just find out
887 * what its current value is rather than updating it.
889 if (sel
->clk_index
== BAD_CLK_INDEX
) {
892 reg_val
= __ccu_read(ccu
, sel
->offset
);
893 parent_sel
= bitfield_extract(reg_val
, sel
->shift
, sel
->width
);
894 index
= parent_index(sel
, parent_sel
);
895 if (index
== BAD_CLK_INDEX
)
897 sel
->clk_index
= index
;
902 BUG_ON((u32
)sel
->clk_index
>= sel
->parent_count
);
903 parent_sel
= sel
->parent_sel
[sel
->clk_index
];
905 /* Clock needs to be enabled before changing the parent */
906 enabled
= __is_clk_gate_enabled(ccu
, gate
);
907 if (!enabled
&& !__clk_gate(ccu
, gate
, true))
910 /* Replace the selector value and record the result */
911 reg_val
= __ccu_read(ccu
, sel
->offset
);
912 reg_val
= bitfield_replace(reg_val
, sel
->shift
, sel
->width
, parent_sel
);
913 __ccu_write(ccu
, sel
->offset
, reg_val
);
915 /* If the trigger fails we still want to disable the gate */
916 if (!__clk_trigger(ccu
, trig
))
919 /* Disable the clock again if it was disabled to begin with */
920 if (!enabled
&& !__clk_gate(ccu
, gate
, false))
921 ret
= ret
? ret
: -ENXIO
; /* return first error */
927 * Initialize a selector by committing our desired state to hardware
928 * without the usual checks to see if it's already set up that way.
929 * Returns true if successful, false otherwise.
931 static bool sel_init(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
932 struct bcm_clk_sel
*sel
, struct bcm_clk_trig
*trig
)
934 if (!selector_exists(sel
))
936 return !__sel_commit(ccu
, gate
, sel
, trig
);
940 * Write a new value into a selector register to switch to a
941 * different parent clock. Returns 0 on success, or an error code
942 * (from __sel_commit()) otherwise.
944 static int selector_write(struct ccu_data
*ccu
, struct bcm_clk_gate
*gate
,
945 struct bcm_clk_sel
*sel
, struct bcm_clk_trig
*trig
,
952 previous
= sel
->clk_index
;
953 if (previous
== index
)
954 return 0; /* No change */
956 sel
->clk_index
= index
;
958 flags
= ccu_lock(ccu
);
959 __ccu_write_enable(ccu
);
961 ret
= __sel_commit(ccu
, gate
, sel
, trig
);
963 __ccu_write_disable(ccu
);
964 ccu_unlock(ccu
, flags
);
967 sel
->clk_index
= previous
; /* Revert the change */
972 /* Clock operations */
974 static int kona_peri_clk_enable(struct clk_hw
*hw
)
976 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
977 struct bcm_clk_gate
*gate
= &bcm_clk
->u
.peri
->gate
;
979 return clk_gate(bcm_clk
->ccu
, bcm_clk
->init_data
.name
, gate
, true);
982 static void kona_peri_clk_disable(struct clk_hw
*hw
)
984 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
985 struct bcm_clk_gate
*gate
= &bcm_clk
->u
.peri
->gate
;
987 (void)clk_gate(bcm_clk
->ccu
, bcm_clk
->init_data
.name
, gate
, false);
990 static int kona_peri_clk_is_enabled(struct clk_hw
*hw
)
992 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
993 struct bcm_clk_gate
*gate
= &bcm_clk
->u
.peri
->gate
;
995 return is_clk_gate_enabled(bcm_clk
->ccu
, gate
) ? 1 : 0;
998 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw
*hw
,
999 unsigned long parent_rate
)
1001 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1002 struct peri_clk_data
*data
= bcm_clk
->u
.peri
;
1004 return clk_recalc_rate(bcm_clk
->ccu
, &data
->div
, &data
->pre_div
,
1008 static long kona_peri_clk_round_rate(struct clk_hw
*hw
, unsigned long rate
,
1009 unsigned long *parent_rate
)
1011 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1012 struct bcm_clk_div
*div
= &bcm_clk
->u
.peri
->div
;
1014 if (!divider_exists(div
))
1015 return clk_hw_get_rate(hw
);
1017 /* Quietly avoid a zero rate */
1018 return round_rate(bcm_clk
->ccu
, div
, &bcm_clk
->u
.peri
->pre_div
,
1019 rate
? rate
: 1, *parent_rate
, NULL
);
1022 static int kona_peri_clk_determine_rate(struct clk_hw
*hw
,
1023 struct clk_rate_request
*req
)
1025 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1026 struct clk_hw
*current_parent
;
1027 unsigned long parent_rate
;
1028 unsigned long best_delta
;
1029 unsigned long best_rate
;
1035 * If there is no other parent to choose, use the current one.
1036 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1038 WARN_ON_ONCE(bcm_clk
->init_data
.flags
& CLK_SET_RATE_NO_REPARENT
);
1039 parent_count
= (u32
)bcm_clk
->init_data
.num_parents
;
1040 if (parent_count
< 2) {
1041 rate
= kona_peri_clk_round_rate(hw
, req
->rate
,
1042 &req
->best_parent_rate
);
1050 /* Unless we can do better, stick with current parent */
1051 current_parent
= clk_hw_get_parent(hw
);
1052 parent_rate
= clk_hw_get_rate(current_parent
);
1053 best_rate
= kona_peri_clk_round_rate(hw
, req
->rate
, &parent_rate
);
1054 best_delta
= abs(best_rate
- req
->rate
);
1056 /* Check whether any other parent clock can produce a better result */
1057 for (which
= 0; which
< parent_count
; which
++) {
1058 struct clk_hw
*parent
= clk_hw_get_parent_by_index(hw
, which
);
1059 unsigned long delta
;
1060 unsigned long other_rate
;
1063 if (parent
== current_parent
)
1066 /* We don't support CLK_SET_RATE_PARENT */
1067 parent_rate
= clk_hw_get_rate(parent
);
1068 other_rate
= kona_peri_clk_round_rate(hw
, req
->rate
,
1070 delta
= abs(other_rate
- req
->rate
);
1071 if (delta
< best_delta
) {
1073 best_rate
= other_rate
;
1074 req
->best_parent_hw
= parent
;
1075 req
->best_parent_rate
= parent_rate
;
1079 req
->rate
= best_rate
;
1083 static int kona_peri_clk_set_parent(struct clk_hw
*hw
, u8 index
)
1085 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1086 struct peri_clk_data
*data
= bcm_clk
->u
.peri
;
1087 struct bcm_clk_sel
*sel
= &data
->sel
;
1088 struct bcm_clk_trig
*trig
;
1091 BUG_ON(index
>= sel
->parent_count
);
1093 /* If there's only one parent we don't require a selector */
1094 if (!selector_exists(sel
))
1098 * The regular trigger is used by default, but if there's a
1099 * pre-trigger we want to use that instead.
1101 trig
= trigger_exists(&data
->pre_trig
) ? &data
->pre_trig
1104 ret
= selector_write(bcm_clk
->ccu
, &data
->gate
, sel
, trig
, index
);
1105 if (ret
== -ENXIO
) {
1106 pr_err("%s: gating failure for %s\n", __func__
,
1107 bcm_clk
->init_data
.name
);
1108 ret
= -EIO
; /* Don't proliferate weird errors */
1109 } else if (ret
== -EIO
) {
1110 pr_err("%s: %strigger failed for %s\n", __func__
,
1111 trig
== &data
->pre_trig
? "pre-" : "",
1112 bcm_clk
->init_data
.name
);
1118 static u8
kona_peri_clk_get_parent(struct clk_hw
*hw
)
1120 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1121 struct peri_clk_data
*data
= bcm_clk
->u
.peri
;
1124 index
= selector_read_index(bcm_clk
->ccu
, &data
->sel
);
1126 /* Not all callers would handle an out-of-range value gracefully */
1127 return index
== BAD_CLK_INDEX
? 0 : index
;
1130 static int kona_peri_clk_set_rate(struct clk_hw
*hw
, unsigned long rate
,
1131 unsigned long parent_rate
)
1133 struct kona_clk
*bcm_clk
= to_kona_clk(hw
);
1134 struct peri_clk_data
*data
= bcm_clk
->u
.peri
;
1135 struct bcm_clk_div
*div
= &data
->div
;
1139 if (parent_rate
> (unsigned long)LONG_MAX
)
1142 if (rate
== clk_hw_get_rate(hw
))
1145 if (!divider_exists(div
))
1146 return rate
== parent_rate
? 0 : -EINVAL
;
1149 * A fixed divider can't be changed. (Nor can a fixed
1150 * pre-divider be, but for now we never actually try to
1151 * change that.) Tolerate a request for a no-op change.
1153 if (divider_is_fixed(&data
->div
))
1154 return rate
== parent_rate
? 0 : -EINVAL
;
1157 * Get the scaled divisor value needed to achieve a clock
1158 * rate as close as possible to what was requested, given
1159 * the parent clock rate supplied.
1161 (void)round_rate(bcm_clk
->ccu
, div
, &data
->pre_div
,
1162 rate
? rate
: 1, parent_rate
, &scaled_div
);
1165 * We aren't updating any pre-divider at this point, so
1166 * we'll use the regular trigger.
1168 ret
= divider_write(bcm_clk
->ccu
, &data
->gate
, &data
->div
,
1169 &data
->trig
, scaled_div
);
1170 if (ret
== -ENXIO
) {
1171 pr_err("%s: gating failure for %s\n", __func__
,
1172 bcm_clk
->init_data
.name
);
1173 ret
= -EIO
; /* Don't proliferate weird errors */
1174 } else if (ret
== -EIO
) {
1175 pr_err("%s: trigger failed for %s\n", __func__
,
1176 bcm_clk
->init_data
.name
);
1182 struct clk_ops kona_peri_clk_ops
= {
1183 .enable
= kona_peri_clk_enable
,
1184 .disable
= kona_peri_clk_disable
,
1185 .is_enabled
= kona_peri_clk_is_enabled
,
1186 .recalc_rate
= kona_peri_clk_recalc_rate
,
1187 .determine_rate
= kona_peri_clk_determine_rate
,
1188 .set_parent
= kona_peri_clk_set_parent
,
1189 .get_parent
= kona_peri_clk_get_parent
,
1190 .set_rate
= kona_peri_clk_set_rate
,
1193 /* Put a peripheral clock into its initial state */
1194 static bool __peri_clk_init(struct kona_clk
*bcm_clk
)
1196 struct ccu_data
*ccu
= bcm_clk
->ccu
;
1197 struct peri_clk_data
*peri
= bcm_clk
->u
.peri
;
1198 const char *name
= bcm_clk
->init_data
.name
;
1199 struct bcm_clk_trig
*trig
;
1201 BUG_ON(bcm_clk
->type
!= bcm_clk_peri
);
1203 if (!policy_init(ccu
, &peri
->policy
)) {
1204 pr_err("%s: error initializing policy for %s\n",
1208 if (!gate_init(ccu
, &peri
->gate
)) {
1209 pr_err("%s: error initializing gate for %s\n", __func__
, name
);
1212 if (!hyst_init(ccu
, &peri
->hyst
)) {
1213 pr_err("%s: error initializing hyst for %s\n", __func__
, name
);
1216 if (!div_init(ccu
, &peri
->gate
, &peri
->div
, &peri
->trig
)) {
1217 pr_err("%s: error initializing divider for %s\n", __func__
,
1223 * For the pre-divider and selector, the pre-trigger is used
1224 * if it's present, otherwise we just use the regular trigger.
1226 trig
= trigger_exists(&peri
->pre_trig
) ? &peri
->pre_trig
1229 if (!div_init(ccu
, &peri
->gate
, &peri
->pre_div
, trig
)) {
1230 pr_err("%s: error initializing pre-divider for %s\n", __func__
,
1235 if (!sel_init(ccu
, &peri
->gate
, &peri
->sel
, trig
)) {
1236 pr_err("%s: error initializing selector for %s\n", __func__
,
1244 static bool __kona_clk_init(struct kona_clk
*bcm_clk
)
1246 switch (bcm_clk
->type
) {
1248 return __peri_clk_init(bcm_clk
);
1255 /* Set a CCU and all its clocks into their desired initial state */
1256 bool __init
kona_ccu_init(struct ccu_data
*ccu
)
1258 unsigned long flags
;
1260 struct kona_clk
*kona_clks
= ccu
->kona_clks
;
1261 bool success
= true;
1263 flags
= ccu_lock(ccu
);
1264 __ccu_write_enable(ccu
);
1266 for (which
= 0; which
< ccu
->clk_num
; which
++) {
1267 struct kona_clk
*bcm_clk
= &kona_clks
[which
];
1272 success
&= __kona_clk_init(bcm_clk
);
1275 __ccu_write_disable(ccu
);
1276 ccu_unlock(ccu
, flags
);