1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2016 Broadcom
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
21 #include <linux/bitops.h>
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/md5.h>
30 #include <crypto/authenc.h>
31 #include <crypto/skcipher.h>
32 #include <crypto/hash.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/sha3.h>
43 /* ================= Device Structure ================== */
45 struct device_private iproc_priv
;
47 /* ==================== Parameters ===================== */
49 int flow_debug_logging
;
50 module_param(flow_debug_logging
, int, 0644);
51 MODULE_PARM_DESC(flow_debug_logging
, "Enable Flow Debug Logging");
53 int packet_debug_logging
;
54 module_param(packet_debug_logging
, int, 0644);
55 MODULE_PARM_DESC(packet_debug_logging
, "Enable Packet Debug Logging");
57 int debug_logging_sleep
;
58 module_param(debug_logging_sleep
, int, 0644);
59 MODULE_PARM_DESC(debug_logging_sleep
, "Packet Debug Logging Sleep");
62 * The value of these module parameters is used to set the priority for each
63 * algo type when this driver registers algos with the kernel crypto API.
64 * To use a priority other than the default, set the priority in the insmod or
65 * modprobe. Changing the module priority after init time has no effect.
67 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
68 * algos, but more preferred than generic software algos.
70 static int cipher_pri
= 150;
71 module_param(cipher_pri
, int, 0644);
72 MODULE_PARM_DESC(cipher_pri
, "Priority for cipher algos");
74 static int hash_pri
= 100;
75 module_param(hash_pri
, int, 0644);
76 MODULE_PARM_DESC(hash_pri
, "Priority for hash algos");
78 static int aead_pri
= 150;
79 module_param(aead_pri
, int, 0644);
80 MODULE_PARM_DESC(aead_pri
, "Priority for AEAD algos");
82 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
83 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
89 static char BCMHEADER
[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
91 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
92 * is set dynamically after reading SPU type from device tree.
94 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len
96 /* min and max time to sleep before retrying when mbox queue is full. usec */
97 #define MBOX_SLEEP_MIN 800
98 #define MBOX_SLEEP_MAX 1000
101 * select_channel() - Select a SPU channel to handle a crypto request. Selects
102 * channel in round robin order.
104 * Return: channel index
106 static u8
select_channel(void)
108 u8 chan_idx
= atomic_inc_return(&iproc_priv
.next_chan
);
110 return chan_idx
% iproc_priv
.spu
.num_chan
;
114 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
115 * receive a SPU response message for an skcipher request. Includes buffers to
116 * catch SPU message headers and the response data.
117 * @mssg: mailbox message containing the receive sg
118 * @rctx: crypto request context
119 * @rx_frag_num: number of scatterlist elements required to hold the
120 * SPU response message
121 * @chunksize: Number of bytes of response data expected
122 * @stat_pad_len: Number of bytes required to pad the STAT field to
125 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
126 * when the request completes, whether the request is handled successfully or
134 spu_skcipher_rx_sg_create(struct brcm_message
*mssg
,
135 struct iproc_reqctx_s
*rctx
,
137 unsigned int chunksize
, u32 stat_pad_len
)
139 struct spu_hw
*spu
= &iproc_priv
.spu
;
140 struct scatterlist
*sg
; /* used to build sgs in mbox message */
141 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
142 u32 datalen
; /* Number of bytes of response data expected */
144 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
150 sg_init_table(sg
, rx_frag_num
);
151 /* Space for SPU message header */
152 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
154 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
155 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
156 spu
->spu_xts_tweak_in_payload())
157 sg_set_buf(sg
++, rctx
->msg_buf
.c
.supdt_tweak
,
160 /* Copy in each dst sg entry from request, up to chunksize */
161 datalen
= spu_msg_sg_add(&sg
, &rctx
->dst_sg
, &rctx
->dst_skip
,
162 rctx
->dst_nents
, chunksize
);
163 if (datalen
< chunksize
) {
164 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
165 __func__
, chunksize
, datalen
);
170 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
172 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
173 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
179 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
180 * send a SPU request message for an skcipher request. Includes SPU message
181 * headers and the request data.
182 * @mssg: mailbox message containing the transmit sg
183 * @rctx: crypto request context
184 * @tx_frag_num: number of scatterlist elements required to construct the
185 * SPU request message
186 * @chunksize: Number of bytes of request data
187 * @pad_len: Number of pad bytes
189 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
190 * when the request completes, whether the request is handled successfully or
198 spu_skcipher_tx_sg_create(struct brcm_message
*mssg
,
199 struct iproc_reqctx_s
*rctx
,
200 u8 tx_frag_num
, unsigned int chunksize
, u32 pad_len
)
202 struct spu_hw
*spu
= &iproc_priv
.spu
;
203 struct scatterlist
*sg
; /* used to build sgs in mbox message */
204 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
205 u32 datalen
; /* Number of bytes of response data expected */
208 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
210 if (unlikely(!mssg
->spu
.src
))
214 sg_init_table(sg
, tx_frag_num
);
216 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
217 BCM_HDR_LEN
+ ctx
->spu_req_hdr_len
);
219 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
220 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
221 spu
->spu_xts_tweak_in_payload())
222 sg_set_buf(sg
++, rctx
->msg_buf
.iv_ctr
, SPU_XTS_TWEAK_SIZE
);
224 /* Copy in each src sg entry from request, up to chunksize */
225 datalen
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
226 rctx
->src_nents
, chunksize
);
227 if (unlikely(datalen
< chunksize
)) {
228 pr_err("%s(): failed to copy src sg to mbox msg",
234 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
236 stat_len
= spu
->spu_tx_status_len();
238 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
239 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
244 static int mailbox_send_message(struct brcm_message
*mssg
, u32 flags
,
249 struct device
*dev
= &(iproc_priv
.pdev
->dev
);
251 err
= mbox_send_message(iproc_priv
.mbox
[chan_idx
], mssg
);
252 if (flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) {
253 while ((err
== -ENOBUFS
) && (retry_cnt
< SPU_MB_RETRY_MAX
)) {
255 * Mailbox queue is full. Since MAY_SLEEP is set, assume
256 * not in atomic context and we can wait and try again.
259 usleep_range(MBOX_SLEEP_MIN
, MBOX_SLEEP_MAX
);
260 err
= mbox_send_message(iproc_priv
.mbox
[chan_idx
],
262 atomic_inc(&iproc_priv
.mb_no_spc
);
266 atomic_inc(&iproc_priv
.mb_send_fail
);
270 /* Check error returned by mailbox controller */
272 if (unlikely(err
< 0)) {
273 dev_err(dev
, "message error %d", err
);
274 /* Signal txdone for mailbox channel */
277 /* Signal txdone for mailbox channel */
278 mbox_client_txdone(iproc_priv
.mbox
[chan_idx
], err
);
283 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
284 * a single SPU request message, starting at the current position in the request
286 * @rctx: Crypto request context
288 * This may be called on the crypto API thread, or, when a request is so large
289 * it must be broken into multiple SPU messages, on the thread used to invoke
290 * the response callback. When requests are broken into multiple SPU
291 * messages, we assume subsequent messages depend on previous results, and
292 * thus always wait for previous results before submitting the next message.
293 * Because requests are submitted in lock step like this, there is no need
294 * to synchronize access to request data structures.
296 * Return: -EINPROGRESS: request has been accepted and result will be returned
298 * Any other value indicates an error
300 static int handle_skcipher_req(struct iproc_reqctx_s
*rctx
)
302 struct spu_hw
*spu
= &iproc_priv
.spu
;
303 struct crypto_async_request
*areq
= rctx
->parent
;
304 struct skcipher_request
*req
=
305 container_of(areq
, struct skcipher_request
, base
);
306 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
307 struct spu_cipher_parms cipher_parms
;
309 unsigned int chunksize
; /* Num bytes of request to submit */
310 int remaining
; /* Bytes of request still to process */
311 int chunk_start
; /* Beginning of data for current SPU msg */
313 /* IV or ctr value to use in this SPU msg */
314 u8 local_iv_ctr
[MAX_IV_SIZE
];
315 u32 stat_pad_len
; /* num bytes to align status field */
316 u32 pad_len
; /* total length of all padding */
317 struct brcm_message
*mssg
; /* mailbox message */
319 /* number of entries in src and dst sg in mailbox message. */
320 u8 rx_frag_num
= 2; /* response header and STATUS */
321 u8 tx_frag_num
= 1; /* request header */
323 flow_log("%s\n", __func__
);
325 cipher_parms
.alg
= ctx
->cipher
.alg
;
326 cipher_parms
.mode
= ctx
->cipher
.mode
;
327 cipher_parms
.type
= ctx
->cipher_type
;
328 cipher_parms
.key_len
= ctx
->enckeylen
;
329 cipher_parms
.key_buf
= ctx
->enckey
;
330 cipher_parms
.iv_buf
= local_iv_ctr
;
331 cipher_parms
.iv_len
= rctx
->iv_ctr_len
;
333 mssg
= &rctx
->mb_mssg
;
334 chunk_start
= rctx
->src_sent
;
335 remaining
= rctx
->total_todo
- chunk_start
;
337 /* determine the chunk we are breaking off and update the indexes */
338 if ((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
339 (remaining
> ctx
->max_payload
))
340 chunksize
= ctx
->max_payload
;
342 chunksize
= remaining
;
344 rctx
->src_sent
+= chunksize
;
345 rctx
->total_sent
= rctx
->src_sent
;
347 /* Count number of sg entries to be included in this request */
348 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
349 rctx
->dst_nents
= spu_sg_count(rctx
->dst_sg
, rctx
->dst_skip
, chunksize
);
351 if ((ctx
->cipher
.mode
== CIPHER_MODE_CBC
) &&
352 rctx
->is_encrypt
&& chunk_start
)
354 * Encrypting non-first first chunk. Copy last block of
355 * previous result to IV for this chunk.
357 sg_copy_part_to_buf(req
->dst
, rctx
->msg_buf
.iv_ctr
,
359 chunk_start
- rctx
->iv_ctr_len
);
361 if (rctx
->iv_ctr_len
) {
362 /* get our local copy of the iv */
363 __builtin_memcpy(local_iv_ctr
, rctx
->msg_buf
.iv_ctr
,
366 /* generate the next IV if possible */
367 if ((ctx
->cipher
.mode
== CIPHER_MODE_CBC
) &&
370 * CBC Decrypt: next IV is the last ciphertext block in
373 sg_copy_part_to_buf(req
->src
, rctx
->msg_buf
.iv_ctr
,
375 rctx
->src_sent
- rctx
->iv_ctr_len
);
376 } else if (ctx
->cipher
.mode
== CIPHER_MODE_CTR
) {
378 * The SPU hardware increments the counter once for
379 * each AES block of 16 bytes. So update the counter
380 * for the next chunk, if there is one. Note that for
381 * this chunk, the counter has already been copied to
382 * local_iv_ctr. We can assume a block size of 16,
383 * because we only support CTR mode for AES, not for
384 * any other cipher alg.
386 add_to_ctr(rctx
->msg_buf
.iv_ctr
, chunksize
>> 4);
390 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
391 flow_log("max_payload infinite\n");
393 flow_log("max_payload %u\n", ctx
->max_payload
);
395 flow_log("sent:%u start:%u remains:%u size:%u\n",
396 rctx
->src_sent
, chunk_start
, remaining
, chunksize
);
398 /* Copy SPU header template created at setkey time */
399 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, ctx
->bcm_spu_req_hdr
,
400 sizeof(rctx
->msg_buf
.bcm_spu_req_hdr
));
402 spu
->spu_cipher_req_finish(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
403 ctx
->spu_req_hdr_len
, !(rctx
->is_encrypt
),
404 &cipher_parms
, chunksize
);
406 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
408 stat_pad_len
= spu
->spu_wordalign_padlen(chunksize
);
411 pad_len
= stat_pad_len
;
414 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
, 0,
415 0, ctx
->auth
.alg
, ctx
->auth
.mode
,
416 rctx
->total_sent
, stat_pad_len
);
419 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
420 ctx
->spu_req_hdr_len
);
421 packet_log("payload:\n");
422 dump_sg(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
423 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
426 * Build mailbox message containing SPU request msg and rx buffers
427 * to catch response message
429 memset(mssg
, 0, sizeof(*mssg
));
430 mssg
->type
= BRCM_MESSAGE_SPU
;
431 mssg
->ctx
= rctx
; /* Will be returned in response */
433 /* Create rx scatterlist to catch result */
434 rx_frag_num
+= rctx
->dst_nents
;
436 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
437 spu
->spu_xts_tweak_in_payload())
438 rx_frag_num
++; /* extra sg to insert tweak */
440 err
= spu_skcipher_rx_sg_create(mssg
, rctx
, rx_frag_num
, chunksize
,
445 /* Create tx scatterlist containing SPU request message */
446 tx_frag_num
+= rctx
->src_nents
;
447 if (spu
->spu_tx_status_len())
450 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
451 spu
->spu_xts_tweak_in_payload())
452 tx_frag_num
++; /* extra sg to insert tweak */
454 err
= spu_skcipher_tx_sg_create(mssg
, rctx
, tx_frag_num
, chunksize
,
459 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
460 if (unlikely(err
< 0))
467 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
468 * total received count for the request and updates global stats.
469 * @rctx: Crypto request context
471 static void handle_skcipher_resp(struct iproc_reqctx_s
*rctx
)
473 struct spu_hw
*spu
= &iproc_priv
.spu
;
475 struct crypto_async_request
*areq
= rctx
->parent
;
476 struct skcipher_request
*req
= skcipher_request_cast(areq
);
478 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
481 /* See how much data was returned */
482 payload_len
= spu
->spu_payload_length(rctx
->msg_buf
.spu_resp_hdr
);
485 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
486 * encrypted tweak ("i") value; we don't count those.
488 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
489 spu
->spu_xts_tweak_in_payload() &&
490 (payload_len
>= SPU_XTS_TWEAK_SIZE
))
491 payload_len
-= SPU_XTS_TWEAK_SIZE
;
493 atomic64_add(payload_len
, &iproc_priv
.bytes_in
);
495 flow_log("%s() offset: %u, bd_len: %u BD:\n",
496 __func__
, rctx
->total_received
, payload_len
);
498 dump_sg(req
->dst
, rctx
->total_received
, payload_len
);
500 rctx
->total_received
+= payload_len
;
501 if (rctx
->total_received
== rctx
->total_todo
) {
502 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_CIPHER
]);
504 &iproc_priv
.cipher_cnt
[ctx
->cipher
.alg
][ctx
->cipher
.mode
]);
509 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
510 * receive a SPU response message for an ahash request.
511 * @mssg: mailbox message containing the receive sg
512 * @rctx: crypto request context
513 * @rx_frag_num: number of scatterlist elements required to hold the
514 * SPU response message
515 * @digestsize: length of hash digest, in bytes
516 * @stat_pad_len: Number of bytes required to pad the STAT field to
519 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
520 * when the request completes, whether the request is handled successfully or
528 spu_ahash_rx_sg_create(struct brcm_message
*mssg
,
529 struct iproc_reqctx_s
*rctx
,
530 u8 rx_frag_num
, unsigned int digestsize
,
533 struct spu_hw
*spu
= &iproc_priv
.spu
;
534 struct scatterlist
*sg
; /* used to build sgs in mbox message */
535 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
537 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
543 sg_init_table(sg
, rx_frag_num
);
544 /* Space for SPU message header */
545 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
547 /* Space for digest */
548 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, digestsize
);
551 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
553 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
554 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
559 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
560 * a SPU request message for an ahash request. Includes SPU message headers and
562 * @mssg: mailbox message containing the transmit sg
563 * @rctx: crypto request context
564 * @tx_frag_num: number of scatterlist elements required to construct the
565 * SPU request message
566 * @spu_hdr_len: length in bytes of SPU message header
567 * @hash_carry_len: Number of bytes of data carried over from previous req
568 * @new_data_len: Number of bytes of new request data
569 * @pad_len: Number of pad bytes
571 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
572 * when the request completes, whether the request is handled successfully or
580 spu_ahash_tx_sg_create(struct brcm_message
*mssg
,
581 struct iproc_reqctx_s
*rctx
,
584 unsigned int hash_carry_len
,
585 unsigned int new_data_len
, u32 pad_len
)
587 struct spu_hw
*spu
= &iproc_priv
.spu
;
588 struct scatterlist
*sg
; /* used to build sgs in mbox message */
589 u32 datalen
; /* Number of bytes of response data expected */
592 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
598 sg_init_table(sg
, tx_frag_num
);
600 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
601 BCM_HDR_LEN
+ spu_hdr_len
);
604 sg_set_buf(sg
++, rctx
->hash_carry
, hash_carry_len
);
607 /* Copy in each src sg entry from request, up to chunksize */
608 datalen
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
609 rctx
->src_nents
, new_data_len
);
610 if (datalen
< new_data_len
) {
611 pr_err("%s(): failed to copy src sg to mbox msg",
618 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
620 stat_len
= spu
->spu_tx_status_len();
622 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
623 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
630 * handle_ahash_req() - Process an asynchronous hash request from the crypto
632 * @rctx: Crypto request context
634 * Builds a SPU request message embedded in a mailbox message and submits the
635 * mailbox message on a selected mailbox channel. The SPU request message is
636 * constructed as a scatterlist, including entries from the crypto API's
637 * src scatterlist to avoid copying the data to be hashed. This function is
638 * called either on the thread from the crypto API, or, in the case that the
639 * crypto API request is too large to fit in a single SPU request message,
640 * on the thread that invokes the receive callback with a response message.
641 * Because some operations require the response from one chunk before the next
642 * chunk can be submitted, we always wait for the response for the previous
643 * chunk before submitting the next chunk. Because requests are submitted in
644 * lock step like this, there is no need to synchronize access to request data
648 * -EINPROGRESS: request has been submitted to SPU and response will be
649 * returned asynchronously
650 * -EAGAIN: non-final request included a small amount of data, which for
651 * efficiency we did not submit to the SPU, but instead stored
652 * to be submitted to the SPU with the next part of the request
653 * other: an error code
655 static int handle_ahash_req(struct iproc_reqctx_s
*rctx
)
657 struct spu_hw
*spu
= &iproc_priv
.spu
;
658 struct crypto_async_request
*areq
= rctx
->parent
;
659 struct ahash_request
*req
= ahash_request_cast(areq
);
660 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
661 struct crypto_tfm
*tfm
= crypto_ahash_tfm(ahash
);
662 unsigned int blocksize
= crypto_tfm_alg_blocksize(tfm
);
663 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
665 /* number of bytes still to be hashed in this req */
666 unsigned int nbytes_to_hash
= 0;
668 unsigned int chunksize
= 0; /* length of hash carry + new data */
670 * length of new data, not from hash carry, to be submitted in
673 unsigned int new_data_len
;
675 unsigned int __maybe_unused chunk_start
= 0;
676 u32 db_size
; /* Length of data field, incl gcm and hash padding */
677 int pad_len
= 0; /* total pad len, including gcm, hash, stat padding */
678 u32 data_pad_len
= 0; /* length of GCM/CCM padding */
679 u32 stat_pad_len
= 0; /* length of padding to align STATUS word */
680 struct brcm_message
*mssg
; /* mailbox message */
681 struct spu_request_opts req_opts
;
682 struct spu_cipher_parms cipher_parms
;
683 struct spu_hash_parms hash_parms
;
684 struct spu_aead_parms aead_parms
;
685 unsigned int local_nbuf
;
687 unsigned int digestsize
;
691 * number of entries in src and dst sg. Always includes SPU msg header.
692 * rx always includes a buffer to catch digest and STATUS.
697 flow_log("total_todo %u, total_sent %u\n",
698 rctx
->total_todo
, rctx
->total_sent
);
700 memset(&req_opts
, 0, sizeof(req_opts
));
701 memset(&cipher_parms
, 0, sizeof(cipher_parms
));
702 memset(&hash_parms
, 0, sizeof(hash_parms
));
703 memset(&aead_parms
, 0, sizeof(aead_parms
));
705 req_opts
.bd_suppress
= true;
706 hash_parms
.alg
= ctx
->auth
.alg
;
707 hash_parms
.mode
= ctx
->auth
.mode
;
708 hash_parms
.type
= HASH_TYPE_NONE
;
709 hash_parms
.key_buf
= (u8
*)ctx
->authkey
;
710 hash_parms
.key_len
= ctx
->authkeylen
;
713 * For hash algorithms below assignment looks bit odd but
714 * it's needed for AES-XCBC and AES-CMAC hash algorithms
715 * to differentiate between 128, 192, 256 bit key values.
716 * Based on the key values, hash algorithm is selected.
717 * For example for 128 bit key, hash algorithm is AES-128.
719 cipher_parms
.type
= ctx
->cipher_type
;
721 mssg
= &rctx
->mb_mssg
;
722 chunk_start
= rctx
->src_sent
;
725 * Compute the amount remaining to hash. This may include data
726 * carried over from previous requests.
728 nbytes_to_hash
= rctx
->total_todo
- rctx
->total_sent
;
729 chunksize
= nbytes_to_hash
;
730 if ((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
731 (chunksize
> ctx
->max_payload
))
732 chunksize
= ctx
->max_payload
;
735 * If this is not a final request and the request data is not a multiple
736 * of a full block, then simply park the extra data and prefix it to the
737 * data for the next request.
739 if (!rctx
->is_final
) {
740 u8
*dest
= rctx
->hash_carry
+ rctx
->hash_carry_len
;
741 u16 new_len
; /* len of data to add to hash carry */
743 rem
= chunksize
% blocksize
; /* remainder */
745 /* chunksize not a multiple of blocksize */
747 if (chunksize
== 0) {
748 /* Don't have a full block to submit to hw */
749 new_len
= rem
- rctx
->hash_carry_len
;
750 sg_copy_part_to_buf(req
->src
, dest
, new_len
,
752 rctx
->hash_carry_len
= rem
;
753 flow_log("Exiting with hash carry len: %u\n",
754 rctx
->hash_carry_len
);
755 packet_dump(" buf: ",
757 rctx
->hash_carry_len
);
763 /* if we have hash carry, then prefix it to the data in this request */
764 local_nbuf
= rctx
->hash_carry_len
;
765 rctx
->hash_carry_len
= 0;
768 new_data_len
= chunksize
- local_nbuf
;
770 /* Count number of sg entries to be used in this request */
771 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
,
774 /* AES hashing keeps key size in type field, so need to copy it here */
775 if (hash_parms
.alg
== HASH_ALG_AES
)
776 hash_parms
.type
= (enum hash_type
)cipher_parms
.type
;
778 hash_parms
.type
= spu
->spu_hash_type(rctx
->total_sent
);
780 digestsize
= spu
->spu_digest_size(ctx
->digestsize
, ctx
->auth
.alg
,
782 hash_parms
.digestsize
= digestsize
;
784 /* update the indexes */
785 rctx
->total_sent
+= chunksize
;
786 /* if you sent a prebuf then that wasn't from this req->src */
787 rctx
->src_sent
+= new_data_len
;
789 if ((rctx
->total_sent
== rctx
->total_todo
) && rctx
->is_final
)
790 hash_parms
.pad_len
= spu
->spu_hash_pad_len(hash_parms
.alg
,
796 * If a non-first chunk, then include the digest returned from the
797 * previous chunk so that hw can add to it (except for AES types).
799 if ((hash_parms
.type
== HASH_TYPE_UPDT
) &&
800 (hash_parms
.alg
!= HASH_ALG_AES
)) {
801 hash_parms
.key_buf
= rctx
->incr_hash
;
802 hash_parms
.key_len
= digestsize
;
805 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
807 flow_log("%s() final: %u nbuf: %u ",
808 __func__
, rctx
->is_final
, local_nbuf
);
810 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
811 flow_log("max_payload infinite\n");
813 flow_log("max_payload %u\n", ctx
->max_payload
);
815 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start
, chunksize
);
817 /* Prepend SPU header with type 3 BCM header */
818 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
820 hash_parms
.prebuf_len
= local_nbuf
;
821 spu_hdr_len
= spu
->spu_create_request(rctx
->msg_buf
.bcm_spu_req_hdr
+
823 &req_opts
, &cipher_parms
,
824 &hash_parms
, &aead_parms
,
827 if (spu_hdr_len
== 0) {
828 pr_err("Failed to create SPU request header\n");
833 * Determine total length of padding required. Put all padding in one
836 data_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
, chunksize
);
837 db_size
= spu_real_db_size(0, 0, local_nbuf
, new_data_len
,
838 0, 0, hash_parms
.pad_len
);
839 if (spu
->spu_tx_status_len())
840 stat_pad_len
= spu
->spu_wordalign_padlen(db_size
);
843 pad_len
= hash_parms
.pad_len
+ data_pad_len
+ stat_pad_len
;
846 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
, data_pad_len
,
847 hash_parms
.pad_len
, ctx
->auth
.alg
,
848 ctx
->auth
.mode
, rctx
->total_sent
,
852 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
854 packet_dump(" prebuf: ", rctx
->hash_carry
, local_nbuf
);
856 dump_sg(rctx
->src_sg
, rctx
->src_skip
, new_data_len
);
857 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
860 * Build mailbox message containing SPU request msg and rx buffers
861 * to catch response message
863 memset(mssg
, 0, sizeof(*mssg
));
864 mssg
->type
= BRCM_MESSAGE_SPU
;
865 mssg
->ctx
= rctx
; /* Will be returned in response */
867 /* Create rx scatterlist to catch result */
868 err
= spu_ahash_rx_sg_create(mssg
, rctx
, rx_frag_num
, digestsize
,
873 /* Create tx scatterlist containing SPU request message */
874 tx_frag_num
+= rctx
->src_nents
;
875 if (spu
->spu_tx_status_len())
877 err
= spu_ahash_tx_sg_create(mssg
, rctx
, tx_frag_num
, spu_hdr_len
,
878 local_nbuf
, new_data_len
, pad_len
);
882 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
883 if (unlikely(err
< 0))
890 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
891 * for an HMAC request.
892 * @req: The HMAC request from the crypto API
893 * @ctx: The session context
895 * Return: 0 if synchronous hash operation successful
896 * -EINVAL if the hash algo is unrecognized
897 * any other value indicates an error
899 static int spu_hmac_outer_hash(struct ahash_request
*req
,
900 struct iproc_ctx_s
*ctx
)
902 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
903 unsigned int blocksize
=
904 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
907 switch (ctx
->auth
.alg
) {
909 rc
= do_shash("md5", req
->result
, ctx
->opad
, blocksize
,
910 req
->result
, ctx
->digestsize
, NULL
, 0);
913 rc
= do_shash("sha1", req
->result
, ctx
->opad
, blocksize
,
914 req
->result
, ctx
->digestsize
, NULL
, 0);
916 case HASH_ALG_SHA224
:
917 rc
= do_shash("sha224", req
->result
, ctx
->opad
, blocksize
,
918 req
->result
, ctx
->digestsize
, NULL
, 0);
920 case HASH_ALG_SHA256
:
921 rc
= do_shash("sha256", req
->result
, ctx
->opad
, blocksize
,
922 req
->result
, ctx
->digestsize
, NULL
, 0);
924 case HASH_ALG_SHA384
:
925 rc
= do_shash("sha384", req
->result
, ctx
->opad
, blocksize
,
926 req
->result
, ctx
->digestsize
, NULL
, 0);
928 case HASH_ALG_SHA512
:
929 rc
= do_shash("sha512", req
->result
, ctx
->opad
, blocksize
,
930 req
->result
, ctx
->digestsize
, NULL
, 0);
933 pr_err("%s() Error : unknown hmac type\n", __func__
);
940 * ahash_req_done() - Process a hash result from the SPU hardware.
941 * @rctx: Crypto request context
943 * Return: 0 if successful
946 static int ahash_req_done(struct iproc_reqctx_s
*rctx
)
948 struct spu_hw
*spu
= &iproc_priv
.spu
;
949 struct crypto_async_request
*areq
= rctx
->parent
;
950 struct ahash_request
*req
= ahash_request_cast(areq
);
951 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
954 memcpy(req
->result
, rctx
->msg_buf
.digest
, ctx
->digestsize
);
956 if (spu
->spu_type
== SPU_TYPE_SPUM
) {
957 /* byte swap the output from the UPDT function to network byte
960 if (ctx
->auth
.alg
== HASH_ALG_MD5
) {
961 __swab32s((u32
*)req
->result
);
962 __swab32s(((u32
*)req
->result
) + 1);
963 __swab32s(((u32
*)req
->result
) + 2);
964 __swab32s(((u32
*)req
->result
) + 3);
965 __swab32s(((u32
*)req
->result
) + 4);
969 flow_dump(" digest ", req
->result
, ctx
->digestsize
);
971 /* if this an HMAC then do the outer hash */
972 if (rctx
->is_sw_hmac
) {
973 err
= spu_hmac_outer_hash(req
, ctx
);
976 flow_dump(" hmac: ", req
->result
, ctx
->digestsize
);
979 if (rctx
->is_sw_hmac
|| ctx
->auth
.mode
== HASH_MODE_HMAC
) {
980 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_HMAC
]);
981 atomic_inc(&iproc_priv
.hmac_cnt
[ctx
->auth
.alg
]);
983 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_HASH
]);
984 atomic_inc(&iproc_priv
.hash_cnt
[ctx
->auth
.alg
]);
991 * handle_ahash_resp() - Process a SPU response message for a hash request.
992 * Checks if the entire crypto API request has been processed, and if so,
993 * invokes post processing on the result.
994 * @rctx: Crypto request context
996 static void handle_ahash_resp(struct iproc_reqctx_s
*rctx
)
998 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1000 struct crypto_async_request
*areq
= rctx
->parent
;
1001 struct ahash_request
*req
= ahash_request_cast(areq
);
1002 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
1003 unsigned int blocksize
=
1004 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
1007 * Save hash to use as input to next op if incremental. Might be copying
1008 * too much, but that's easier than figuring out actual digest size here
1010 memcpy(rctx
->incr_hash
, rctx
->msg_buf
.digest
, MAX_DIGEST_SIZE
);
1012 flow_log("%s() blocksize:%u digestsize:%u\n",
1013 __func__
, blocksize
, ctx
->digestsize
);
1015 atomic64_add(ctx
->digestsize
, &iproc_priv
.bytes_in
);
1017 if (rctx
->is_final
&& (rctx
->total_sent
== rctx
->total_todo
))
1018 ahash_req_done(rctx
);
1022 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1023 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1024 * message headers and the response data.
1025 * @mssg: mailbox message containing the receive sg
1026 * @rctx: crypto request context
1027 * @rx_frag_num: number of scatterlist elements required to hold the
1028 * SPU response message
1029 * @assoc_len: Length of associated data included in the crypto request
1030 * @ret_iv_len: Length of IV returned in response
1031 * @resp_len: Number of bytes of response data expected to be written to
1032 * dst buffer from crypto API
1033 * @digestsize: Length of hash digest, in bytes
1034 * @stat_pad_len: Number of bytes required to pad the STAT field to
1037 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1038 * when the request completes, whether the request is handled successfully or
1039 * there is an error.
1045 static int spu_aead_rx_sg_create(struct brcm_message
*mssg
,
1046 struct aead_request
*req
,
1047 struct iproc_reqctx_s
*rctx
,
1049 unsigned int assoc_len
,
1050 u32 ret_iv_len
, unsigned int resp_len
,
1051 unsigned int digestsize
, u32 stat_pad_len
)
1053 struct spu_hw
*spu
= &iproc_priv
.spu
;
1054 struct scatterlist
*sg
; /* used to build sgs in mbox message */
1055 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1056 u32 datalen
; /* Number of bytes of response data expected */
1060 if (ctx
->is_rfc4543
) {
1061 /* RFC4543: only pad after data, not after AAD */
1062 data_padlen
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1063 assoc_len
+ resp_len
);
1064 assoc_buf_len
= assoc_len
;
1066 data_padlen
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1068 assoc_buf_len
= spu
->spu_assoc_resp_len(ctx
->cipher
.mode
,
1069 assoc_len
, ret_iv_len
,
1073 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)
1074 /* ICV (after data) must be in the next 32-bit word for CCM */
1075 data_padlen
+= spu
->spu_wordalign_padlen(assoc_buf_len
+
1080 /* have to catch gcm pad in separate buffer */
1083 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
1089 sg_init_table(sg
, rx_frag_num
);
1091 /* Space for SPU message header */
1092 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
1094 if (assoc_buf_len
) {
1096 * Don't write directly to req->dst, because SPU may pad the
1097 * assoc data in the response
1099 memset(rctx
->msg_buf
.a
.resp_aad
, 0, assoc_buf_len
);
1100 sg_set_buf(sg
++, rctx
->msg_buf
.a
.resp_aad
, assoc_buf_len
);
1105 * Copy in each dst sg entry from request, up to chunksize.
1106 * dst sg catches just the data. digest caught in separate buf.
1108 datalen
= spu_msg_sg_add(&sg
, &rctx
->dst_sg
, &rctx
->dst_skip
,
1109 rctx
->dst_nents
, resp_len
);
1110 if (datalen
< (resp_len
)) {
1111 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1112 __func__
, resp_len
, datalen
);
1117 /* If GCM/CCM data is padded, catch padding in separate buffer */
1119 memset(rctx
->msg_buf
.a
.gcmpad
, 0, data_padlen
);
1120 sg_set_buf(sg
++, rctx
->msg_buf
.a
.gcmpad
, data_padlen
);
1123 /* Always catch ICV in separate buffer */
1124 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, digestsize
);
1126 flow_log("stat_pad_len %u\n", stat_pad_len
);
1128 memset(rctx
->msg_buf
.rx_stat_pad
, 0, stat_pad_len
);
1129 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
1132 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
1133 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
1139 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1140 * SPU request message for an AEAD request. Includes SPU message headers and the
1142 * @mssg: mailbox message containing the transmit sg
1143 * @rctx: crypto request context
1144 * @tx_frag_num: number of scatterlist elements required to construct the
1145 * SPU request message
1146 * @spu_hdr_len: length of SPU message header in bytes
1147 * @assoc: crypto API associated data scatterlist
1148 * @assoc_len: length of associated data
1149 * @assoc_nents: number of scatterlist entries containing assoc data
1150 * @aead_iv_len: length of AEAD IV, if included
1151 * @chunksize: Number of bytes of request data
1152 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1153 * @pad_len: Number of pad bytes
1154 * @incl_icv: If true, write separate ICV buffer after data and
1157 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1158 * when the request completes, whether the request is handled successfully or
1159 * there is an error.
1165 static int spu_aead_tx_sg_create(struct brcm_message
*mssg
,
1166 struct iproc_reqctx_s
*rctx
,
1169 struct scatterlist
*assoc
,
1170 unsigned int assoc_len
,
1172 unsigned int aead_iv_len
,
1173 unsigned int chunksize
,
1174 u32 aad_pad_len
, u32 pad_len
, bool incl_icv
)
1176 struct spu_hw
*spu
= &iproc_priv
.spu
;
1177 struct scatterlist
*sg
; /* used to build sgs in mbox message */
1178 struct scatterlist
*assoc_sg
= assoc
;
1179 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1180 u32 datalen
; /* Number of bytes of data to write */
1181 u32 written
; /* Number of bytes of data written */
1182 u32 assoc_offset
= 0;
1185 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
1191 sg_init_table(sg
, tx_frag_num
);
1193 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
1194 BCM_HDR_LEN
+ spu_hdr_len
);
1197 /* Copy in each associated data sg entry from request */
1198 written
= spu_msg_sg_add(&sg
, &assoc_sg
, &assoc_offset
,
1199 assoc_nents
, assoc_len
);
1200 if (written
< assoc_len
) {
1201 pr_err("%s(): failed to copy assoc sg to mbox msg",
1208 sg_set_buf(sg
++, rctx
->msg_buf
.iv_ctr
, aead_iv_len
);
1211 memset(rctx
->msg_buf
.a
.req_aad_pad
, 0, aad_pad_len
);
1212 sg_set_buf(sg
++, rctx
->msg_buf
.a
.req_aad_pad
, aad_pad_len
);
1215 datalen
= chunksize
;
1216 if ((chunksize
> ctx
->digestsize
) && incl_icv
)
1217 datalen
-= ctx
->digestsize
;
1219 /* For aead, a single msg should consume the entire src sg */
1220 written
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
1221 rctx
->src_nents
, datalen
);
1222 if (written
< datalen
) {
1223 pr_err("%s(): failed to copy src sg to mbox msg",
1230 memset(rctx
->msg_buf
.spu_req_pad
, 0, pad_len
);
1231 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
1235 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, ctx
->digestsize
);
1237 stat_len
= spu
->spu_tx_status_len();
1239 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
1240 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
1246 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1247 * current AEAD request.
1248 * @rctx: Crypto request context
1250 * Unlike other operation types, we assume the length of the request fits in
1251 * a single SPU request message. aead_enqueue() makes sure this is true.
1252 * Comments for other op types regarding threads applies here as well.
1254 * Unlike incremental hash ops, where the spu returns the entire hash for
1255 * truncated algs like sha-224, the SPU returns just the truncated hash in
1256 * response to aead requests. So digestsize is always ctx->digestsize here.
1258 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1259 * returned asynchronously
1260 * Any other value indicates an error
1262 static int handle_aead_req(struct iproc_reqctx_s
*rctx
)
1264 struct spu_hw
*spu
= &iproc_priv
.spu
;
1265 struct crypto_async_request
*areq
= rctx
->parent
;
1266 struct aead_request
*req
= container_of(areq
,
1267 struct aead_request
, base
);
1268 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1270 unsigned int chunksize
;
1271 unsigned int resp_len
;
1276 struct brcm_message
*mssg
; /* mailbox message */
1277 struct spu_request_opts req_opts
;
1278 struct spu_cipher_parms cipher_parms
;
1279 struct spu_hash_parms hash_parms
;
1280 struct spu_aead_parms aead_parms
;
1281 int assoc_nents
= 0;
1282 bool incl_icv
= false;
1283 unsigned int digestsize
= ctx
->digestsize
;
1285 /* number of entries in src and dst sg. Always includes SPU msg header.
1287 u8 rx_frag_num
= 2; /* and STATUS */
1290 /* doing the whole thing at once */
1291 chunksize
= rctx
->total_todo
;
1293 flow_log("%s: chunksize %u\n", __func__
, chunksize
);
1295 memset(&req_opts
, 0, sizeof(req_opts
));
1296 memset(&hash_parms
, 0, sizeof(hash_parms
));
1297 memset(&aead_parms
, 0, sizeof(aead_parms
));
1299 req_opts
.is_inbound
= !(rctx
->is_encrypt
);
1300 req_opts
.auth_first
= ctx
->auth_first
;
1301 req_opts
.is_aead
= true;
1302 req_opts
.is_esp
= ctx
->is_esp
;
1304 cipher_parms
.alg
= ctx
->cipher
.alg
;
1305 cipher_parms
.mode
= ctx
->cipher
.mode
;
1306 cipher_parms
.type
= ctx
->cipher_type
;
1307 cipher_parms
.key_buf
= ctx
->enckey
;
1308 cipher_parms
.key_len
= ctx
->enckeylen
;
1309 cipher_parms
.iv_buf
= rctx
->msg_buf
.iv_ctr
;
1310 cipher_parms
.iv_len
= rctx
->iv_ctr_len
;
1312 hash_parms
.alg
= ctx
->auth
.alg
;
1313 hash_parms
.mode
= ctx
->auth
.mode
;
1314 hash_parms
.type
= HASH_TYPE_NONE
;
1315 hash_parms
.key_buf
= (u8
*)ctx
->authkey
;
1316 hash_parms
.key_len
= ctx
->authkeylen
;
1317 hash_parms
.digestsize
= digestsize
;
1319 if ((ctx
->auth
.alg
== HASH_ALG_SHA224
) &&
1320 (ctx
->authkeylen
< SHA224_DIGEST_SIZE
))
1321 hash_parms
.key_len
= SHA224_DIGEST_SIZE
;
1323 aead_parms
.assoc_size
= req
->assoclen
;
1324 if (ctx
->is_esp
&& !ctx
->is_rfc4543
) {
1326 * 8-byte IV is included assoc data in request. SPU2
1327 * expects AAD to include just SPI and seqno. So
1328 * subtract off the IV len.
1330 aead_parms
.assoc_size
-= GCM_RFC4106_IV_SIZE
;
1332 if (rctx
->is_encrypt
) {
1333 aead_parms
.return_iv
= true;
1334 aead_parms
.ret_iv_len
= GCM_RFC4106_IV_SIZE
;
1335 aead_parms
.ret_iv_off
= GCM_ESP_SALT_SIZE
;
1338 aead_parms
.ret_iv_len
= 0;
1342 * Count number of sg entries from the crypto API request that are to
1343 * be included in this mailbox message. For dst sg, don't count space
1344 * for digest. Digest gets caught in a separate buffer and copied back
1345 * to dst sg when processing response.
1347 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
1348 rctx
->dst_nents
= spu_sg_count(rctx
->dst_sg
, rctx
->dst_skip
, chunksize
);
1349 if (aead_parms
.assoc_size
)
1350 assoc_nents
= spu_sg_count(rctx
->assoc
, 0,
1351 aead_parms
.assoc_size
);
1353 mssg
= &rctx
->mb_mssg
;
1355 rctx
->total_sent
= chunksize
;
1356 rctx
->src_sent
= chunksize
;
1357 if (spu
->spu_assoc_resp_len(ctx
->cipher
.mode
,
1358 aead_parms
.assoc_size
,
1359 aead_parms
.ret_iv_len
,
1363 aead_parms
.iv_len
= spu
->spu_aead_ivlen(ctx
->cipher
.mode
,
1366 if (ctx
->auth
.alg
== HASH_ALG_AES
)
1367 hash_parms
.type
= (enum hash_type
)ctx
->cipher_type
;
1369 /* General case AAD padding (CCM and RFC4543 special cases below) */
1370 aead_parms
.aad_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1371 aead_parms
.assoc_size
);
1373 /* General case data padding (CCM decrypt special case below) */
1374 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1377 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
1379 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1382 aead_parms
.aad_pad_len
= spu
->spu_gcm_ccm_pad_len(
1384 aead_parms
.assoc_size
+ 2);
1387 * And when decrypting CCM, need to pad without including
1388 * size of ICV which is tacked on to end of chunk
1390 if (!rctx
->is_encrypt
)
1391 aead_parms
.data_pad_len
=
1392 spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1393 chunksize
- digestsize
);
1395 /* CCM also requires software to rewrite portions of IV: */
1396 spu
->spu_ccm_update_iv(digestsize
, &cipher_parms
, req
->assoclen
,
1397 chunksize
, rctx
->is_encrypt
,
1401 if (ctx
->is_rfc4543
) {
1403 * RFC4543: data is included in AAD, so don't pad after AAD
1404 * and pad data based on both AAD + data size
1406 aead_parms
.aad_pad_len
= 0;
1407 if (!rctx
->is_encrypt
)
1408 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(
1410 aead_parms
.assoc_size
+ chunksize
-
1413 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(
1415 aead_parms
.assoc_size
+ chunksize
);
1417 req_opts
.is_rfc4543
= true;
1420 if (spu_req_incl_icv(ctx
->cipher
.mode
, rctx
->is_encrypt
)) {
1423 /* Copy ICV from end of src scatterlist to digest buf */
1424 sg_copy_part_to_buf(req
->src
, rctx
->msg_buf
.digest
, digestsize
,
1425 req
->assoclen
+ rctx
->total_sent
-
1429 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
1431 flow_log("%s()-sent chunksize:%u\n", __func__
, chunksize
);
1433 /* Prepend SPU header with type 3 BCM header */
1434 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
1436 spu_hdr_len
= spu
->spu_create_request(rctx
->msg_buf
.bcm_spu_req_hdr
+
1437 BCM_HDR_LEN
, &req_opts
,
1438 &cipher_parms
, &hash_parms
,
1439 &aead_parms
, chunksize
);
1441 /* Determine total length of padding. Put all padding in one buffer. */
1442 db_size
= spu_real_db_size(aead_parms
.assoc_size
, aead_parms
.iv_len
, 0,
1443 chunksize
, aead_parms
.aad_pad_len
,
1444 aead_parms
.data_pad_len
, 0);
1446 stat_pad_len
= spu
->spu_wordalign_padlen(db_size
);
1450 pad_len
= aead_parms
.data_pad_len
+ stat_pad_len
;
1453 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
,
1454 aead_parms
.data_pad_len
, 0,
1455 ctx
->auth
.alg
, ctx
->auth
.mode
,
1456 rctx
->total_sent
, stat_pad_len
);
1459 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
1461 dump_sg(rctx
->assoc
, 0, aead_parms
.assoc_size
);
1462 packet_dump(" aead iv: ", rctx
->msg_buf
.iv_ctr
, aead_parms
.iv_len
);
1463 packet_log("BD:\n");
1464 dump_sg(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
1465 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
1468 * Build mailbox message containing SPU request msg and rx buffers
1469 * to catch response message
1471 memset(mssg
, 0, sizeof(*mssg
));
1472 mssg
->type
= BRCM_MESSAGE_SPU
;
1473 mssg
->ctx
= rctx
; /* Will be returned in response */
1475 /* Create rx scatterlist to catch result */
1476 rx_frag_num
+= rctx
->dst_nents
;
1477 resp_len
= chunksize
;
1480 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1481 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1482 * sends entire digest back.
1486 if (((ctx
->cipher
.mode
== CIPHER_MODE_GCM
) ||
1487 (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)) && !rctx
->is_encrypt
) {
1489 * Input is ciphertxt plus ICV, but ICV not incl
1492 resp_len
-= ctx
->digestsize
;
1494 /* no rx frags to catch output data */
1495 rx_frag_num
-= rctx
->dst_nents
;
1498 err
= spu_aead_rx_sg_create(mssg
, req
, rctx
, rx_frag_num
,
1499 aead_parms
.assoc_size
,
1500 aead_parms
.ret_iv_len
, resp_len
, digestsize
,
1505 /* Create tx scatterlist containing SPU request message */
1506 tx_frag_num
+= rctx
->src_nents
;
1507 tx_frag_num
+= assoc_nents
;
1508 if (aead_parms
.aad_pad_len
)
1510 if (aead_parms
.iv_len
)
1512 if (spu
->spu_tx_status_len())
1514 err
= spu_aead_tx_sg_create(mssg
, rctx
, tx_frag_num
, spu_hdr_len
,
1515 rctx
->assoc
, aead_parms
.assoc_size
,
1516 assoc_nents
, aead_parms
.iv_len
, chunksize
,
1517 aead_parms
.aad_pad_len
, pad_len
, incl_icv
);
1521 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
1522 if (unlikely(err
< 0))
1525 return -EINPROGRESS
;
1529 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1530 * @rctx: Crypto request context
1532 static void handle_aead_resp(struct iproc_reqctx_s
*rctx
)
1534 struct spu_hw
*spu
= &iproc_priv
.spu
;
1535 struct crypto_async_request
*areq
= rctx
->parent
;
1536 struct aead_request
*req
= container_of(areq
,
1537 struct aead_request
, base
);
1538 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1540 unsigned int icv_offset
;
1543 /* See how much data was returned */
1544 payload_len
= spu
->spu_payload_length(rctx
->msg_buf
.spu_resp_hdr
);
1545 flow_log("payload_len %u\n", payload_len
);
1547 /* only count payload */
1548 atomic64_add(payload_len
, &iproc_priv
.bytes_in
);
1551 packet_dump(" assoc_data ", rctx
->msg_buf
.a
.resp_aad
,
1555 * Copy the ICV back to the destination
1556 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1557 * API doesn't expect ICV in dst buffer.
1559 result_len
= req
->cryptlen
;
1560 if (rctx
->is_encrypt
) {
1561 icv_offset
= req
->assoclen
+ rctx
->total_sent
;
1562 packet_dump(" ICV: ", rctx
->msg_buf
.digest
, ctx
->digestsize
);
1563 flow_log("copying ICV to dst sg at offset %u\n", icv_offset
);
1564 sg_copy_part_from_buf(req
->dst
, rctx
->msg_buf
.digest
,
1565 ctx
->digestsize
, icv_offset
);
1566 result_len
+= ctx
->digestsize
;
1569 packet_log("response data: ");
1570 dump_sg(req
->dst
, req
->assoclen
, result_len
);
1572 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_AEAD
]);
1573 if (ctx
->cipher
.alg
== CIPHER_ALG_AES
) {
1574 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)
1575 atomic_inc(&iproc_priv
.aead_cnt
[AES_CCM
]);
1576 else if (ctx
->cipher
.mode
== CIPHER_MODE_GCM
)
1577 atomic_inc(&iproc_priv
.aead_cnt
[AES_GCM
]);
1579 atomic_inc(&iproc_priv
.aead_cnt
[AUTHENC
]);
1581 atomic_inc(&iproc_priv
.aead_cnt
[AUTHENC
]);
1586 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1587 * @rctx: request context
1589 * Mailbox scatterlists are allocated for each chunk. So free them after
1590 * processing each chunk.
1592 static void spu_chunk_cleanup(struct iproc_reqctx_s
*rctx
)
1594 /* mailbox message used to tx request */
1595 struct brcm_message
*mssg
= &rctx
->mb_mssg
;
1597 kfree(mssg
->spu
.src
);
1598 kfree(mssg
->spu
.dst
);
1599 memset(mssg
, 0, sizeof(struct brcm_message
));
1603 * finish_req() - Used to invoke the complete callback from the requester when
1604 * a request has been handled asynchronously.
1605 * @rctx: Request context
1606 * @err: Indicates whether the request was successful or not
1608 * Ensures that cleanup has been done for request
1610 static void finish_req(struct iproc_reqctx_s
*rctx
, int err
)
1612 struct crypto_async_request
*areq
= rctx
->parent
;
1614 flow_log("%s() err:%d\n\n", __func__
, err
);
1616 /* No harm done if already called */
1617 spu_chunk_cleanup(rctx
);
1620 areq
->complete(areq
, err
);
1624 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1625 * @cl: mailbox client structure for SPU driver
1626 * @msg: mailbox message containing SPU response
1628 static void spu_rx_callback(struct mbox_client
*cl
, void *msg
)
1630 struct spu_hw
*spu
= &iproc_priv
.spu
;
1631 struct brcm_message
*mssg
= msg
;
1632 struct iproc_reqctx_s
*rctx
;
1636 if (unlikely(!rctx
)) {
1638 pr_err("%s(): no request context", __func__
);
1643 /* process the SPU status */
1644 err
= spu
->spu_status_process(rctx
->msg_buf
.rx_stat
);
1646 if (err
== SPU_INVALID_ICV
)
1647 atomic_inc(&iproc_priv
.bad_icv
);
1652 /* Process the SPU response message */
1653 switch (rctx
->ctx
->alg
->type
) {
1654 case CRYPTO_ALG_TYPE_SKCIPHER
:
1655 handle_skcipher_resp(rctx
);
1657 case CRYPTO_ALG_TYPE_AHASH
:
1658 handle_ahash_resp(rctx
);
1660 case CRYPTO_ALG_TYPE_AEAD
:
1661 handle_aead_resp(rctx
);
1669 * If this response does not complete the request, then send the next
1672 if (rctx
->total_sent
< rctx
->total_todo
) {
1673 /* Deallocate anything specific to previous chunk */
1674 spu_chunk_cleanup(rctx
);
1676 switch (rctx
->ctx
->alg
->type
) {
1677 case CRYPTO_ALG_TYPE_SKCIPHER
:
1678 err
= handle_skcipher_req(rctx
);
1680 case CRYPTO_ALG_TYPE_AHASH
:
1681 err
= handle_ahash_req(rctx
);
1684 * we saved data in hash carry, but tell crypto
1685 * API we successfully completed request.
1689 case CRYPTO_ALG_TYPE_AEAD
:
1690 err
= handle_aead_req(rctx
);
1696 if (err
== -EINPROGRESS
)
1697 /* Successfully submitted request for next chunk */
1702 finish_req(rctx
, err
);
1705 /* ==================== Kernel Cryptographic API ==================== */
1708 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1709 * @req: Crypto API request
1710 * @encrypt: true if encrypting; false if decrypting
1712 * Return: -EINPROGRESS if request accepted and result will be returned
1716 static int skcipher_enqueue(struct skcipher_request
*req
, bool encrypt
)
1718 struct iproc_reqctx_s
*rctx
= skcipher_request_ctx(req
);
1719 struct iproc_ctx_s
*ctx
=
1720 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req
));
1723 flow_log("%s() enc:%u\n", __func__
, encrypt
);
1725 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
1726 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
1727 rctx
->parent
= &req
->base
;
1728 rctx
->is_encrypt
= encrypt
;
1729 rctx
->bd_suppress
= false;
1730 rctx
->total_todo
= req
->cryptlen
;
1732 rctx
->total_sent
= 0;
1733 rctx
->total_received
= 0;
1736 /* Initialize current position in src and dst scatterlists */
1737 rctx
->src_sg
= req
->src
;
1738 rctx
->src_nents
= 0;
1740 rctx
->dst_sg
= req
->dst
;
1741 rctx
->dst_nents
= 0;
1744 if (ctx
->cipher
.mode
== CIPHER_MODE_CBC
||
1745 ctx
->cipher
.mode
== CIPHER_MODE_CTR
||
1746 ctx
->cipher
.mode
== CIPHER_MODE_OFB
||
1747 ctx
->cipher
.mode
== CIPHER_MODE_XTS
||
1748 ctx
->cipher
.mode
== CIPHER_MODE_GCM
||
1749 ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
1751 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req
));
1752 memcpy(rctx
->msg_buf
.iv_ctr
, req
->iv
, rctx
->iv_ctr_len
);
1754 rctx
->iv_ctr_len
= 0;
1757 /* Choose a SPU to process this request */
1758 rctx
->chan_idx
= select_channel();
1759 err
= handle_skcipher_req(rctx
);
1760 if (err
!= -EINPROGRESS
)
1761 /* synchronous result */
1762 spu_chunk_cleanup(rctx
);
1767 static int des_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1768 unsigned int keylen
)
1770 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1773 err
= verify_skcipher_des_key(cipher
, key
);
1777 ctx
->cipher_type
= CIPHER_TYPE_DES
;
1781 static int threedes_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1782 unsigned int keylen
)
1784 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1787 err
= verify_skcipher_des3_key(cipher
, key
);
1791 ctx
->cipher_type
= CIPHER_TYPE_3DES
;
1795 static int aes_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1796 unsigned int keylen
)
1798 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1800 if (ctx
->cipher
.mode
== CIPHER_MODE_XTS
)
1801 /* XTS includes two keys of equal length */
1802 keylen
= keylen
/ 2;
1805 case AES_KEYSIZE_128
:
1806 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
1808 case AES_KEYSIZE_192
:
1809 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
1811 case AES_KEYSIZE_256
:
1812 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
1817 WARN_ON((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
1818 ((ctx
->max_payload
% AES_BLOCK_SIZE
) != 0));
1822 static int skcipher_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1823 unsigned int keylen
)
1825 struct spu_hw
*spu
= &iproc_priv
.spu
;
1826 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1827 struct spu_cipher_parms cipher_parms
;
1831 flow_log("skcipher_setkey() keylen: %d\n", keylen
);
1832 flow_dump(" key: ", key
, keylen
);
1834 switch (ctx
->cipher
.alg
) {
1835 case CIPHER_ALG_DES
:
1836 err
= des_setkey(cipher
, key
, keylen
);
1838 case CIPHER_ALG_3DES
:
1839 err
= threedes_setkey(cipher
, key
, keylen
);
1841 case CIPHER_ALG_AES
:
1842 err
= aes_setkey(cipher
, key
, keylen
);
1845 pr_err("%s() Error: unknown cipher alg\n", __func__
);
1851 memcpy(ctx
->enckey
, key
, keylen
);
1852 ctx
->enckeylen
= keylen
;
1854 /* SPU needs XTS keys in the reverse order the crypto API presents */
1855 if ((ctx
->cipher
.alg
== CIPHER_ALG_AES
) &&
1856 (ctx
->cipher
.mode
== CIPHER_MODE_XTS
)) {
1857 unsigned int xts_keylen
= keylen
/ 2;
1859 memcpy(ctx
->enckey
, key
+ xts_keylen
, xts_keylen
);
1860 memcpy(ctx
->enckey
+ xts_keylen
, key
, xts_keylen
);
1863 if (spu
->spu_type
== SPU_TYPE_SPUM
)
1864 alloc_len
= BCM_HDR_LEN
+ SPU_HEADER_ALLOC_LEN
;
1865 else if (spu
->spu_type
== SPU_TYPE_SPU2
)
1866 alloc_len
= BCM_HDR_LEN
+ SPU2_HEADER_ALLOC_LEN
;
1867 memset(ctx
->bcm_spu_req_hdr
, 0, alloc_len
);
1868 cipher_parms
.iv_buf
= NULL
;
1869 cipher_parms
.iv_len
= crypto_skcipher_ivsize(cipher
);
1870 flow_log("%s: iv_len %u\n", __func__
, cipher_parms
.iv_len
);
1872 cipher_parms
.alg
= ctx
->cipher
.alg
;
1873 cipher_parms
.mode
= ctx
->cipher
.mode
;
1874 cipher_parms
.type
= ctx
->cipher_type
;
1875 cipher_parms
.key_buf
= ctx
->enckey
;
1876 cipher_parms
.key_len
= ctx
->enckeylen
;
1878 /* Prepend SPU request message with BCM header */
1879 memcpy(ctx
->bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
1880 ctx
->spu_req_hdr_len
=
1881 spu
->spu_cipher_req_init(ctx
->bcm_spu_req_hdr
+ BCM_HDR_LEN
,
1884 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
1888 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_CIPHER
]);
1893 static int skcipher_encrypt(struct skcipher_request
*req
)
1895 flow_log("skcipher_encrypt() nbytes:%u\n", req
->cryptlen
);
1897 return skcipher_enqueue(req
, true);
1900 static int skcipher_decrypt(struct skcipher_request
*req
)
1902 flow_log("skcipher_decrypt() nbytes:%u\n", req
->cryptlen
);
1903 return skcipher_enqueue(req
, false);
1906 static int ahash_enqueue(struct ahash_request
*req
)
1908 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
1909 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1910 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
1912 const char *alg_name
;
1914 flow_log("ahash_enqueue() nbytes:%u\n", req
->nbytes
);
1916 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
1917 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
1918 rctx
->parent
= &req
->base
;
1920 rctx
->bd_suppress
= true;
1921 memset(&rctx
->mb_mssg
, 0, sizeof(struct brcm_message
));
1923 /* Initialize position in src scatterlist */
1924 rctx
->src_sg
= req
->src
;
1926 rctx
->src_nents
= 0;
1927 rctx
->dst_sg
= NULL
;
1929 rctx
->dst_nents
= 0;
1931 /* SPU2 hardware does not compute hash of zero length data */
1932 if ((rctx
->is_final
== 1) && (rctx
->total_todo
== 0) &&
1933 (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPU2
)) {
1934 alg_name
= crypto_tfm_alg_name(crypto_ahash_tfm(tfm
));
1935 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1936 rctx
->is_final
? "" : "non-", alg_name
);
1937 err
= do_shash((unsigned char *)alg_name
, req
->result
,
1938 NULL
, 0, NULL
, 0, ctx
->authkey
,
1941 flow_log("Hash request failed with error %d\n", err
);
1944 /* Choose a SPU to process this request */
1945 rctx
->chan_idx
= select_channel();
1947 err
= handle_ahash_req(rctx
);
1948 if (err
!= -EINPROGRESS
)
1949 /* synchronous result */
1950 spu_chunk_cleanup(rctx
);
1954 * we saved data in hash carry, but tell crypto API
1955 * we successfully completed request.
1962 static int __ahash_init(struct ahash_request
*req
)
1964 struct spu_hw
*spu
= &iproc_priv
.spu
;
1965 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
1966 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1967 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
1969 flow_log("%s()\n", __func__
);
1971 /* Initialize the context */
1972 rctx
->hash_carry_len
= 0;
1975 rctx
->total_todo
= 0;
1977 rctx
->total_sent
= 0;
1978 rctx
->total_received
= 0;
1980 ctx
->digestsize
= crypto_ahash_digestsize(tfm
);
1981 /* If we add a hash whose digest is larger, catch it here. */
1982 WARN_ON(ctx
->digestsize
> MAX_DIGEST_SIZE
);
1984 rctx
->is_sw_hmac
= false;
1986 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
, 0,
1993 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1994 * @ctx: Crypto session context
1996 * SPU-2 does not support incremental hashing (we'll have to revisit and
1997 * condition based on chip revision or device tree entry if future versions do
1998 * support incremental hash)
2000 * SPU-M also doesn't support incremental hashing of AES-XCBC
2002 * Return: true if incremental hashing is not supported
2005 static bool spu_no_incr_hash(struct iproc_ctx_s
*ctx
)
2007 struct spu_hw
*spu
= &iproc_priv
.spu
;
2009 if (spu
->spu_type
== SPU_TYPE_SPU2
)
2012 if ((ctx
->auth
.alg
== HASH_ALG_AES
) &&
2013 (ctx
->auth
.mode
== HASH_MODE_XCBC
))
2016 /* Otherwise, incremental hashing is supported */
2020 static int ahash_init(struct ahash_request
*req
)
2022 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2023 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2024 const char *alg_name
;
2025 struct crypto_shash
*hash
;
2029 if (spu_no_incr_hash(ctx
)) {
2031 * If we get an incremental hashing request and it's not
2032 * supported by the hardware, we need to handle it in software
2033 * by calling synchronous hash functions.
2035 alg_name
= crypto_tfm_alg_name(crypto_ahash_tfm(tfm
));
2036 hash
= crypto_alloc_shash(alg_name
, 0, 0);
2038 ret
= PTR_ERR(hash
);
2042 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2043 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2044 ctx
->shash
= kmalloc(sizeof(*ctx
->shash
) +
2045 crypto_shash_descsize(hash
), gfp
);
2050 ctx
->shash
->tfm
= hash
;
2052 /* Set the key using data we already have from setkey */
2053 if (ctx
->authkeylen
> 0) {
2054 ret
= crypto_shash_setkey(hash
, ctx
->authkey
,
2060 /* Initialize hash w/ this key and other params */
2061 ret
= crypto_shash_init(ctx
->shash
);
2065 /* Otherwise call the internal function which uses SPU hw */
2066 ret
= __ahash_init(req
);
2074 crypto_free_shash(hash
);
2079 static int __ahash_update(struct ahash_request
*req
)
2081 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2083 flow_log("ahash_update() nbytes:%u\n", req
->nbytes
);
2087 rctx
->total_todo
+= req
->nbytes
;
2090 return ahash_enqueue(req
);
2093 static int ahash_update(struct ahash_request
*req
)
2095 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2096 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2102 if (spu_no_incr_hash(ctx
)) {
2104 * If we get an incremental hashing request and it's not
2105 * supported by the hardware, we need to handle it in software
2106 * by calling synchronous hash functions.
2109 nents
= sg_nents(req
->src
);
2113 /* Copy data from req scatterlist to tmp buffer */
2114 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2115 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2116 tmpbuf
= kmalloc(req
->nbytes
, gfp
);
2120 if (sg_copy_to_buffer(req
->src
, nents
, tmpbuf
, req
->nbytes
) !=
2126 /* Call synchronous update */
2127 ret
= crypto_shash_update(ctx
->shash
, tmpbuf
, req
->nbytes
);
2130 /* Otherwise call the internal function which uses SPU hw */
2131 ret
= __ahash_update(req
);
2137 static int __ahash_final(struct ahash_request
*req
)
2139 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2141 flow_log("ahash_final() nbytes:%u\n", req
->nbytes
);
2145 return ahash_enqueue(req
);
2148 static int ahash_final(struct ahash_request
*req
)
2150 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2151 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2154 if (spu_no_incr_hash(ctx
)) {
2156 * If we get an incremental hashing request and it's not
2157 * supported by the hardware, we need to handle it in software
2158 * by calling synchronous hash functions.
2160 ret
= crypto_shash_final(ctx
->shash
, req
->result
);
2162 /* Done with hash, can deallocate it now */
2163 crypto_free_shash(ctx
->shash
->tfm
);
2167 /* Otherwise call the internal function which uses SPU hw */
2168 ret
= __ahash_final(req
);
2174 static int __ahash_finup(struct ahash_request
*req
)
2176 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2178 flow_log("ahash_finup() nbytes:%u\n", req
->nbytes
);
2180 rctx
->total_todo
+= req
->nbytes
;
2184 return ahash_enqueue(req
);
2187 static int ahash_finup(struct ahash_request
*req
)
2189 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2190 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2196 if (spu_no_incr_hash(ctx
)) {
2198 * If we get an incremental hashing request and it's not
2199 * supported by the hardware, we need to handle it in software
2200 * by calling synchronous hash functions.
2203 nents
= sg_nents(req
->src
);
2206 goto ahash_finup_exit
;
2209 /* Copy data from req scatterlist to tmp buffer */
2210 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2211 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2212 tmpbuf
= kmalloc(req
->nbytes
, gfp
);
2215 goto ahash_finup_exit
;
2218 if (sg_copy_to_buffer(req
->src
, nents
, tmpbuf
, req
->nbytes
) !=
2221 goto ahash_finup_free
;
2224 /* Call synchronous update */
2225 ret
= crypto_shash_finup(ctx
->shash
, tmpbuf
, req
->nbytes
,
2228 /* Otherwise call the internal function which uses SPU hw */
2229 return __ahash_finup(req
);
2235 /* Done with hash, can deallocate it now */
2236 crypto_free_shash(ctx
->shash
->tfm
);
2241 static int ahash_digest(struct ahash_request
*req
)
2245 flow_log("ahash_digest() nbytes:%u\n", req
->nbytes
);
2247 /* whole thing at once */
2248 err
= __ahash_init(req
);
2250 err
= __ahash_finup(req
);
2255 static int ahash_setkey(struct crypto_ahash
*ahash
, const u8
*key
,
2256 unsigned int keylen
)
2258 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(ahash
);
2260 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2261 __func__
, ahash
, key
, keylen
);
2262 flow_dump(" key: ", key
, keylen
);
2264 if (ctx
->auth
.alg
== HASH_ALG_AES
) {
2266 case AES_KEYSIZE_128
:
2267 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2269 case AES_KEYSIZE_192
:
2270 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2272 case AES_KEYSIZE_256
:
2273 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2276 pr_err("%s() Error: Invalid key length\n", __func__
);
2280 pr_err("%s() Error: unknown hash alg\n", __func__
);
2283 memcpy(ctx
->authkey
, key
, keylen
);
2284 ctx
->authkeylen
= keylen
;
2289 static int ahash_export(struct ahash_request
*req
, void *out
)
2291 const struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2292 struct spu_hash_export_s
*spu_exp
= (struct spu_hash_export_s
*)out
;
2294 spu_exp
->total_todo
= rctx
->total_todo
;
2295 spu_exp
->total_sent
= rctx
->total_sent
;
2296 spu_exp
->is_sw_hmac
= rctx
->is_sw_hmac
;
2297 memcpy(spu_exp
->hash_carry
, rctx
->hash_carry
, sizeof(rctx
->hash_carry
));
2298 spu_exp
->hash_carry_len
= rctx
->hash_carry_len
;
2299 memcpy(spu_exp
->incr_hash
, rctx
->incr_hash
, sizeof(rctx
->incr_hash
));
2304 static int ahash_import(struct ahash_request
*req
, const void *in
)
2306 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2307 struct spu_hash_export_s
*spu_exp
= (struct spu_hash_export_s
*)in
;
2309 rctx
->total_todo
= spu_exp
->total_todo
;
2310 rctx
->total_sent
= spu_exp
->total_sent
;
2311 rctx
->is_sw_hmac
= spu_exp
->is_sw_hmac
;
2312 memcpy(rctx
->hash_carry
, spu_exp
->hash_carry
, sizeof(rctx
->hash_carry
));
2313 rctx
->hash_carry_len
= spu_exp
->hash_carry_len
;
2314 memcpy(rctx
->incr_hash
, spu_exp
->incr_hash
, sizeof(rctx
->incr_hash
));
2319 static int ahash_hmac_setkey(struct crypto_ahash
*ahash
, const u8
*key
,
2320 unsigned int keylen
)
2322 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(ahash
);
2323 unsigned int blocksize
=
2324 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
2325 unsigned int digestsize
= crypto_ahash_digestsize(ahash
);
2329 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2330 __func__
, ahash
, key
, keylen
, blocksize
, digestsize
);
2331 flow_dump(" key: ", key
, keylen
);
2333 if (keylen
> blocksize
) {
2334 switch (ctx
->auth
.alg
) {
2336 rc
= do_shash("md5", ctx
->authkey
, key
, keylen
, NULL
,
2340 rc
= do_shash("sha1", ctx
->authkey
, key
, keylen
, NULL
,
2343 case HASH_ALG_SHA224
:
2344 rc
= do_shash("sha224", ctx
->authkey
, key
, keylen
, NULL
,
2347 case HASH_ALG_SHA256
:
2348 rc
= do_shash("sha256", ctx
->authkey
, key
, keylen
, NULL
,
2351 case HASH_ALG_SHA384
:
2352 rc
= do_shash("sha384", ctx
->authkey
, key
, keylen
, NULL
,
2355 case HASH_ALG_SHA512
:
2356 rc
= do_shash("sha512", ctx
->authkey
, key
, keylen
, NULL
,
2359 case HASH_ALG_SHA3_224
:
2360 rc
= do_shash("sha3-224", ctx
->authkey
, key
, keylen
,
2363 case HASH_ALG_SHA3_256
:
2364 rc
= do_shash("sha3-256", ctx
->authkey
, key
, keylen
,
2367 case HASH_ALG_SHA3_384
:
2368 rc
= do_shash("sha3-384", ctx
->authkey
, key
, keylen
,
2371 case HASH_ALG_SHA3_512
:
2372 rc
= do_shash("sha3-512", ctx
->authkey
, key
, keylen
,
2376 pr_err("%s() Error: unknown hash alg\n", __func__
);
2380 pr_err("%s() Error %d computing shash for %s\n",
2381 __func__
, rc
, hash_alg_name
[ctx
->auth
.alg
]);
2384 ctx
->authkeylen
= digestsize
;
2386 flow_log(" keylen > digestsize... hashed\n");
2387 flow_dump(" newkey: ", ctx
->authkey
, ctx
->authkeylen
);
2389 memcpy(ctx
->authkey
, key
, keylen
);
2390 ctx
->authkeylen
= keylen
;
2394 * Full HMAC operation in SPUM is not verified,
2395 * So keeping the generation of IPAD, OPAD and
2396 * outer hashing in software.
2398 if (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPUM
) {
2399 memcpy(ctx
->ipad
, ctx
->authkey
, ctx
->authkeylen
);
2400 memset(ctx
->ipad
+ ctx
->authkeylen
, 0,
2401 blocksize
- ctx
->authkeylen
);
2402 ctx
->authkeylen
= 0;
2403 memcpy(ctx
->opad
, ctx
->ipad
, blocksize
);
2405 for (index
= 0; index
< blocksize
; index
++) {
2406 ctx
->ipad
[index
] ^= HMAC_IPAD_VALUE
;
2407 ctx
->opad
[index
] ^= HMAC_OPAD_VALUE
;
2410 flow_dump(" ipad: ", ctx
->ipad
, blocksize
);
2411 flow_dump(" opad: ", ctx
->opad
, blocksize
);
2413 ctx
->digestsize
= digestsize
;
2414 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_HMAC
]);
2419 static int ahash_hmac_init(struct ahash_request
*req
)
2421 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2422 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2423 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2424 unsigned int blocksize
=
2425 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm
));
2427 flow_log("ahash_hmac_init()\n");
2429 /* init the context as a hash */
2432 if (!spu_no_incr_hash(ctx
)) {
2433 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2434 rctx
->is_sw_hmac
= true;
2435 ctx
->auth
.mode
= HASH_MODE_HASH
;
2436 /* start with a prepended ipad */
2437 memcpy(rctx
->hash_carry
, ctx
->ipad
, blocksize
);
2438 rctx
->hash_carry_len
= blocksize
;
2439 rctx
->total_todo
+= blocksize
;
2445 static int ahash_hmac_update(struct ahash_request
*req
)
2447 flow_log("ahash_hmac_update() nbytes:%u\n", req
->nbytes
);
2452 return ahash_update(req
);
2455 static int ahash_hmac_final(struct ahash_request
*req
)
2457 flow_log("ahash_hmac_final() nbytes:%u\n", req
->nbytes
);
2459 return ahash_final(req
);
2462 static int ahash_hmac_finup(struct ahash_request
*req
)
2464 flow_log("ahash_hmac_finupl() nbytes:%u\n", req
->nbytes
);
2466 return ahash_finup(req
);
2469 static int ahash_hmac_digest(struct ahash_request
*req
)
2471 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2472 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2473 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2474 unsigned int blocksize
=
2475 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm
));
2477 flow_log("ahash_hmac_digest() nbytes:%u\n", req
->nbytes
);
2479 /* Perform initialization and then call finup */
2482 if (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPU2
) {
2484 * SPU2 supports full HMAC implementation in the
2485 * hardware, need not to generate IPAD, OPAD and
2486 * outer hash in software.
2487 * Only for hash key len > hash block size, SPU2
2488 * expects to perform hashing on the key, shorten
2489 * it to digest size and feed it as hash key.
2491 rctx
->is_sw_hmac
= false;
2492 ctx
->auth
.mode
= HASH_MODE_HMAC
;
2494 rctx
->is_sw_hmac
= true;
2495 ctx
->auth
.mode
= HASH_MODE_HASH
;
2496 /* start with a prepended ipad */
2497 memcpy(rctx
->hash_carry
, ctx
->ipad
, blocksize
);
2498 rctx
->hash_carry_len
= blocksize
;
2499 rctx
->total_todo
+= blocksize
;
2502 return __ahash_finup(req
);
2507 static int aead_need_fallback(struct aead_request
*req
)
2509 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2510 struct spu_hw
*spu
= &iproc_priv
.spu
;
2511 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2512 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(aead
);
2516 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2517 * and AAD are both 0 bytes long. So use fallback in this case.
2519 if (((ctx
->cipher
.mode
== CIPHER_MODE_GCM
) ||
2520 (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)) &&
2521 (req
->assoclen
== 0)) {
2522 if ((rctx
->is_encrypt
&& (req
->cryptlen
== 0)) ||
2523 (!rctx
->is_encrypt
&& (req
->cryptlen
== ctx
->digestsize
))) {
2524 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2529 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2530 if ((ctx
->cipher
.mode
== CIPHER_MODE_CCM
) &&
2531 (spu
->spu_type
== SPU_TYPE_SPUM
) &&
2532 (ctx
->digestsize
!= 8) && (ctx
->digestsize
!= 12) &&
2533 (ctx
->digestsize
!= 16)) {
2534 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2535 __func__
, ctx
->digestsize
);
2540 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2541 * when AAD size is 0
2543 if ((ctx
->cipher
.mode
== CIPHER_MODE_CCM
) &&
2544 (spu
->spu_subtype
== SPU_SUBTYPE_SPUM_NSP
) &&
2545 (req
->assoclen
== 0)) {
2546 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2552 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2553 * 16 or 20 bytes long. So use fallback in this case.
2555 if (ctx
->cipher
.mode
== CIPHER_MODE_GCM
&&
2556 ctx
->cipher
.alg
== CIPHER_ALG_AES
&&
2557 rctx
->iv_ctr_len
== GCM_RFC4106_IV_SIZE
&&
2558 req
->assoclen
!= 16 && req
->assoclen
!= 20) {
2559 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2560 " other than 16 or 20 bytes\n");
2564 payload_len
= req
->cryptlen
;
2565 if (spu
->spu_type
== SPU_TYPE_SPUM
)
2566 payload_len
+= req
->assoclen
;
2568 flow_log("%s() payload len: %u\n", __func__
, payload_len
);
2570 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
2573 return payload_len
> ctx
->max_payload
;
2576 static void aead_complete(struct crypto_async_request
*areq
, int err
)
2578 struct aead_request
*req
=
2579 container_of(areq
, struct aead_request
, base
);
2580 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2581 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2583 flow_log("%s() err:%d\n", __func__
, err
);
2585 areq
->tfm
= crypto_aead_tfm(aead
);
2587 areq
->complete
= rctx
->old_complete
;
2588 areq
->data
= rctx
->old_data
;
2590 areq
->complete(areq
, err
);
2593 static int aead_do_fallback(struct aead_request
*req
, bool is_encrypt
)
2595 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2596 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
2597 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2598 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
2602 flow_log("%s() enc:%u\n", __func__
, is_encrypt
);
2604 if (ctx
->fallback_cipher
) {
2605 /* Store the cipher tfm and then use the fallback tfm */
2606 rctx
->old_tfm
= tfm
;
2607 aead_request_set_tfm(req
, ctx
->fallback_cipher
);
2609 * Save the callback and chain ourselves in, so we can restore
2612 rctx
->old_complete
= req
->base
.complete
;
2613 rctx
->old_data
= req
->base
.data
;
2614 req_flags
= aead_request_flags(req
);
2615 aead_request_set_callback(req
, req_flags
, aead_complete
, req
);
2616 err
= is_encrypt
? crypto_aead_encrypt(req
) :
2617 crypto_aead_decrypt(req
);
2621 * fallback was synchronous (did not return
2622 * -EINPROGRESS). So restore request state here.
2624 aead_request_set_callback(req
, req_flags
,
2625 rctx
->old_complete
, req
);
2626 req
->base
.data
= rctx
->old_data
;
2627 aead_request_set_tfm(req
, aead
);
2628 flow_log("%s() fallback completed successfully\n\n",
2638 static int aead_enqueue(struct aead_request
*req
, bool is_encrypt
)
2640 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2641 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2642 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(aead
);
2645 flow_log("%s() enc:%u\n", __func__
, is_encrypt
);
2647 if (req
->assoclen
> MAX_ASSOC_SIZE
) {
2649 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2650 __func__
, req
->assoclen
, MAX_ASSOC_SIZE
);
2654 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2655 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2656 rctx
->parent
= &req
->base
;
2657 rctx
->is_encrypt
= is_encrypt
;
2658 rctx
->bd_suppress
= false;
2659 rctx
->total_todo
= req
->cryptlen
;
2661 rctx
->total_sent
= 0;
2662 rctx
->total_received
= 0;
2663 rctx
->is_sw_hmac
= false;
2665 memset(&rctx
->mb_mssg
, 0, sizeof(struct brcm_message
));
2667 /* assoc data is at start of src sg */
2668 rctx
->assoc
= req
->src
;
2671 * Init current position in src scatterlist to be after assoc data.
2672 * src_skip set to buffer offset where data begins. (Assoc data could
2673 * end in the middle of a buffer.)
2675 if (spu_sg_at_offset(req
->src
, req
->assoclen
, &rctx
->src_sg
,
2676 &rctx
->src_skip
) < 0) {
2677 pr_err("%s() Error: Unable to find start of src data\n",
2682 rctx
->src_nents
= 0;
2683 rctx
->dst_nents
= 0;
2684 if (req
->dst
== req
->src
) {
2685 rctx
->dst_sg
= rctx
->src_sg
;
2686 rctx
->dst_skip
= rctx
->src_skip
;
2689 * Expect req->dst to have room for assoc data followed by
2690 * output data and ICV, if encrypt. So initialize dst_sg
2691 * to point beyond assoc len offset.
2693 if (spu_sg_at_offset(req
->dst
, req
->assoclen
, &rctx
->dst_sg
,
2694 &rctx
->dst_skip
) < 0) {
2695 pr_err("%s() Error: Unable to find start of dst data\n",
2701 if (ctx
->cipher
.mode
== CIPHER_MODE_CBC
||
2702 ctx
->cipher
.mode
== CIPHER_MODE_CTR
||
2703 ctx
->cipher
.mode
== CIPHER_MODE_OFB
||
2704 ctx
->cipher
.mode
== CIPHER_MODE_XTS
||
2705 ctx
->cipher
.mode
== CIPHER_MODE_GCM
) {
2708 crypto_aead_ivsize(crypto_aead_reqtfm(req
));
2709 } else if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
2710 rctx
->iv_ctr_len
= CCM_AES_IV_SIZE
;
2712 rctx
->iv_ctr_len
= 0;
2715 rctx
->hash_carry_len
= 0;
2717 flow_log(" src sg: %p\n", req
->src
);
2718 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2719 rctx
->src_sg
, rctx
->src_skip
);
2720 flow_log(" assoc: %p, assoclen %u\n", rctx
->assoc
, req
->assoclen
);
2721 flow_log(" dst sg: %p\n", req
->dst
);
2722 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2723 rctx
->dst_sg
, rctx
->dst_skip
);
2724 flow_log(" iv_ctr_len:%u\n", rctx
->iv_ctr_len
);
2725 flow_dump(" iv: ", req
->iv
, rctx
->iv_ctr_len
);
2726 flow_log(" authkeylen:%u\n", ctx
->authkeylen
);
2727 flow_log(" is_esp: %s\n", ctx
->is_esp
? "yes" : "no");
2729 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
2730 flow_log(" max_payload infinite");
2732 flow_log(" max_payload: %u\n", ctx
->max_payload
);
2734 if (unlikely(aead_need_fallback(req
)))
2735 return aead_do_fallback(req
, is_encrypt
);
2738 * Do memory allocations for request after fallback check, because if we
2739 * do fallback, we won't call finish_req() to dealloc.
2741 if (rctx
->iv_ctr_len
) {
2743 memcpy(rctx
->msg_buf
.iv_ctr
+ ctx
->salt_offset
,
2744 ctx
->salt
, ctx
->salt_len
);
2745 memcpy(rctx
->msg_buf
.iv_ctr
+ ctx
->salt_offset
+ ctx
->salt_len
,
2747 rctx
->iv_ctr_len
- ctx
->salt_len
- ctx
->salt_offset
);
2750 rctx
->chan_idx
= select_channel();
2751 err
= handle_aead_req(rctx
);
2752 if (err
!= -EINPROGRESS
)
2753 /* synchronous result */
2754 spu_chunk_cleanup(rctx
);
2759 static int aead_authenc_setkey(struct crypto_aead
*cipher
,
2760 const u8
*key
, unsigned int keylen
)
2762 struct spu_hw
*spu
= &iproc_priv
.spu
;
2763 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2764 struct crypto_tfm
*tfm
= crypto_aead_tfm(cipher
);
2765 struct crypto_authenc_keys keys
;
2768 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__
, cipher
, key
,
2770 flow_dump(" key: ", key
, keylen
);
2772 ret
= crypto_authenc_extractkeys(&keys
, key
, keylen
);
2776 if (keys
.enckeylen
> MAX_KEY_SIZE
||
2777 keys
.authkeylen
> MAX_KEY_SIZE
)
2780 ctx
->enckeylen
= keys
.enckeylen
;
2781 ctx
->authkeylen
= keys
.authkeylen
;
2783 memcpy(ctx
->enckey
, keys
.enckey
, keys
.enckeylen
);
2784 /* May end up padding auth key. So make sure it's zeroed. */
2785 memset(ctx
->authkey
, 0, sizeof(ctx
->authkey
));
2786 memcpy(ctx
->authkey
, keys
.authkey
, keys
.authkeylen
);
2788 switch (ctx
->alg
->cipher_info
.alg
) {
2789 case CIPHER_ALG_DES
:
2790 if (verify_aead_des_key(cipher
, keys
.enckey
, keys
.enckeylen
))
2793 ctx
->cipher_type
= CIPHER_TYPE_DES
;
2795 case CIPHER_ALG_3DES
:
2796 if (verify_aead_des3_key(cipher
, keys
.enckey
, keys
.enckeylen
))
2799 ctx
->cipher_type
= CIPHER_TYPE_3DES
;
2801 case CIPHER_ALG_AES
:
2802 switch (ctx
->enckeylen
) {
2803 case AES_KEYSIZE_128
:
2804 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2806 case AES_KEYSIZE_192
:
2807 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2809 case AES_KEYSIZE_256
:
2810 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2817 pr_err("%s() Error: Unknown cipher alg\n", __func__
);
2821 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2823 flow_dump(" enc: ", ctx
->enckey
, ctx
->enckeylen
);
2824 flow_dump(" auth: ", ctx
->authkey
, ctx
->authkeylen
);
2826 /* setkey the fallback just in case we needto use it */
2827 if (ctx
->fallback_cipher
) {
2828 flow_log(" running fallback setkey()\n");
2830 ctx
->fallback_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
2831 ctx
->fallback_cipher
->base
.crt_flags
|=
2832 tfm
->crt_flags
& CRYPTO_TFM_REQ_MASK
;
2833 ret
= crypto_aead_setkey(ctx
->fallback_cipher
, key
, keylen
);
2835 flow_log(" fallback setkey() returned:%d\n", ret
);
2838 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
2842 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_AEAD
]);
2848 ctx
->authkeylen
= 0;
2849 ctx
->digestsize
= 0;
2854 static int aead_gcm_ccm_setkey(struct crypto_aead
*cipher
,
2855 const u8
*key
, unsigned int keylen
)
2857 struct spu_hw
*spu
= &iproc_priv
.spu
;
2858 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2859 struct crypto_tfm
*tfm
= crypto_aead_tfm(cipher
);
2863 flow_log("%s() keylen:%u\n", __func__
, keylen
);
2864 flow_dump(" key: ", key
, keylen
);
2867 ctx
->digestsize
= keylen
;
2869 ctx
->enckeylen
= keylen
;
2870 ctx
->authkeylen
= 0;
2872 switch (ctx
->enckeylen
) {
2873 case AES_KEYSIZE_128
:
2874 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2876 case AES_KEYSIZE_192
:
2877 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2879 case AES_KEYSIZE_256
:
2880 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2886 memcpy(ctx
->enckey
, key
, ctx
->enckeylen
);
2888 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2890 flow_dump(" enc: ", ctx
->enckey
, ctx
->enckeylen
);
2891 flow_dump(" auth: ", ctx
->authkey
, ctx
->authkeylen
);
2893 /* setkey the fallback just in case we need to use it */
2894 if (ctx
->fallback_cipher
) {
2895 flow_log(" running fallback setkey()\n");
2897 ctx
->fallback_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
2898 ctx
->fallback_cipher
->base
.crt_flags
|=
2899 tfm
->crt_flags
& CRYPTO_TFM_REQ_MASK
;
2900 ret
= crypto_aead_setkey(ctx
->fallback_cipher
, key
,
2901 keylen
+ ctx
->salt_len
);
2903 flow_log(" fallback setkey() returned:%d\n", ret
);
2906 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
2910 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_AEAD
]);
2912 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2919 ctx
->authkeylen
= 0;
2920 ctx
->digestsize
= 0;
2926 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2927 * @cipher: AEAD structure
2928 * @key: Key followed by 4 bytes of salt
2929 * @keylen: Length of key plus salt, in bytes
2931 * Extracts salt from key and stores it to be prepended to IV on each request.
2932 * Digest is always 16 bytes
2934 * Return: Value from generic gcm setkey.
2936 static int aead_gcm_esp_setkey(struct crypto_aead
*cipher
,
2937 const u8
*key
, unsigned int keylen
)
2939 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2941 flow_log("%s\n", __func__
);
2943 if (keylen
< GCM_ESP_SALT_SIZE
)
2946 ctx
->salt_len
= GCM_ESP_SALT_SIZE
;
2947 ctx
->salt_offset
= GCM_ESP_SALT_OFFSET
;
2948 memcpy(ctx
->salt
, key
+ keylen
- GCM_ESP_SALT_SIZE
, GCM_ESP_SALT_SIZE
);
2949 keylen
-= GCM_ESP_SALT_SIZE
;
2950 ctx
->digestsize
= GCM_ESP_DIGESTSIZE
;
2952 flow_dump("salt: ", ctx
->salt
, GCM_ESP_SALT_SIZE
);
2954 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
2958 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2959 * cipher: AEAD structure
2960 * key: Key followed by 4 bytes of salt
2961 * keylen: Length of key plus salt, in bytes
2963 * Extracts salt from key and stores it to be prepended to IV on each request.
2964 * Digest is always 16 bytes
2966 * Return: Value from generic gcm setkey.
2968 static int rfc4543_gcm_esp_setkey(struct crypto_aead
*cipher
,
2969 const u8
*key
, unsigned int keylen
)
2971 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2973 flow_log("%s\n", __func__
);
2975 if (keylen
< GCM_ESP_SALT_SIZE
)
2978 ctx
->salt_len
= GCM_ESP_SALT_SIZE
;
2979 ctx
->salt_offset
= GCM_ESP_SALT_OFFSET
;
2980 memcpy(ctx
->salt
, key
+ keylen
- GCM_ESP_SALT_SIZE
, GCM_ESP_SALT_SIZE
);
2981 keylen
-= GCM_ESP_SALT_SIZE
;
2982 ctx
->digestsize
= GCM_ESP_DIGESTSIZE
;
2984 ctx
->is_rfc4543
= true;
2985 flow_dump("salt: ", ctx
->salt
, GCM_ESP_SALT_SIZE
);
2987 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
2991 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2992 * @cipher: AEAD structure
2993 * @key: Key followed by 4 bytes of salt
2994 * @keylen: Length of key plus salt, in bytes
2996 * Extracts salt from key and stores it to be prepended to IV on each request.
2997 * Digest is always 16 bytes
2999 * Return: Value from generic ccm setkey.
3001 static int aead_ccm_esp_setkey(struct crypto_aead
*cipher
,
3002 const u8
*key
, unsigned int keylen
)
3004 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
3006 flow_log("%s\n", __func__
);
3008 if (keylen
< CCM_ESP_SALT_SIZE
)
3011 ctx
->salt_len
= CCM_ESP_SALT_SIZE
;
3012 ctx
->salt_offset
= CCM_ESP_SALT_OFFSET
;
3013 memcpy(ctx
->salt
, key
+ keylen
- CCM_ESP_SALT_SIZE
, CCM_ESP_SALT_SIZE
);
3014 keylen
-= CCM_ESP_SALT_SIZE
;
3016 flow_dump("salt: ", ctx
->salt
, CCM_ESP_SALT_SIZE
);
3018 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
3021 static int aead_setauthsize(struct crypto_aead
*cipher
, unsigned int authsize
)
3023 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
3026 flow_log("%s() authkeylen:%u authsize:%u\n",
3027 __func__
, ctx
->authkeylen
, authsize
);
3029 ctx
->digestsize
= authsize
;
3031 /* setkey the fallback just in case we needto use it */
3032 if (ctx
->fallback_cipher
) {
3033 flow_log(" running fallback setauth()\n");
3035 ret
= crypto_aead_setauthsize(ctx
->fallback_cipher
, authsize
);
3037 flow_log(" fallback setauth() returned:%d\n", ret
);
3043 static int aead_encrypt(struct aead_request
*req
)
3045 flow_log("%s() cryptlen:%u %08x\n", __func__
, req
->cryptlen
,
3047 dump_sg(req
->src
, 0, req
->cryptlen
+ req
->assoclen
);
3048 flow_log(" assoc_len:%u\n", req
->assoclen
);
3050 return aead_enqueue(req
, true);
3053 static int aead_decrypt(struct aead_request
*req
)
3055 flow_log("%s() cryptlen:%u\n", __func__
, req
->cryptlen
);
3056 dump_sg(req
->src
, 0, req
->cryptlen
+ req
->assoclen
);
3057 flow_log(" assoc_len:%u\n", req
->assoclen
);
3059 return aead_enqueue(req
, false);
3062 /* ==================== Supported Cipher Algorithms ==================== */
3064 static struct iproc_alg_s driver_algs
[] = {
3066 .type
= CRYPTO_ALG_TYPE_AEAD
,
3069 .cra_name
= "gcm(aes)",
3070 .cra_driver_name
= "gcm-aes-iproc",
3071 .cra_blocksize
= AES_BLOCK_SIZE
,
3072 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3074 .setkey
= aead_gcm_ccm_setkey
,
3075 .ivsize
= GCM_AES_IV_SIZE
,
3076 .maxauthsize
= AES_BLOCK_SIZE
,
3079 .alg
= CIPHER_ALG_AES
,
3080 .mode
= CIPHER_MODE_GCM
,
3083 .alg
= HASH_ALG_AES
,
3084 .mode
= HASH_MODE_GCM
,
3089 .type
= CRYPTO_ALG_TYPE_AEAD
,
3092 .cra_name
= "ccm(aes)",
3093 .cra_driver_name
= "ccm-aes-iproc",
3094 .cra_blocksize
= AES_BLOCK_SIZE
,
3095 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3097 .setkey
= aead_gcm_ccm_setkey
,
3098 .ivsize
= CCM_AES_IV_SIZE
,
3099 .maxauthsize
= AES_BLOCK_SIZE
,
3102 .alg
= CIPHER_ALG_AES
,
3103 .mode
= CIPHER_MODE_CCM
,
3106 .alg
= HASH_ALG_AES
,
3107 .mode
= HASH_MODE_CCM
,
3112 .type
= CRYPTO_ALG_TYPE_AEAD
,
3115 .cra_name
= "rfc4106(gcm(aes))",
3116 .cra_driver_name
= "gcm-aes-esp-iproc",
3117 .cra_blocksize
= AES_BLOCK_SIZE
,
3118 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3120 .setkey
= aead_gcm_esp_setkey
,
3121 .ivsize
= GCM_RFC4106_IV_SIZE
,
3122 .maxauthsize
= AES_BLOCK_SIZE
,
3125 .alg
= CIPHER_ALG_AES
,
3126 .mode
= CIPHER_MODE_GCM
,
3129 .alg
= HASH_ALG_AES
,
3130 .mode
= HASH_MODE_GCM
,
3135 .type
= CRYPTO_ALG_TYPE_AEAD
,
3138 .cra_name
= "rfc4309(ccm(aes))",
3139 .cra_driver_name
= "ccm-aes-esp-iproc",
3140 .cra_blocksize
= AES_BLOCK_SIZE
,
3141 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3143 .setkey
= aead_ccm_esp_setkey
,
3144 .ivsize
= CCM_AES_IV_SIZE
,
3145 .maxauthsize
= AES_BLOCK_SIZE
,
3148 .alg
= CIPHER_ALG_AES
,
3149 .mode
= CIPHER_MODE_CCM
,
3152 .alg
= HASH_ALG_AES
,
3153 .mode
= HASH_MODE_CCM
,
3158 .type
= CRYPTO_ALG_TYPE_AEAD
,
3161 .cra_name
= "rfc4543(gcm(aes))",
3162 .cra_driver_name
= "gmac-aes-esp-iproc",
3163 .cra_blocksize
= AES_BLOCK_SIZE
,
3164 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3166 .setkey
= rfc4543_gcm_esp_setkey
,
3167 .ivsize
= GCM_RFC4106_IV_SIZE
,
3168 .maxauthsize
= AES_BLOCK_SIZE
,
3171 .alg
= CIPHER_ALG_AES
,
3172 .mode
= CIPHER_MODE_GCM
,
3175 .alg
= HASH_ALG_AES
,
3176 .mode
= HASH_MODE_GCM
,
3181 .type
= CRYPTO_ALG_TYPE_AEAD
,
3184 .cra_name
= "authenc(hmac(md5),cbc(aes))",
3185 .cra_driver_name
= "authenc-hmac-md5-cbc-aes-iproc",
3186 .cra_blocksize
= AES_BLOCK_SIZE
,
3187 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3189 CRYPTO_ALG_ALLOCATES_MEMORY
3191 .setkey
= aead_authenc_setkey
,
3192 .ivsize
= AES_BLOCK_SIZE
,
3193 .maxauthsize
= MD5_DIGEST_SIZE
,
3196 .alg
= CIPHER_ALG_AES
,
3197 .mode
= CIPHER_MODE_CBC
,
3200 .alg
= HASH_ALG_MD5
,
3201 .mode
= HASH_MODE_HMAC
,
3206 .type
= CRYPTO_ALG_TYPE_AEAD
,
3209 .cra_name
= "authenc(hmac(sha1),cbc(aes))",
3210 .cra_driver_name
= "authenc-hmac-sha1-cbc-aes-iproc",
3211 .cra_blocksize
= AES_BLOCK_SIZE
,
3212 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3214 CRYPTO_ALG_ALLOCATES_MEMORY
3216 .setkey
= aead_authenc_setkey
,
3217 .ivsize
= AES_BLOCK_SIZE
,
3218 .maxauthsize
= SHA1_DIGEST_SIZE
,
3221 .alg
= CIPHER_ALG_AES
,
3222 .mode
= CIPHER_MODE_CBC
,
3225 .alg
= HASH_ALG_SHA1
,
3226 .mode
= HASH_MODE_HMAC
,
3231 .type
= CRYPTO_ALG_TYPE_AEAD
,
3234 .cra_name
= "authenc(hmac(sha256),cbc(aes))",
3235 .cra_driver_name
= "authenc-hmac-sha256-cbc-aes-iproc",
3236 .cra_blocksize
= AES_BLOCK_SIZE
,
3237 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3239 CRYPTO_ALG_ALLOCATES_MEMORY
3241 .setkey
= aead_authenc_setkey
,
3242 .ivsize
= AES_BLOCK_SIZE
,
3243 .maxauthsize
= SHA256_DIGEST_SIZE
,
3246 .alg
= CIPHER_ALG_AES
,
3247 .mode
= CIPHER_MODE_CBC
,
3250 .alg
= HASH_ALG_SHA256
,
3251 .mode
= HASH_MODE_HMAC
,
3256 .type
= CRYPTO_ALG_TYPE_AEAD
,
3259 .cra_name
= "authenc(hmac(md5),cbc(des))",
3260 .cra_driver_name
= "authenc-hmac-md5-cbc-des-iproc",
3261 .cra_blocksize
= DES_BLOCK_SIZE
,
3262 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3264 CRYPTO_ALG_ALLOCATES_MEMORY
3266 .setkey
= aead_authenc_setkey
,
3267 .ivsize
= DES_BLOCK_SIZE
,
3268 .maxauthsize
= MD5_DIGEST_SIZE
,
3271 .alg
= CIPHER_ALG_DES
,
3272 .mode
= CIPHER_MODE_CBC
,
3275 .alg
= HASH_ALG_MD5
,
3276 .mode
= HASH_MODE_HMAC
,
3281 .type
= CRYPTO_ALG_TYPE_AEAD
,
3284 .cra_name
= "authenc(hmac(sha1),cbc(des))",
3285 .cra_driver_name
= "authenc-hmac-sha1-cbc-des-iproc",
3286 .cra_blocksize
= DES_BLOCK_SIZE
,
3287 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3289 CRYPTO_ALG_ALLOCATES_MEMORY
3291 .setkey
= aead_authenc_setkey
,
3292 .ivsize
= DES_BLOCK_SIZE
,
3293 .maxauthsize
= SHA1_DIGEST_SIZE
,
3296 .alg
= CIPHER_ALG_DES
,
3297 .mode
= CIPHER_MODE_CBC
,
3300 .alg
= HASH_ALG_SHA1
,
3301 .mode
= HASH_MODE_HMAC
,
3306 .type
= CRYPTO_ALG_TYPE_AEAD
,
3309 .cra_name
= "authenc(hmac(sha224),cbc(des))",
3310 .cra_driver_name
= "authenc-hmac-sha224-cbc-des-iproc",
3311 .cra_blocksize
= DES_BLOCK_SIZE
,
3312 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3314 CRYPTO_ALG_ALLOCATES_MEMORY
3316 .setkey
= aead_authenc_setkey
,
3317 .ivsize
= DES_BLOCK_SIZE
,
3318 .maxauthsize
= SHA224_DIGEST_SIZE
,
3321 .alg
= CIPHER_ALG_DES
,
3322 .mode
= CIPHER_MODE_CBC
,
3325 .alg
= HASH_ALG_SHA224
,
3326 .mode
= HASH_MODE_HMAC
,
3331 .type
= CRYPTO_ALG_TYPE_AEAD
,
3334 .cra_name
= "authenc(hmac(sha256),cbc(des))",
3335 .cra_driver_name
= "authenc-hmac-sha256-cbc-des-iproc",
3336 .cra_blocksize
= DES_BLOCK_SIZE
,
3337 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3339 CRYPTO_ALG_ALLOCATES_MEMORY
3341 .setkey
= aead_authenc_setkey
,
3342 .ivsize
= DES_BLOCK_SIZE
,
3343 .maxauthsize
= SHA256_DIGEST_SIZE
,
3346 .alg
= CIPHER_ALG_DES
,
3347 .mode
= CIPHER_MODE_CBC
,
3350 .alg
= HASH_ALG_SHA256
,
3351 .mode
= HASH_MODE_HMAC
,
3356 .type
= CRYPTO_ALG_TYPE_AEAD
,
3359 .cra_name
= "authenc(hmac(sha384),cbc(des))",
3360 .cra_driver_name
= "authenc-hmac-sha384-cbc-des-iproc",
3361 .cra_blocksize
= DES_BLOCK_SIZE
,
3362 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3364 CRYPTO_ALG_ALLOCATES_MEMORY
3366 .setkey
= aead_authenc_setkey
,
3367 .ivsize
= DES_BLOCK_SIZE
,
3368 .maxauthsize
= SHA384_DIGEST_SIZE
,
3371 .alg
= CIPHER_ALG_DES
,
3372 .mode
= CIPHER_MODE_CBC
,
3375 .alg
= HASH_ALG_SHA384
,
3376 .mode
= HASH_MODE_HMAC
,
3381 .type
= CRYPTO_ALG_TYPE_AEAD
,
3384 .cra_name
= "authenc(hmac(sha512),cbc(des))",
3385 .cra_driver_name
= "authenc-hmac-sha512-cbc-des-iproc",
3386 .cra_blocksize
= DES_BLOCK_SIZE
,
3387 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3389 CRYPTO_ALG_ALLOCATES_MEMORY
3391 .setkey
= aead_authenc_setkey
,
3392 .ivsize
= DES_BLOCK_SIZE
,
3393 .maxauthsize
= SHA512_DIGEST_SIZE
,
3396 .alg
= CIPHER_ALG_DES
,
3397 .mode
= CIPHER_MODE_CBC
,
3400 .alg
= HASH_ALG_SHA512
,
3401 .mode
= HASH_MODE_HMAC
,
3406 .type
= CRYPTO_ALG_TYPE_AEAD
,
3409 .cra_name
= "authenc(hmac(md5),cbc(des3_ede))",
3410 .cra_driver_name
= "authenc-hmac-md5-cbc-des3-iproc",
3411 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3412 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3414 CRYPTO_ALG_ALLOCATES_MEMORY
3416 .setkey
= aead_authenc_setkey
,
3417 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3418 .maxauthsize
= MD5_DIGEST_SIZE
,
3421 .alg
= CIPHER_ALG_3DES
,
3422 .mode
= CIPHER_MODE_CBC
,
3425 .alg
= HASH_ALG_MD5
,
3426 .mode
= HASH_MODE_HMAC
,
3431 .type
= CRYPTO_ALG_TYPE_AEAD
,
3434 .cra_name
= "authenc(hmac(sha1),cbc(des3_ede))",
3435 .cra_driver_name
= "authenc-hmac-sha1-cbc-des3-iproc",
3436 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3437 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3439 CRYPTO_ALG_ALLOCATES_MEMORY
3441 .setkey
= aead_authenc_setkey
,
3442 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3443 .maxauthsize
= SHA1_DIGEST_SIZE
,
3446 .alg
= CIPHER_ALG_3DES
,
3447 .mode
= CIPHER_MODE_CBC
,
3450 .alg
= HASH_ALG_SHA1
,
3451 .mode
= HASH_MODE_HMAC
,
3456 .type
= CRYPTO_ALG_TYPE_AEAD
,
3459 .cra_name
= "authenc(hmac(sha224),cbc(des3_ede))",
3460 .cra_driver_name
= "authenc-hmac-sha224-cbc-des3-iproc",
3461 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3462 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3464 CRYPTO_ALG_ALLOCATES_MEMORY
3466 .setkey
= aead_authenc_setkey
,
3467 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3468 .maxauthsize
= SHA224_DIGEST_SIZE
,
3471 .alg
= CIPHER_ALG_3DES
,
3472 .mode
= CIPHER_MODE_CBC
,
3475 .alg
= HASH_ALG_SHA224
,
3476 .mode
= HASH_MODE_HMAC
,
3481 .type
= CRYPTO_ALG_TYPE_AEAD
,
3484 .cra_name
= "authenc(hmac(sha256),cbc(des3_ede))",
3485 .cra_driver_name
= "authenc-hmac-sha256-cbc-des3-iproc",
3486 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3487 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3489 CRYPTO_ALG_ALLOCATES_MEMORY
3491 .setkey
= aead_authenc_setkey
,
3492 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3493 .maxauthsize
= SHA256_DIGEST_SIZE
,
3496 .alg
= CIPHER_ALG_3DES
,
3497 .mode
= CIPHER_MODE_CBC
,
3500 .alg
= HASH_ALG_SHA256
,
3501 .mode
= HASH_MODE_HMAC
,
3506 .type
= CRYPTO_ALG_TYPE_AEAD
,
3509 .cra_name
= "authenc(hmac(sha384),cbc(des3_ede))",
3510 .cra_driver_name
= "authenc-hmac-sha384-cbc-des3-iproc",
3511 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3512 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3514 CRYPTO_ALG_ALLOCATES_MEMORY
3516 .setkey
= aead_authenc_setkey
,
3517 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3518 .maxauthsize
= SHA384_DIGEST_SIZE
,
3521 .alg
= CIPHER_ALG_3DES
,
3522 .mode
= CIPHER_MODE_CBC
,
3525 .alg
= HASH_ALG_SHA384
,
3526 .mode
= HASH_MODE_HMAC
,
3531 .type
= CRYPTO_ALG_TYPE_AEAD
,
3534 .cra_name
= "authenc(hmac(sha512),cbc(des3_ede))",
3535 .cra_driver_name
= "authenc-hmac-sha512-cbc-des3-iproc",
3536 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3537 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
3539 CRYPTO_ALG_ALLOCATES_MEMORY
3541 .setkey
= aead_authenc_setkey
,
3542 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3543 .maxauthsize
= SHA512_DIGEST_SIZE
,
3546 .alg
= CIPHER_ALG_3DES
,
3547 .mode
= CIPHER_MODE_CBC
,
3550 .alg
= HASH_ALG_SHA512
,
3551 .mode
= HASH_MODE_HMAC
,
3556 /* SKCIPHER algorithms. */
3558 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3560 .base
.cra_name
= "ofb(des)",
3561 .base
.cra_driver_name
= "ofb-des-iproc",
3562 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
3563 .min_keysize
= DES_KEY_SIZE
,
3564 .max_keysize
= DES_KEY_SIZE
,
3565 .ivsize
= DES_BLOCK_SIZE
,
3568 .alg
= CIPHER_ALG_DES
,
3569 .mode
= CIPHER_MODE_OFB
,
3572 .alg
= HASH_ALG_NONE
,
3573 .mode
= HASH_MODE_NONE
,
3577 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3579 .base
.cra_name
= "cbc(des)",
3580 .base
.cra_driver_name
= "cbc-des-iproc",
3581 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
3582 .min_keysize
= DES_KEY_SIZE
,
3583 .max_keysize
= DES_KEY_SIZE
,
3584 .ivsize
= DES_BLOCK_SIZE
,
3587 .alg
= CIPHER_ALG_DES
,
3588 .mode
= CIPHER_MODE_CBC
,
3591 .alg
= HASH_ALG_NONE
,
3592 .mode
= HASH_MODE_NONE
,
3596 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3598 .base
.cra_name
= "ecb(des)",
3599 .base
.cra_driver_name
= "ecb-des-iproc",
3600 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
3601 .min_keysize
= DES_KEY_SIZE
,
3602 .max_keysize
= DES_KEY_SIZE
,
3606 .alg
= CIPHER_ALG_DES
,
3607 .mode
= CIPHER_MODE_ECB
,
3610 .alg
= HASH_ALG_NONE
,
3611 .mode
= HASH_MODE_NONE
,
3615 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3617 .base
.cra_name
= "ofb(des3_ede)",
3618 .base
.cra_driver_name
= "ofb-des3-iproc",
3619 .base
.cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3620 .min_keysize
= DES3_EDE_KEY_SIZE
,
3621 .max_keysize
= DES3_EDE_KEY_SIZE
,
3622 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3625 .alg
= CIPHER_ALG_3DES
,
3626 .mode
= CIPHER_MODE_OFB
,
3629 .alg
= HASH_ALG_NONE
,
3630 .mode
= HASH_MODE_NONE
,
3634 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3636 .base
.cra_name
= "cbc(des3_ede)",
3637 .base
.cra_driver_name
= "cbc-des3-iproc",
3638 .base
.cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3639 .min_keysize
= DES3_EDE_KEY_SIZE
,
3640 .max_keysize
= DES3_EDE_KEY_SIZE
,
3641 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3644 .alg
= CIPHER_ALG_3DES
,
3645 .mode
= CIPHER_MODE_CBC
,
3648 .alg
= HASH_ALG_NONE
,
3649 .mode
= HASH_MODE_NONE
,
3653 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3655 .base
.cra_name
= "ecb(des3_ede)",
3656 .base
.cra_driver_name
= "ecb-des3-iproc",
3657 .base
.cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3658 .min_keysize
= DES3_EDE_KEY_SIZE
,
3659 .max_keysize
= DES3_EDE_KEY_SIZE
,
3663 .alg
= CIPHER_ALG_3DES
,
3664 .mode
= CIPHER_MODE_ECB
,
3667 .alg
= HASH_ALG_NONE
,
3668 .mode
= HASH_MODE_NONE
,
3672 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3674 .base
.cra_name
= "ofb(aes)",
3675 .base
.cra_driver_name
= "ofb-aes-iproc",
3676 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3677 .min_keysize
= AES_MIN_KEY_SIZE
,
3678 .max_keysize
= AES_MAX_KEY_SIZE
,
3679 .ivsize
= AES_BLOCK_SIZE
,
3682 .alg
= CIPHER_ALG_AES
,
3683 .mode
= CIPHER_MODE_OFB
,
3686 .alg
= HASH_ALG_NONE
,
3687 .mode
= HASH_MODE_NONE
,
3691 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3693 .base
.cra_name
= "cbc(aes)",
3694 .base
.cra_driver_name
= "cbc-aes-iproc",
3695 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3696 .min_keysize
= AES_MIN_KEY_SIZE
,
3697 .max_keysize
= AES_MAX_KEY_SIZE
,
3698 .ivsize
= AES_BLOCK_SIZE
,
3701 .alg
= CIPHER_ALG_AES
,
3702 .mode
= CIPHER_MODE_CBC
,
3705 .alg
= HASH_ALG_NONE
,
3706 .mode
= HASH_MODE_NONE
,
3710 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3712 .base
.cra_name
= "ecb(aes)",
3713 .base
.cra_driver_name
= "ecb-aes-iproc",
3714 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3715 .min_keysize
= AES_MIN_KEY_SIZE
,
3716 .max_keysize
= AES_MAX_KEY_SIZE
,
3720 .alg
= CIPHER_ALG_AES
,
3721 .mode
= CIPHER_MODE_ECB
,
3724 .alg
= HASH_ALG_NONE
,
3725 .mode
= HASH_MODE_NONE
,
3729 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3731 .base
.cra_name
= "ctr(aes)",
3732 .base
.cra_driver_name
= "ctr-aes-iproc",
3733 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3734 .min_keysize
= AES_MIN_KEY_SIZE
,
3735 .max_keysize
= AES_MAX_KEY_SIZE
,
3736 .ivsize
= AES_BLOCK_SIZE
,
3739 .alg
= CIPHER_ALG_AES
,
3740 .mode
= CIPHER_MODE_CTR
,
3743 .alg
= HASH_ALG_NONE
,
3744 .mode
= HASH_MODE_NONE
,
3748 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3750 .base
.cra_name
= "xts(aes)",
3751 .base
.cra_driver_name
= "xts-aes-iproc",
3752 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3753 .min_keysize
= 2 * AES_MIN_KEY_SIZE
,
3754 .max_keysize
= 2 * AES_MAX_KEY_SIZE
,
3755 .ivsize
= AES_BLOCK_SIZE
,
3758 .alg
= CIPHER_ALG_AES
,
3759 .mode
= CIPHER_MODE_XTS
,
3762 .alg
= HASH_ALG_NONE
,
3763 .mode
= HASH_MODE_NONE
,
3767 /* AHASH algorithms. */
3769 .type
= CRYPTO_ALG_TYPE_AHASH
,
3771 .halg
.digestsize
= MD5_DIGEST_SIZE
,
3774 .cra_driver_name
= "md5-iproc",
3775 .cra_blocksize
= MD5_BLOCK_WORDS
* 4,
3776 .cra_flags
= CRYPTO_ALG_ASYNC
|
3777 CRYPTO_ALG_ALLOCATES_MEMORY
,
3781 .alg
= CIPHER_ALG_NONE
,
3782 .mode
= CIPHER_MODE_NONE
,
3785 .alg
= HASH_ALG_MD5
,
3786 .mode
= HASH_MODE_HASH
,
3790 .type
= CRYPTO_ALG_TYPE_AHASH
,
3792 .halg
.digestsize
= MD5_DIGEST_SIZE
,
3794 .cra_name
= "hmac(md5)",
3795 .cra_driver_name
= "hmac-md5-iproc",
3796 .cra_blocksize
= MD5_BLOCK_WORDS
* 4,
3800 .alg
= CIPHER_ALG_NONE
,
3801 .mode
= CIPHER_MODE_NONE
,
3804 .alg
= HASH_ALG_MD5
,
3805 .mode
= HASH_MODE_HMAC
,
3808 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3810 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
3813 .cra_driver_name
= "sha1-iproc",
3814 .cra_blocksize
= SHA1_BLOCK_SIZE
,
3818 .alg
= CIPHER_ALG_NONE
,
3819 .mode
= CIPHER_MODE_NONE
,
3822 .alg
= HASH_ALG_SHA1
,
3823 .mode
= HASH_MODE_HASH
,
3826 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3828 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
3830 .cra_name
= "hmac(sha1)",
3831 .cra_driver_name
= "hmac-sha1-iproc",
3832 .cra_blocksize
= SHA1_BLOCK_SIZE
,
3836 .alg
= CIPHER_ALG_NONE
,
3837 .mode
= CIPHER_MODE_NONE
,
3840 .alg
= HASH_ALG_SHA1
,
3841 .mode
= HASH_MODE_HMAC
,
3844 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3846 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
3848 .cra_name
= "sha224",
3849 .cra_driver_name
= "sha224-iproc",
3850 .cra_blocksize
= SHA224_BLOCK_SIZE
,
3854 .alg
= CIPHER_ALG_NONE
,
3855 .mode
= CIPHER_MODE_NONE
,
3858 .alg
= HASH_ALG_SHA224
,
3859 .mode
= HASH_MODE_HASH
,
3862 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3864 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
3866 .cra_name
= "hmac(sha224)",
3867 .cra_driver_name
= "hmac-sha224-iproc",
3868 .cra_blocksize
= SHA224_BLOCK_SIZE
,
3872 .alg
= CIPHER_ALG_NONE
,
3873 .mode
= CIPHER_MODE_NONE
,
3876 .alg
= HASH_ALG_SHA224
,
3877 .mode
= HASH_MODE_HMAC
,
3880 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3882 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
3884 .cra_name
= "sha256",
3885 .cra_driver_name
= "sha256-iproc",
3886 .cra_blocksize
= SHA256_BLOCK_SIZE
,
3890 .alg
= CIPHER_ALG_NONE
,
3891 .mode
= CIPHER_MODE_NONE
,
3894 .alg
= HASH_ALG_SHA256
,
3895 .mode
= HASH_MODE_HASH
,
3898 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3900 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
3902 .cra_name
= "hmac(sha256)",
3903 .cra_driver_name
= "hmac-sha256-iproc",
3904 .cra_blocksize
= SHA256_BLOCK_SIZE
,
3908 .alg
= CIPHER_ALG_NONE
,
3909 .mode
= CIPHER_MODE_NONE
,
3912 .alg
= HASH_ALG_SHA256
,
3913 .mode
= HASH_MODE_HMAC
,
3917 .type
= CRYPTO_ALG_TYPE_AHASH
,
3919 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
3921 .cra_name
= "sha384",
3922 .cra_driver_name
= "sha384-iproc",
3923 .cra_blocksize
= SHA384_BLOCK_SIZE
,
3927 .alg
= CIPHER_ALG_NONE
,
3928 .mode
= CIPHER_MODE_NONE
,
3931 .alg
= HASH_ALG_SHA384
,
3932 .mode
= HASH_MODE_HASH
,
3936 .type
= CRYPTO_ALG_TYPE_AHASH
,
3938 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
3940 .cra_name
= "hmac(sha384)",
3941 .cra_driver_name
= "hmac-sha384-iproc",
3942 .cra_blocksize
= SHA384_BLOCK_SIZE
,
3946 .alg
= CIPHER_ALG_NONE
,
3947 .mode
= CIPHER_MODE_NONE
,
3950 .alg
= HASH_ALG_SHA384
,
3951 .mode
= HASH_MODE_HMAC
,
3955 .type
= CRYPTO_ALG_TYPE_AHASH
,
3957 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
3959 .cra_name
= "sha512",
3960 .cra_driver_name
= "sha512-iproc",
3961 .cra_blocksize
= SHA512_BLOCK_SIZE
,
3965 .alg
= CIPHER_ALG_NONE
,
3966 .mode
= CIPHER_MODE_NONE
,
3969 .alg
= HASH_ALG_SHA512
,
3970 .mode
= HASH_MODE_HASH
,
3974 .type
= CRYPTO_ALG_TYPE_AHASH
,
3976 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
3978 .cra_name
= "hmac(sha512)",
3979 .cra_driver_name
= "hmac-sha512-iproc",
3980 .cra_blocksize
= SHA512_BLOCK_SIZE
,
3984 .alg
= CIPHER_ALG_NONE
,
3985 .mode
= CIPHER_MODE_NONE
,
3988 .alg
= HASH_ALG_SHA512
,
3989 .mode
= HASH_MODE_HMAC
,
3993 .type
= CRYPTO_ALG_TYPE_AHASH
,
3995 .halg
.digestsize
= SHA3_224_DIGEST_SIZE
,
3997 .cra_name
= "sha3-224",
3998 .cra_driver_name
= "sha3-224-iproc",
3999 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
4003 .alg
= CIPHER_ALG_NONE
,
4004 .mode
= CIPHER_MODE_NONE
,
4007 .alg
= HASH_ALG_SHA3_224
,
4008 .mode
= HASH_MODE_HASH
,
4012 .type
= CRYPTO_ALG_TYPE_AHASH
,
4014 .halg
.digestsize
= SHA3_224_DIGEST_SIZE
,
4016 .cra_name
= "hmac(sha3-224)",
4017 .cra_driver_name
= "hmac-sha3-224-iproc",
4018 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
4022 .alg
= CIPHER_ALG_NONE
,
4023 .mode
= CIPHER_MODE_NONE
,
4026 .alg
= HASH_ALG_SHA3_224
,
4027 .mode
= HASH_MODE_HMAC
4031 .type
= CRYPTO_ALG_TYPE_AHASH
,
4033 .halg
.digestsize
= SHA3_256_DIGEST_SIZE
,
4035 .cra_name
= "sha3-256",
4036 .cra_driver_name
= "sha3-256-iproc",
4037 .cra_blocksize
= SHA3_256_BLOCK_SIZE
,
4041 .alg
= CIPHER_ALG_NONE
,
4042 .mode
= CIPHER_MODE_NONE
,
4045 .alg
= HASH_ALG_SHA3_256
,
4046 .mode
= HASH_MODE_HASH
,
4050 .type
= CRYPTO_ALG_TYPE_AHASH
,
4052 .halg
.digestsize
= SHA3_256_DIGEST_SIZE
,
4054 .cra_name
= "hmac(sha3-256)",
4055 .cra_driver_name
= "hmac-sha3-256-iproc",
4056 .cra_blocksize
= SHA3_256_BLOCK_SIZE
,
4060 .alg
= CIPHER_ALG_NONE
,
4061 .mode
= CIPHER_MODE_NONE
,
4064 .alg
= HASH_ALG_SHA3_256
,
4065 .mode
= HASH_MODE_HMAC
,
4069 .type
= CRYPTO_ALG_TYPE_AHASH
,
4071 .halg
.digestsize
= SHA3_384_DIGEST_SIZE
,
4073 .cra_name
= "sha3-384",
4074 .cra_driver_name
= "sha3-384-iproc",
4075 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
4079 .alg
= CIPHER_ALG_NONE
,
4080 .mode
= CIPHER_MODE_NONE
,
4083 .alg
= HASH_ALG_SHA3_384
,
4084 .mode
= HASH_MODE_HASH
,
4088 .type
= CRYPTO_ALG_TYPE_AHASH
,
4090 .halg
.digestsize
= SHA3_384_DIGEST_SIZE
,
4092 .cra_name
= "hmac(sha3-384)",
4093 .cra_driver_name
= "hmac-sha3-384-iproc",
4094 .cra_blocksize
= SHA3_384_BLOCK_SIZE
,
4098 .alg
= CIPHER_ALG_NONE
,
4099 .mode
= CIPHER_MODE_NONE
,
4102 .alg
= HASH_ALG_SHA3_384
,
4103 .mode
= HASH_MODE_HMAC
,
4107 .type
= CRYPTO_ALG_TYPE_AHASH
,
4109 .halg
.digestsize
= SHA3_512_DIGEST_SIZE
,
4111 .cra_name
= "sha3-512",
4112 .cra_driver_name
= "sha3-512-iproc",
4113 .cra_blocksize
= SHA3_512_BLOCK_SIZE
,
4117 .alg
= CIPHER_ALG_NONE
,
4118 .mode
= CIPHER_MODE_NONE
,
4121 .alg
= HASH_ALG_SHA3_512
,
4122 .mode
= HASH_MODE_HASH
,
4126 .type
= CRYPTO_ALG_TYPE_AHASH
,
4128 .halg
.digestsize
= SHA3_512_DIGEST_SIZE
,
4130 .cra_name
= "hmac(sha3-512)",
4131 .cra_driver_name
= "hmac-sha3-512-iproc",
4132 .cra_blocksize
= SHA3_512_BLOCK_SIZE
,
4136 .alg
= CIPHER_ALG_NONE
,
4137 .mode
= CIPHER_MODE_NONE
,
4140 .alg
= HASH_ALG_SHA3_512
,
4141 .mode
= HASH_MODE_HMAC
,
4145 .type
= CRYPTO_ALG_TYPE_AHASH
,
4147 .halg
.digestsize
= AES_BLOCK_SIZE
,
4149 .cra_name
= "xcbc(aes)",
4150 .cra_driver_name
= "xcbc-aes-iproc",
4151 .cra_blocksize
= AES_BLOCK_SIZE
,
4155 .alg
= CIPHER_ALG_NONE
,
4156 .mode
= CIPHER_MODE_NONE
,
4159 .alg
= HASH_ALG_AES
,
4160 .mode
= HASH_MODE_XCBC
,
4164 .type
= CRYPTO_ALG_TYPE_AHASH
,
4166 .halg
.digestsize
= AES_BLOCK_SIZE
,
4168 .cra_name
= "cmac(aes)",
4169 .cra_driver_name
= "cmac-aes-iproc",
4170 .cra_blocksize
= AES_BLOCK_SIZE
,
4174 .alg
= CIPHER_ALG_NONE
,
4175 .mode
= CIPHER_MODE_NONE
,
4178 .alg
= HASH_ALG_AES
,
4179 .mode
= HASH_MODE_CMAC
,
4184 static int generic_cra_init(struct crypto_tfm
*tfm
,
4185 struct iproc_alg_s
*cipher_alg
)
4187 struct spu_hw
*spu
= &iproc_priv
.spu
;
4188 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4189 unsigned int blocksize
= crypto_tfm_alg_blocksize(tfm
);
4191 flow_log("%s()\n", __func__
);
4193 ctx
->alg
= cipher_alg
;
4194 ctx
->cipher
= cipher_alg
->cipher_info
;
4195 ctx
->auth
= cipher_alg
->auth_info
;
4196 ctx
->auth_first
= cipher_alg
->auth_first
;
4197 ctx
->max_payload
= spu
->spu_ctx_max_payload(ctx
->cipher
.alg
,
4200 ctx
->fallback_cipher
= NULL
;
4203 ctx
->authkeylen
= 0;
4205 atomic_inc(&iproc_priv
.stream_count
);
4206 atomic_inc(&iproc_priv
.session_count
);
4211 static int skcipher_init_tfm(struct crypto_skcipher
*skcipher
)
4213 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
4214 struct skcipher_alg
*alg
= crypto_skcipher_alg(skcipher
);
4215 struct iproc_alg_s
*cipher_alg
;
4217 flow_log("%s()\n", __func__
);
4219 crypto_skcipher_set_reqsize(skcipher
, sizeof(struct iproc_reqctx_s
));
4221 cipher_alg
= container_of(alg
, struct iproc_alg_s
, alg
.skcipher
);
4222 return generic_cra_init(tfm
, cipher_alg
);
4225 static int ahash_cra_init(struct crypto_tfm
*tfm
)
4228 struct crypto_alg
*alg
= tfm
->__crt_alg
;
4229 struct iproc_alg_s
*cipher_alg
;
4231 cipher_alg
= container_of(__crypto_ahash_alg(alg
), struct iproc_alg_s
,
4234 err
= generic_cra_init(tfm
, cipher_alg
);
4235 flow_log("%s()\n", __func__
);
4238 * export state size has to be < 512 bytes. So don't include msg bufs
4241 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
4242 sizeof(struct iproc_reqctx_s
));
4247 static int aead_cra_init(struct crypto_aead
*aead
)
4249 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
4250 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4251 struct crypto_alg
*alg
= tfm
->__crt_alg
;
4252 struct aead_alg
*aalg
= container_of(alg
, struct aead_alg
, base
);
4253 struct iproc_alg_s
*cipher_alg
= container_of(aalg
, struct iproc_alg_s
,
4256 int err
= generic_cra_init(tfm
, cipher_alg
);
4258 flow_log("%s()\n", __func__
);
4260 crypto_aead_set_reqsize(aead
, sizeof(struct iproc_reqctx_s
));
4261 ctx
->is_esp
= false;
4263 ctx
->salt_offset
= 0;
4265 /* random first IV */
4266 get_random_bytes(ctx
->iv
, MAX_IV_SIZE
);
4267 flow_dump(" iv: ", ctx
->iv
, MAX_IV_SIZE
);
4270 if (alg
->cra_flags
& CRYPTO_ALG_NEED_FALLBACK
) {
4271 flow_log("%s() creating fallback cipher\n", __func__
);
4273 ctx
->fallback_cipher
=
4274 crypto_alloc_aead(alg
->cra_name
, 0,
4276 CRYPTO_ALG_NEED_FALLBACK
);
4277 if (IS_ERR(ctx
->fallback_cipher
)) {
4278 pr_err("%s() Error: failed to allocate fallback for %s\n",
4279 __func__
, alg
->cra_name
);
4280 return PTR_ERR(ctx
->fallback_cipher
);
4288 static void generic_cra_exit(struct crypto_tfm
*tfm
)
4290 atomic_dec(&iproc_priv
.session_count
);
4293 static void skcipher_exit_tfm(struct crypto_skcipher
*tfm
)
4295 generic_cra_exit(crypto_skcipher_tfm(tfm
));
4298 static void aead_cra_exit(struct crypto_aead
*aead
)
4300 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
4301 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4303 generic_cra_exit(tfm
);
4305 if (ctx
->fallback_cipher
) {
4306 crypto_free_aead(ctx
->fallback_cipher
);
4307 ctx
->fallback_cipher
= NULL
;
4312 * spu_functions_register() - Specify hardware-specific SPU functions based on
4313 * SPU type read from device tree.
4314 * @dev: device structure
4315 * @spu_type: SPU hardware generation
4316 * @spu_subtype: SPU hardware version
4318 static void spu_functions_register(struct device
*dev
,
4319 enum spu_spu_type spu_type
,
4320 enum spu_spu_subtype spu_subtype
)
4322 struct spu_hw
*spu
= &iproc_priv
.spu
;
4324 if (spu_type
== SPU_TYPE_SPUM
) {
4325 dev_dbg(dev
, "Registering SPUM functions");
4326 spu
->spu_dump_msg_hdr
= spum_dump_msg_hdr
;
4327 spu
->spu_payload_length
= spum_payload_length
;
4328 spu
->spu_response_hdr_len
= spum_response_hdr_len
;
4329 spu
->spu_hash_pad_len
= spum_hash_pad_len
;
4330 spu
->spu_gcm_ccm_pad_len
= spum_gcm_ccm_pad_len
;
4331 spu
->spu_assoc_resp_len
= spum_assoc_resp_len
;
4332 spu
->spu_aead_ivlen
= spum_aead_ivlen
;
4333 spu
->spu_hash_type
= spum_hash_type
;
4334 spu
->spu_digest_size
= spum_digest_size
;
4335 spu
->spu_create_request
= spum_create_request
;
4336 spu
->spu_cipher_req_init
= spum_cipher_req_init
;
4337 spu
->spu_cipher_req_finish
= spum_cipher_req_finish
;
4338 spu
->spu_request_pad
= spum_request_pad
;
4339 spu
->spu_tx_status_len
= spum_tx_status_len
;
4340 spu
->spu_rx_status_len
= spum_rx_status_len
;
4341 spu
->spu_status_process
= spum_status_process
;
4342 spu
->spu_xts_tweak_in_payload
= spum_xts_tweak_in_payload
;
4343 spu
->spu_ccm_update_iv
= spum_ccm_update_iv
;
4344 spu
->spu_wordalign_padlen
= spum_wordalign_padlen
;
4345 if (spu_subtype
== SPU_SUBTYPE_SPUM_NS2
)
4346 spu
->spu_ctx_max_payload
= spum_ns2_ctx_max_payload
;
4348 spu
->spu_ctx_max_payload
= spum_nsp_ctx_max_payload
;
4350 dev_dbg(dev
, "Registering SPU2 functions");
4351 spu
->spu_dump_msg_hdr
= spu2_dump_msg_hdr
;
4352 spu
->spu_ctx_max_payload
= spu2_ctx_max_payload
;
4353 spu
->spu_payload_length
= spu2_payload_length
;
4354 spu
->spu_response_hdr_len
= spu2_response_hdr_len
;
4355 spu
->spu_hash_pad_len
= spu2_hash_pad_len
;
4356 spu
->spu_gcm_ccm_pad_len
= spu2_gcm_ccm_pad_len
;
4357 spu
->spu_assoc_resp_len
= spu2_assoc_resp_len
;
4358 spu
->spu_aead_ivlen
= spu2_aead_ivlen
;
4359 spu
->spu_hash_type
= spu2_hash_type
;
4360 spu
->spu_digest_size
= spu2_digest_size
;
4361 spu
->spu_create_request
= spu2_create_request
;
4362 spu
->spu_cipher_req_init
= spu2_cipher_req_init
;
4363 spu
->spu_cipher_req_finish
= spu2_cipher_req_finish
;
4364 spu
->spu_request_pad
= spu2_request_pad
;
4365 spu
->spu_tx_status_len
= spu2_tx_status_len
;
4366 spu
->spu_rx_status_len
= spu2_rx_status_len
;
4367 spu
->spu_status_process
= spu2_status_process
;
4368 spu
->spu_xts_tweak_in_payload
= spu2_xts_tweak_in_payload
;
4369 spu
->spu_ccm_update_iv
= spu2_ccm_update_iv
;
4370 spu
->spu_wordalign_padlen
= spu2_wordalign_padlen
;
4375 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4376 * channel for the SPU being probed.
4377 * @dev: SPU driver device structure
4379 * Return: 0 if successful
4382 static int spu_mb_init(struct device
*dev
)
4384 struct mbox_client
*mcl
= &iproc_priv
.mcl
;
4387 iproc_priv
.mbox
= devm_kcalloc(dev
, iproc_priv
.spu
.num_chan
,
4388 sizeof(struct mbox_chan
*), GFP_KERNEL
);
4389 if (!iproc_priv
.mbox
)
4393 mcl
->tx_block
= false;
4395 mcl
->knows_txdone
= true;
4396 mcl
->rx_callback
= spu_rx_callback
;
4397 mcl
->tx_done
= NULL
;
4399 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++) {
4400 iproc_priv
.mbox
[i
] = mbox_request_channel(mcl
, i
);
4401 if (IS_ERR(iproc_priv
.mbox
[i
])) {
4402 err
= PTR_ERR(iproc_priv
.mbox
[i
]);
4404 "Mbox channel %d request failed with err %d",
4406 iproc_priv
.mbox
[i
] = NULL
;
4413 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++) {
4414 if (iproc_priv
.mbox
[i
])
4415 mbox_free_channel(iproc_priv
.mbox
[i
]);
4421 static void spu_mb_release(struct platform_device
*pdev
)
4425 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++)
4426 mbox_free_channel(iproc_priv
.mbox
[i
]);
4429 static void spu_counters_init(void)
4434 atomic_set(&iproc_priv
.session_count
, 0);
4435 atomic_set(&iproc_priv
.stream_count
, 0);
4436 atomic_set(&iproc_priv
.next_chan
, (int)iproc_priv
.spu
.num_chan
);
4437 atomic64_set(&iproc_priv
.bytes_in
, 0);
4438 atomic64_set(&iproc_priv
.bytes_out
, 0);
4439 for (i
= 0; i
< SPU_OP_NUM
; i
++) {
4440 atomic_set(&iproc_priv
.op_counts
[i
], 0);
4441 atomic_set(&iproc_priv
.setkey_cnt
[i
], 0);
4443 for (i
= 0; i
< CIPHER_ALG_LAST
; i
++)
4444 for (j
= 0; j
< CIPHER_MODE_LAST
; j
++)
4445 atomic_set(&iproc_priv
.cipher_cnt
[i
][j
], 0);
4447 for (i
= 0; i
< HASH_ALG_LAST
; i
++) {
4448 atomic_set(&iproc_priv
.hash_cnt
[i
], 0);
4449 atomic_set(&iproc_priv
.hmac_cnt
[i
], 0);
4451 for (i
= 0; i
< AEAD_TYPE_LAST
; i
++)
4452 atomic_set(&iproc_priv
.aead_cnt
[i
], 0);
4454 atomic_set(&iproc_priv
.mb_no_spc
, 0);
4455 atomic_set(&iproc_priv
.mb_send_fail
, 0);
4456 atomic_set(&iproc_priv
.bad_icv
, 0);
4459 static int spu_register_skcipher(struct iproc_alg_s
*driver_alg
)
4461 struct skcipher_alg
*crypto
= &driver_alg
->alg
.skcipher
;
4464 crypto
->base
.cra_module
= THIS_MODULE
;
4465 crypto
->base
.cra_priority
= cipher_pri
;
4466 crypto
->base
.cra_alignmask
= 0;
4467 crypto
->base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4468 crypto
->base
.cra_flags
= CRYPTO_ALG_ASYNC
|
4469 CRYPTO_ALG_ALLOCATES_MEMORY
|
4470 CRYPTO_ALG_KERN_DRIVER_ONLY
;
4472 crypto
->init
= skcipher_init_tfm
;
4473 crypto
->exit
= skcipher_exit_tfm
;
4474 crypto
->setkey
= skcipher_setkey
;
4475 crypto
->encrypt
= skcipher_encrypt
;
4476 crypto
->decrypt
= skcipher_decrypt
;
4478 err
= crypto_register_skcipher(crypto
);
4479 /* Mark alg as having been registered, if successful */
4481 driver_alg
->registered
= true;
4482 pr_debug(" registered skcipher %s\n", crypto
->base
.cra_driver_name
);
4486 static int spu_register_ahash(struct iproc_alg_s
*driver_alg
)
4488 struct spu_hw
*spu
= &iproc_priv
.spu
;
4489 struct ahash_alg
*hash
= &driver_alg
->alg
.hash
;
4492 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4493 if ((driver_alg
->auth_info
.alg
== HASH_ALG_AES
) &&
4494 (driver_alg
->auth_info
.mode
!= HASH_MODE_XCBC
) &&
4495 (spu
->spu_type
== SPU_TYPE_SPUM
))
4498 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4499 if ((driver_alg
->auth_info
.alg
>= HASH_ALG_SHA3_224
) &&
4500 (spu
->spu_subtype
!= SPU_SUBTYPE_SPU2_V2
))
4503 hash
->halg
.base
.cra_module
= THIS_MODULE
;
4504 hash
->halg
.base
.cra_priority
= hash_pri
;
4505 hash
->halg
.base
.cra_alignmask
= 0;
4506 hash
->halg
.base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4507 hash
->halg
.base
.cra_init
= ahash_cra_init
;
4508 hash
->halg
.base
.cra_exit
= generic_cra_exit
;
4509 hash
->halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
|
4510 CRYPTO_ALG_ALLOCATES_MEMORY
;
4511 hash
->halg
.statesize
= sizeof(struct spu_hash_export_s
);
4513 if (driver_alg
->auth_info
.mode
!= HASH_MODE_HMAC
) {
4514 hash
->init
= ahash_init
;
4515 hash
->update
= ahash_update
;
4516 hash
->final
= ahash_final
;
4517 hash
->finup
= ahash_finup
;
4518 hash
->digest
= ahash_digest
;
4519 if ((driver_alg
->auth_info
.alg
== HASH_ALG_AES
) &&
4520 ((driver_alg
->auth_info
.mode
== HASH_MODE_XCBC
) ||
4521 (driver_alg
->auth_info
.mode
== HASH_MODE_CMAC
))) {
4522 hash
->setkey
= ahash_setkey
;
4525 hash
->setkey
= ahash_hmac_setkey
;
4526 hash
->init
= ahash_hmac_init
;
4527 hash
->update
= ahash_hmac_update
;
4528 hash
->final
= ahash_hmac_final
;
4529 hash
->finup
= ahash_hmac_finup
;
4530 hash
->digest
= ahash_hmac_digest
;
4532 hash
->export
= ahash_export
;
4533 hash
->import
= ahash_import
;
4535 err
= crypto_register_ahash(hash
);
4536 /* Mark alg as having been registered, if successful */
4538 driver_alg
->registered
= true;
4539 pr_debug(" registered ahash %s\n",
4540 hash
->halg
.base
.cra_driver_name
);
4544 static int spu_register_aead(struct iproc_alg_s
*driver_alg
)
4546 struct aead_alg
*aead
= &driver_alg
->alg
.aead
;
4549 aead
->base
.cra_module
= THIS_MODULE
;
4550 aead
->base
.cra_priority
= aead_pri
;
4551 aead
->base
.cra_alignmask
= 0;
4552 aead
->base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4554 aead
->base
.cra_flags
|= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_ALLOCATES_MEMORY
;
4555 /* setkey set in alg initialization */
4556 aead
->setauthsize
= aead_setauthsize
;
4557 aead
->encrypt
= aead_encrypt
;
4558 aead
->decrypt
= aead_decrypt
;
4559 aead
->init
= aead_cra_init
;
4560 aead
->exit
= aead_cra_exit
;
4562 err
= crypto_register_aead(aead
);
4563 /* Mark alg as having been registered, if successful */
4565 driver_alg
->registered
= true;
4566 pr_debug(" registered aead %s\n", aead
->base
.cra_driver_name
);
4570 /* register crypto algorithms the device supports */
4571 static int spu_algs_register(struct device
*dev
)
4576 for (i
= 0; i
< ARRAY_SIZE(driver_algs
); i
++) {
4577 switch (driver_algs
[i
].type
) {
4578 case CRYPTO_ALG_TYPE_SKCIPHER
:
4579 err
= spu_register_skcipher(&driver_algs
[i
]);
4581 case CRYPTO_ALG_TYPE_AHASH
:
4582 err
= spu_register_ahash(&driver_algs
[i
]);
4584 case CRYPTO_ALG_TYPE_AEAD
:
4585 err
= spu_register_aead(&driver_algs
[i
]);
4589 "iproc-crypto: unknown alg type: %d",
4590 driver_algs
[i
].type
);
4595 dev_err(dev
, "alg registration failed with error %d\n",
4604 for (j
= 0; j
< i
; j
++) {
4605 /* Skip any algorithm not registered */
4606 if (!driver_algs
[j
].registered
)
4608 switch (driver_algs
[j
].type
) {
4609 case CRYPTO_ALG_TYPE_SKCIPHER
:
4610 crypto_unregister_skcipher(&driver_algs
[j
].alg
.skcipher
);
4611 driver_algs
[j
].registered
= false;
4613 case CRYPTO_ALG_TYPE_AHASH
:
4614 crypto_unregister_ahash(&driver_algs
[j
].alg
.hash
);
4615 driver_algs
[j
].registered
= false;
4617 case CRYPTO_ALG_TYPE_AEAD
:
4618 crypto_unregister_aead(&driver_algs
[j
].alg
.aead
);
4619 driver_algs
[j
].registered
= false;
4626 /* ==================== Kernel Platform API ==================== */
4628 static struct spu_type_subtype spum_ns2_types
= {
4629 SPU_TYPE_SPUM
, SPU_SUBTYPE_SPUM_NS2
4632 static struct spu_type_subtype spum_nsp_types
= {
4633 SPU_TYPE_SPUM
, SPU_SUBTYPE_SPUM_NSP
4636 static struct spu_type_subtype spu2_types
= {
4637 SPU_TYPE_SPU2
, SPU_SUBTYPE_SPU2_V1
4640 static struct spu_type_subtype spu2_v2_types
= {
4641 SPU_TYPE_SPU2
, SPU_SUBTYPE_SPU2_V2
4644 static const struct of_device_id bcm_spu_dt_ids
[] = {
4646 .compatible
= "brcm,spum-crypto",
4647 .data
= &spum_ns2_types
,
4650 .compatible
= "brcm,spum-nsp-crypto",
4651 .data
= &spum_nsp_types
,
4654 .compatible
= "brcm,spu2-crypto",
4655 .data
= &spu2_types
,
4658 .compatible
= "brcm,spu2-v2-crypto",
4659 .data
= &spu2_v2_types
,
4664 MODULE_DEVICE_TABLE(of
, bcm_spu_dt_ids
);
4666 static int spu_dt_read(struct platform_device
*pdev
)
4668 struct device
*dev
= &pdev
->dev
;
4669 struct spu_hw
*spu
= &iproc_priv
.spu
;
4670 struct resource
*spu_ctrl_regs
;
4671 const struct spu_type_subtype
*matched_spu_type
;
4672 struct device_node
*dn
= pdev
->dev
.of_node
;
4675 /* Count number of mailbox channels */
4676 spu
->num_chan
= of_count_phandle_with_args(dn
, "mboxes", "#mbox-cells");
4678 matched_spu_type
= of_device_get_match_data(dev
);
4679 if (!matched_spu_type
) {
4680 dev_err(dev
, "Failed to match device\n");
4684 spu
->spu_type
= matched_spu_type
->type
;
4685 spu
->spu_subtype
= matched_spu_type
->subtype
;
4687 for (i
= 0; (i
< MAX_SPUS
) && ((spu_ctrl_regs
=
4688 platform_get_resource(pdev
, IORESOURCE_MEM
, i
)) != NULL
); i
++) {
4690 spu
->reg_vbase
[i
] = devm_ioremap_resource(dev
, spu_ctrl_regs
);
4691 if (IS_ERR(spu
->reg_vbase
[i
])) {
4692 err
= PTR_ERR(spu
->reg_vbase
[i
]);
4693 dev_err(dev
, "Failed to map registers: %d\n",
4695 spu
->reg_vbase
[i
] = NULL
;
4700 dev_dbg(dev
, "Device has %d SPUs", spu
->num_spu
);
4705 static int bcm_spu_probe(struct platform_device
*pdev
)
4707 struct device
*dev
= &pdev
->dev
;
4708 struct spu_hw
*spu
= &iproc_priv
.spu
;
4711 iproc_priv
.pdev
= pdev
;
4712 platform_set_drvdata(iproc_priv
.pdev
,
4715 err
= spu_dt_read(pdev
);
4719 err
= spu_mb_init(dev
);
4723 if (spu
->spu_type
== SPU_TYPE_SPUM
)
4724 iproc_priv
.bcm_hdr_len
= 8;
4725 else if (spu
->spu_type
== SPU_TYPE_SPU2
)
4726 iproc_priv
.bcm_hdr_len
= 0;
4728 spu_functions_register(dev
, spu
->spu_type
, spu
->spu_subtype
);
4730 spu_counters_init();
4732 spu_setup_debugfs();
4734 err
= spu_algs_register(dev
);
4743 spu_mb_release(pdev
);
4744 dev_err(dev
, "%s failed with error %d.\n", __func__
, err
);
4749 static int bcm_spu_remove(struct platform_device
*pdev
)
4752 struct device
*dev
= &pdev
->dev
;
4755 for (i
= 0; i
< ARRAY_SIZE(driver_algs
); i
++) {
4757 * Not all algorithms were registered, depending on whether
4758 * hardware is SPU or SPU2. So here we make sure to skip
4759 * those algorithms that were not previously registered.
4761 if (!driver_algs
[i
].registered
)
4764 switch (driver_algs
[i
].type
) {
4765 case CRYPTO_ALG_TYPE_SKCIPHER
:
4766 crypto_unregister_skcipher(&driver_algs
[i
].alg
.skcipher
);
4767 dev_dbg(dev
, " unregistered cipher %s\n",
4768 driver_algs
[i
].alg
.skcipher
.base
.cra_driver_name
);
4769 driver_algs
[i
].registered
= false;
4771 case CRYPTO_ALG_TYPE_AHASH
:
4772 crypto_unregister_ahash(&driver_algs
[i
].alg
.hash
);
4773 cdn
= driver_algs
[i
].alg
.hash
.halg
.base
.cra_driver_name
;
4774 dev_dbg(dev
, " unregistered hash %s\n", cdn
);
4775 driver_algs
[i
].registered
= false;
4777 case CRYPTO_ALG_TYPE_AEAD
:
4778 crypto_unregister_aead(&driver_algs
[i
].alg
.aead
);
4779 dev_dbg(dev
, " unregistered aead %s\n",
4780 driver_algs
[i
].alg
.aead
.base
.cra_driver_name
);
4781 driver_algs
[i
].registered
= false;
4786 spu_mb_release(pdev
);
4790 /* ===== Kernel Module API ===== */
4792 static struct platform_driver bcm_spu_pdriver
= {
4794 .name
= "brcm-spu-crypto",
4795 .of_match_table
= of_match_ptr(bcm_spu_dt_ids
),
4797 .probe
= bcm_spu_probe
,
4798 .remove
= bcm_spu_remove
,
4800 module_platform_driver(bcm_spu_pdriver
);
4802 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4803 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4804 MODULE_LICENSE("GPL v2");