1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/clocksource.h>
4 #include <linux/clockchips.h>
5 #include <linux/interrupt.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/ioport.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/syscore_ops.h>
17 #include <soc/at91/atmel_tcb.h>
21 * We're configured to use a specific TC block, one that's not hooked
22 * up to external hardware, to provide a time solution:
24 * - Two channels combine to create a free-running 32 bit counter
25 * with a base rate of 5+ MHz, packaged as a clocksource (with
26 * resolution better than 200 nsec).
27 * - Some chips support 32 bit counter. A single channel is used for
28 * this 32 bit free-running counter. the second channel is not used.
30 * - The third channel may be used to provide a clockevent source, used in
31 * either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
32 * and can handle delays of up to two seconds. For 32-bit counters, it runs at
33 * the same rate as the clocksource
35 * REVISIT behavior during system suspend states... we should disable
36 * all clocks and save the power. Easily done for clockevent devices,
37 * but clocksources won't necessarily get the needed notifications.
38 * For deeper system sleep states, this will be mandatory...
41 static void __iomem
*tcaddr
;
51 static const u8 atmel_tcb_divisors
[] = { 2, 8, 32, 128 };
53 static u64
tc_get_cycles(struct clocksource
*cs
)
58 raw_local_irq_save(flags
);
60 upper
= readl_relaxed(tcaddr
+ ATMEL_TC_REG(1, CV
));
61 lower
= readl_relaxed(tcaddr
+ ATMEL_TC_REG(0, CV
));
62 } while (upper
!= readl_relaxed(tcaddr
+ ATMEL_TC_REG(1, CV
)));
64 raw_local_irq_restore(flags
);
65 return (upper
<< 16) | lower
;
68 static u64
tc_get_cycles32(struct clocksource
*cs
)
70 return readl_relaxed(tcaddr
+ ATMEL_TC_REG(0, CV
));
73 static void tc_clksrc_suspend(struct clocksource
*cs
)
77 for (i
= 0; i
< ARRAY_SIZE(tcb_cache
); i
++) {
78 tcb_cache
[i
].cmr
= readl(tcaddr
+ ATMEL_TC_REG(i
, CMR
));
79 tcb_cache
[i
].imr
= readl(tcaddr
+ ATMEL_TC_REG(i
, IMR
));
80 tcb_cache
[i
].rc
= readl(tcaddr
+ ATMEL_TC_REG(i
, RC
));
81 tcb_cache
[i
].clken
= !!(readl(tcaddr
+ ATMEL_TC_REG(i
, SR
)) &
85 bmr_cache
= readl(tcaddr
+ ATMEL_TC_BMR
);
88 static void tc_clksrc_resume(struct clocksource
*cs
)
92 for (i
= 0; i
< ARRAY_SIZE(tcb_cache
); i
++) {
93 /* Restore registers for the channel, RA and RB are not used */
94 writel(tcb_cache
[i
].cmr
, tcaddr
+ ATMEL_TC_REG(i
, CMR
));
95 writel(tcb_cache
[i
].rc
, tcaddr
+ ATMEL_TC_REG(i
, RC
));
96 writel(0, tcaddr
+ ATMEL_TC_REG(i
, RA
));
97 writel(0, tcaddr
+ ATMEL_TC_REG(i
, RB
));
98 /* Disable all the interrupts */
99 writel(0xff, tcaddr
+ ATMEL_TC_REG(i
, IDR
));
100 /* Reenable interrupts that were enabled before suspending */
101 writel(tcb_cache
[i
].imr
, tcaddr
+ ATMEL_TC_REG(i
, IER
));
102 /* Start the clock if it was used */
103 if (tcb_cache
[i
].clken
)
104 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(i
, CCR
));
107 /* Dual channel, chain channels */
108 writel(bmr_cache
, tcaddr
+ ATMEL_TC_BMR
);
109 /* Finally, trigger all the channels*/
110 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
113 static struct clocksource clksrc
= {
115 .read
= tc_get_cycles
,
116 .mask
= CLOCKSOURCE_MASK(32),
117 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
118 .suspend
= tc_clksrc_suspend
,
119 .resume
= tc_clksrc_resume
,
122 static u64 notrace
tc_sched_clock_read(void)
124 return tc_get_cycles(&clksrc
);
127 static u64 notrace
tc_sched_clock_read32(void)
129 return tc_get_cycles32(&clksrc
);
132 static struct delay_timer tc_delay_timer
;
134 static unsigned long tc_delay_timer_read(void)
136 return tc_get_cycles(&clksrc
);
139 static unsigned long notrace
tc_delay_timer_read32(void)
141 return tc_get_cycles32(&clksrc
);
144 #ifdef CONFIG_GENERIC_CLOCKEVENTS
146 struct tc_clkevt_device
{
147 struct clock_event_device clkevt
;
153 static struct tc_clkevt_device
*to_tc_clkevt(struct clock_event_device
*clkevt
)
155 return container_of(clkevt
, struct tc_clkevt_device
, clkevt
);
158 static u32 timer_clock
;
160 static int tc_shutdown(struct clock_event_device
*d
)
162 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
163 void __iomem
*regs
= tcd
->regs
;
165 writel(0xff, regs
+ ATMEL_TC_REG(2, IDR
));
166 writel(ATMEL_TC_CLKDIS
, regs
+ ATMEL_TC_REG(2, CCR
));
167 if (!clockevent_state_detached(d
))
168 clk_disable(tcd
->clk
);
173 static int tc_set_oneshot(struct clock_event_device
*d
)
175 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
176 void __iomem
*regs
= tcd
->regs
;
178 if (clockevent_state_oneshot(d
) || clockevent_state_periodic(d
))
181 clk_enable(tcd
->clk
);
183 /* count up to RC, then irq and stop */
184 writel(timer_clock
| ATMEL_TC_CPCSTOP
| ATMEL_TC_WAVE
|
185 ATMEL_TC_WAVESEL_UP_AUTO
, regs
+ ATMEL_TC_REG(2, CMR
));
186 writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
188 /* set_next_event() configures and starts the timer */
192 static int tc_set_periodic(struct clock_event_device
*d
)
194 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
195 void __iomem
*regs
= tcd
->regs
;
197 if (clockevent_state_oneshot(d
) || clockevent_state_periodic(d
))
200 /* By not making the gentime core emulate periodic mode on top
201 * of oneshot, we get lower overhead and improved accuracy.
203 clk_enable(tcd
->clk
);
205 /* count up to RC, then irq and restart */
206 writel(timer_clock
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
207 regs
+ ATMEL_TC_REG(2, CMR
));
208 writel((tcd
->rate
+ HZ
/ 2) / HZ
, tcaddr
+ ATMEL_TC_REG(2, RC
));
210 /* Enable clock and interrupts on RC compare */
211 writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
214 writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
, regs
+
215 ATMEL_TC_REG(2, CCR
));
219 static int tc_next_event(unsigned long delta
, struct clock_event_device
*d
)
221 writel_relaxed(delta
, tcaddr
+ ATMEL_TC_REG(2, RC
));
224 writel_relaxed(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
225 tcaddr
+ ATMEL_TC_REG(2, CCR
));
229 static struct tc_clkevt_device clkevt
= {
231 .features
= CLOCK_EVT_FEAT_PERIODIC
|
232 CLOCK_EVT_FEAT_ONESHOT
,
233 /* Should be lower than at91rm9200's system timer */
235 .set_next_event
= tc_next_event
,
236 .set_state_shutdown
= tc_shutdown
,
237 .set_state_periodic
= tc_set_periodic
,
238 .set_state_oneshot
= tc_set_oneshot
,
242 static irqreturn_t
ch2_irq(int irq
, void *handle
)
244 struct tc_clkevt_device
*dev
= handle
;
247 sr
= readl_relaxed(dev
->regs
+ ATMEL_TC_REG(2, SR
));
248 if (sr
& ATMEL_TC_CPCS
) {
249 dev
->clkevt
.event_handler(&dev
->clkevt
);
256 static int __init
setup_clkevents(struct atmel_tc
*tc
, int divisor_idx
)
259 struct clk
*t2_clk
= tc
->clk
[2];
260 int irq
= tc
->irq
[2];
261 int bits
= tc
->tcb_config
->counter_width
;
263 /* try to enable t2 clk to avoid future errors in mode change */
264 ret
= clk_prepare_enable(t2_clk
);
268 clkevt
.regs
= tc
->regs
;
272 timer_clock
= divisor_idx
;
273 clkevt
.rate
= clk_get_rate(t2_clk
) / atmel_tcb_divisors
[divisor_idx
];
275 ret
= clk_prepare_enable(tc
->slow_clk
);
277 clk_disable_unprepare(t2_clk
);
281 clkevt
.rate
= clk_get_rate(tc
->slow_clk
);
282 timer_clock
= ATMEL_TC_TIMER_CLOCK5
;
287 clkevt
.clkevt
.cpumask
= cpumask_of(0);
289 ret
= request_irq(irq
, ch2_irq
, IRQF_TIMER
, "tc_clkevt", &clkevt
);
291 clk_unprepare(t2_clk
);
293 clk_disable_unprepare(tc
->slow_clk
);
297 clockevents_config_and_register(&clkevt
.clkevt
, clkevt
.rate
, 1, BIT(bits
) - 1);
302 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
304 static int __init
setup_clkevents(struct atmel_tc
*tc
, int divisor_idx
)
312 static void __init
tcb_setup_dual_chan(struct atmel_tc
*tc
, int mck_divisor_idx
)
314 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
315 writel(mck_divisor_idx
/* likely divide-by-8 */
317 | ATMEL_TC_WAVESEL_UP
/* free-run */
318 | ATMEL_TC_ACPA_SET
/* TIOA0 rises at 0 */
319 | ATMEL_TC_ACPC_CLEAR
, /* (duty cycle 50%) */
320 tcaddr
+ ATMEL_TC_REG(0, CMR
));
321 writel(0x0000, tcaddr
+ ATMEL_TC_REG(0, RA
));
322 writel(0x8000, tcaddr
+ ATMEL_TC_REG(0, RC
));
323 writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
324 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
326 /* channel 1: waveform mode, input TIOA0 */
327 writel(ATMEL_TC_XC1
/* input: TIOA0 */
329 | ATMEL_TC_WAVESEL_UP
, /* free-run */
330 tcaddr
+ ATMEL_TC_REG(1, CMR
));
331 writel(0xff, tcaddr
+ ATMEL_TC_REG(1, IDR
)); /* no irqs */
332 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(1, CCR
));
334 /* chain channel 0 to channel 1*/
335 writel(ATMEL_TC_TC1XC1S_TIOA0
, tcaddr
+ ATMEL_TC_BMR
);
336 /* then reset all the timers */
337 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
340 static void __init
tcb_setup_single_chan(struct atmel_tc
*tc
, int mck_divisor_idx
)
342 /* channel 0: waveform mode, input mclk/8 */
343 writel(mck_divisor_idx
/* likely divide-by-8 */
345 | ATMEL_TC_WAVESEL_UP
, /* free-run */
346 tcaddr
+ ATMEL_TC_REG(0, CMR
));
347 writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
348 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
350 /* then reset all the timers */
351 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
354 static struct atmel_tcb_config tcb_rm9200_config
= {
358 static struct atmel_tcb_config tcb_sam9x5_config
= {
362 static struct atmel_tcb_config tcb_sama5d2_config
= {
367 static const struct of_device_id atmel_tcb_of_match
[] = {
368 { .compatible
= "atmel,at91rm9200-tcb", .data
= &tcb_rm9200_config
, },
369 { .compatible
= "atmel,at91sam9x5-tcb", .data
= &tcb_sam9x5_config
, },
370 { .compatible
= "atmel,sama5d2-tcb", .data
= &tcb_sama5d2_config
, },
374 static int __init
tcb_clksrc_init(struct device_node
*node
)
378 const struct of_device_id
*match
;
379 u64 (*tc_sched_clock
)(void);
380 u32 rate
, divided_rate
= 0;
381 int best_divisor_idx
= -1;
386 /* Protect against multiple calls */
390 tc
.regs
= of_iomap(node
->parent
, 0);
394 t0_clk
= of_clk_get_by_name(node
->parent
, "t0_clk");
396 return PTR_ERR(t0_clk
);
398 tc
.slow_clk
= of_clk_get_by_name(node
->parent
, "slow_clk");
399 if (IS_ERR(tc
.slow_clk
))
400 return PTR_ERR(tc
.slow_clk
);
403 tc
.clk
[1] = of_clk_get_by_name(node
->parent
, "t1_clk");
404 if (IS_ERR(tc
.clk
[1]))
406 tc
.clk
[2] = of_clk_get_by_name(node
->parent
, "t2_clk");
407 if (IS_ERR(tc
.clk
[2]))
410 tc
.irq
[2] = of_irq_get(node
->parent
, 2);
411 if (tc
.irq
[2] <= 0) {
412 tc
.irq
[2] = of_irq_get(node
->parent
, 0);
417 match
= of_match_node(atmel_tcb_of_match
, node
->parent
);
421 tc
.tcb_config
= match
->data
;
422 bits
= tc
.tcb_config
->counter_width
;
424 for (i
= 0; i
< ARRAY_SIZE(tc
.irq
); i
++)
425 writel(ATMEL_TC_ALL_IRQ
, tc
.regs
+ ATMEL_TC_REG(i
, IDR
));
427 ret
= clk_prepare_enable(t0_clk
);
429 pr_debug("can't enable T0 clk\n");
433 /* How fast will we be counting? Pick something over 5 MHz. */
434 rate
= (u32
) clk_get_rate(t0_clk
);
436 if (tc
.tcb_config
->has_gclk
)
438 for (; i
< ARRAY_SIZE(atmel_tcb_divisors
); i
++) {
439 unsigned divisor
= atmel_tcb_divisors
[i
];
442 tmp
= rate
/ divisor
;
443 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate
, divisor
, i
, tmp
);
444 if ((best_divisor_idx
>= 0) && (tmp
< 5 * 1000 * 1000))
447 best_divisor_idx
= i
;
450 clksrc
.name
= kbasename(node
->parent
->full_name
);
451 clkevt
.clkevt
.name
= kbasename(node
->parent
->full_name
);
452 pr_debug("%s at %d.%03d MHz\n", clksrc
.name
, divided_rate
/ 1000000,
453 ((divided_rate
% 1000000) + 500) / 1000);
458 /* use apropriate function to read 32 bit counter */
459 clksrc
.read
= tc_get_cycles32
;
460 /* setup ony channel 0 */
461 tcb_setup_single_chan(&tc
, best_divisor_idx
);
462 tc_sched_clock
= tc_sched_clock_read32
;
463 tc_delay_timer
.read_current_timer
= tc_delay_timer_read32
;
465 /* we have three clocks no matter what the
466 * underlying platform supports.
468 ret
= clk_prepare_enable(tc
.clk
[1]);
470 pr_debug("can't enable T1 clk\n");
473 /* setup both channel 0 & 1 */
474 tcb_setup_dual_chan(&tc
, best_divisor_idx
);
475 tc_sched_clock
= tc_sched_clock_read
;
476 tc_delay_timer
.read_current_timer
= tc_delay_timer_read
;
479 /* and away we go! */
480 ret
= clocksource_register_hz(&clksrc
, divided_rate
);
484 /* channel 2: periodic and oneshot timer support */
485 ret
= setup_clkevents(&tc
, best_divisor_idx
);
487 goto err_unregister_clksrc
;
489 sched_clock_register(tc_sched_clock
, 32, divided_rate
);
491 tc_delay_timer
.freq
= divided_rate
;
492 register_current_timer_delay(&tc_delay_timer
);
496 err_unregister_clksrc
:
497 clocksource_unregister(&clksrc
);
501 clk_disable_unprepare(tc
.clk
[1]);
504 clk_disable_unprepare(t0_clk
);
510 TIMER_OF_DECLARE(atmel_tcb_clksrc
, "atmel,tcb-timer", tcb_clksrc_init
);