WIP FPC-III support
[linux/fpc-iii.git] / drivers / crypto / bcm / cipher.c
blob30390a7324b2957aabc7b4b0d936ca7f34885124
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2016 Broadcom
4 */
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/io.h>
21 #include <linux/bitops.h>
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/md5.h>
30 #include <crypto/authenc.h>
31 #include <crypto/skcipher.h>
32 #include <crypto/hash.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/sha3.h>
37 #include "util.h"
38 #include "cipher.h"
39 #include "spu.h"
40 #include "spum.h"
41 #include "spu2.h"
43 /* ================= Device Structure ================== */
45 struct device_private iproc_priv;
47 /* ==================== Parameters ===================== */
49 int flow_debug_logging;
50 module_param(flow_debug_logging, int, 0644);
51 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
53 int packet_debug_logging;
54 module_param(packet_debug_logging, int, 0644);
55 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
57 int debug_logging_sleep;
58 module_param(debug_logging_sleep, int, 0644);
59 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
62 * The value of these module parameters is used to set the priority for each
63 * algo type when this driver registers algos with the kernel crypto API.
64 * To use a priority other than the default, set the priority in the insmod or
65 * modprobe. Changing the module priority after init time has no effect.
67 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
68 * algos, but more preferred than generic software algos.
70 static int cipher_pri = 150;
71 module_param(cipher_pri, int, 0644);
72 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
74 static int hash_pri = 100;
75 module_param(hash_pri, int, 0644);
76 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
78 static int aead_pri = 150;
79 module_param(aead_pri, int, 0644);
80 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
82 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
83 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
84 * 0x60 - ring 0
85 * 0x68 - ring 1
86 * 0x70 - ring 2
87 * 0x78 - ring 3
89 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
91 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
92 * is set dynamically after reading SPU type from device tree.
94 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len
96 /* min and max time to sleep before retrying when mbox queue is full. usec */
97 #define MBOX_SLEEP_MIN 800
98 #define MBOX_SLEEP_MAX 1000
101 * select_channel() - Select a SPU channel to handle a crypto request. Selects
102 * channel in round robin order.
104 * Return: channel index
106 static u8 select_channel(void)
108 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
110 return chan_idx % iproc_priv.spu.num_chan;
114 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
115 * receive a SPU response message for an skcipher request. Includes buffers to
116 * catch SPU message headers and the response data.
117 * @mssg: mailbox message containing the receive sg
118 * @rctx: crypto request context
119 * @rx_frag_num: number of scatterlist elements required to hold the
120 * SPU response message
121 * @chunksize: Number of bytes of response data expected
122 * @stat_pad_len: Number of bytes required to pad the STAT field to
123 * a 4-byte boundary
125 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
126 * when the request completes, whether the request is handled successfully or
127 * there is an error.
129 * Returns:
130 * 0 if successful
131 * < 0 if an error
133 static int
134 spu_skcipher_rx_sg_create(struct brcm_message *mssg,
135 struct iproc_reqctx_s *rctx,
136 u8 rx_frag_num,
137 unsigned int chunksize, u32 stat_pad_len)
139 struct spu_hw *spu = &iproc_priv.spu;
140 struct scatterlist *sg; /* used to build sgs in mbox message */
141 struct iproc_ctx_s *ctx = rctx->ctx;
142 u32 datalen; /* Number of bytes of response data expected */
144 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
145 rctx->gfp);
146 if (!mssg->spu.dst)
147 return -ENOMEM;
149 sg = mssg->spu.dst;
150 sg_init_table(sg, rx_frag_num);
151 /* Space for SPU message header */
152 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
154 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
155 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
156 spu->spu_xts_tweak_in_payload())
157 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
158 SPU_XTS_TWEAK_SIZE);
160 /* Copy in each dst sg entry from request, up to chunksize */
161 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
162 rctx->dst_nents, chunksize);
163 if (datalen < chunksize) {
164 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
165 __func__, chunksize, datalen);
166 return -EFAULT;
169 if (stat_pad_len)
170 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
172 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
173 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
175 return 0;
179 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
180 * send a SPU request message for an skcipher request. Includes SPU message
181 * headers and the request data.
182 * @mssg: mailbox message containing the transmit sg
183 * @rctx: crypto request context
184 * @tx_frag_num: number of scatterlist elements required to construct the
185 * SPU request message
186 * @chunksize: Number of bytes of request data
187 * @pad_len: Number of pad bytes
189 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
190 * when the request completes, whether the request is handled successfully or
191 * there is an error.
193 * Returns:
194 * 0 if successful
195 * < 0 if an error
197 static int
198 spu_skcipher_tx_sg_create(struct brcm_message *mssg,
199 struct iproc_reqctx_s *rctx,
200 u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
202 struct spu_hw *spu = &iproc_priv.spu;
203 struct scatterlist *sg; /* used to build sgs in mbox message */
204 struct iproc_ctx_s *ctx = rctx->ctx;
205 u32 datalen; /* Number of bytes of response data expected */
206 u32 stat_len;
208 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
209 rctx->gfp);
210 if (unlikely(!mssg->spu.src))
211 return -ENOMEM;
213 sg = mssg->spu.src;
214 sg_init_table(sg, tx_frag_num);
216 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
217 BCM_HDR_LEN + ctx->spu_req_hdr_len);
219 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
220 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
221 spu->spu_xts_tweak_in_payload())
222 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
224 /* Copy in each src sg entry from request, up to chunksize */
225 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
226 rctx->src_nents, chunksize);
227 if (unlikely(datalen < chunksize)) {
228 pr_err("%s(): failed to copy src sg to mbox msg",
229 __func__);
230 return -EFAULT;
233 if (pad_len)
234 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
236 stat_len = spu->spu_tx_status_len();
237 if (stat_len) {
238 memset(rctx->msg_buf.tx_stat, 0, stat_len);
239 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
241 return 0;
244 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
245 u8 chan_idx)
247 int err;
248 int retry_cnt = 0;
249 struct device *dev = &(iproc_priv.pdev->dev);
251 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
252 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
253 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
255 * Mailbox queue is full. Since MAY_SLEEP is set, assume
256 * not in atomic context and we can wait and try again.
258 retry_cnt++;
259 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
260 err = mbox_send_message(iproc_priv.mbox[chan_idx],
261 mssg);
262 atomic_inc(&iproc_priv.mb_no_spc);
265 if (err < 0) {
266 atomic_inc(&iproc_priv.mb_send_fail);
267 return err;
270 /* Check error returned by mailbox controller */
271 err = mssg->error;
272 if (unlikely(err < 0)) {
273 dev_err(dev, "message error %d", err);
274 /* Signal txdone for mailbox channel */
277 /* Signal txdone for mailbox channel */
278 mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
279 return err;
283 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
284 * a single SPU request message, starting at the current position in the request
285 * data.
286 * @rctx: Crypto request context
288 * This may be called on the crypto API thread, or, when a request is so large
289 * it must be broken into multiple SPU messages, on the thread used to invoke
290 * the response callback. When requests are broken into multiple SPU
291 * messages, we assume subsequent messages depend on previous results, and
292 * thus always wait for previous results before submitting the next message.
293 * Because requests are submitted in lock step like this, there is no need
294 * to synchronize access to request data structures.
296 * Return: -EINPROGRESS: request has been accepted and result will be returned
297 * asynchronously
298 * Any other value indicates an error
300 static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
302 struct spu_hw *spu = &iproc_priv.spu;
303 struct crypto_async_request *areq = rctx->parent;
304 struct skcipher_request *req =
305 container_of(areq, struct skcipher_request, base);
306 struct iproc_ctx_s *ctx = rctx->ctx;
307 struct spu_cipher_parms cipher_parms;
308 int err;
309 unsigned int chunksize; /* Num bytes of request to submit */
310 int remaining; /* Bytes of request still to process */
311 int chunk_start; /* Beginning of data for current SPU msg */
313 /* IV or ctr value to use in this SPU msg */
314 u8 local_iv_ctr[MAX_IV_SIZE];
315 u32 stat_pad_len; /* num bytes to align status field */
316 u32 pad_len; /* total length of all padding */
317 struct brcm_message *mssg; /* mailbox message */
319 /* number of entries in src and dst sg in mailbox message. */
320 u8 rx_frag_num = 2; /* response header and STATUS */
321 u8 tx_frag_num = 1; /* request header */
323 flow_log("%s\n", __func__);
325 cipher_parms.alg = ctx->cipher.alg;
326 cipher_parms.mode = ctx->cipher.mode;
327 cipher_parms.type = ctx->cipher_type;
328 cipher_parms.key_len = ctx->enckeylen;
329 cipher_parms.key_buf = ctx->enckey;
330 cipher_parms.iv_buf = local_iv_ctr;
331 cipher_parms.iv_len = rctx->iv_ctr_len;
333 mssg = &rctx->mb_mssg;
334 chunk_start = rctx->src_sent;
335 remaining = rctx->total_todo - chunk_start;
337 /* determine the chunk we are breaking off and update the indexes */
338 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
339 (remaining > ctx->max_payload))
340 chunksize = ctx->max_payload;
341 else
342 chunksize = remaining;
344 rctx->src_sent += chunksize;
345 rctx->total_sent = rctx->src_sent;
347 /* Count number of sg entries to be included in this request */
348 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
349 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
351 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
352 rctx->is_encrypt && chunk_start)
354 * Encrypting non-first first chunk. Copy last block of
355 * previous result to IV for this chunk.
357 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
358 rctx->iv_ctr_len,
359 chunk_start - rctx->iv_ctr_len);
361 if (rctx->iv_ctr_len) {
362 /* get our local copy of the iv */
363 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
364 rctx->iv_ctr_len);
366 /* generate the next IV if possible */
367 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
368 !rctx->is_encrypt) {
370 * CBC Decrypt: next IV is the last ciphertext block in
371 * this chunk
373 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
374 rctx->iv_ctr_len,
375 rctx->src_sent - rctx->iv_ctr_len);
376 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
378 * The SPU hardware increments the counter once for
379 * each AES block of 16 bytes. So update the counter
380 * for the next chunk, if there is one. Note that for
381 * this chunk, the counter has already been copied to
382 * local_iv_ctr. We can assume a block size of 16,
383 * because we only support CTR mode for AES, not for
384 * any other cipher alg.
386 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
390 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
391 flow_log("max_payload infinite\n");
392 else
393 flow_log("max_payload %u\n", ctx->max_payload);
395 flow_log("sent:%u start:%u remains:%u size:%u\n",
396 rctx->src_sent, chunk_start, remaining, chunksize);
398 /* Copy SPU header template created at setkey time */
399 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
400 sizeof(rctx->msg_buf.bcm_spu_req_hdr));
402 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
403 ctx->spu_req_hdr_len, !(rctx->is_encrypt),
404 &cipher_parms, chunksize);
406 atomic64_add(chunksize, &iproc_priv.bytes_out);
408 stat_pad_len = spu->spu_wordalign_padlen(chunksize);
409 if (stat_pad_len)
410 rx_frag_num++;
411 pad_len = stat_pad_len;
412 if (pad_len) {
413 tx_frag_num++;
414 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
415 0, ctx->auth.alg, ctx->auth.mode,
416 rctx->total_sent, stat_pad_len);
419 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
420 ctx->spu_req_hdr_len);
421 packet_log("payload:\n");
422 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
423 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
426 * Build mailbox message containing SPU request msg and rx buffers
427 * to catch response message
429 memset(mssg, 0, sizeof(*mssg));
430 mssg->type = BRCM_MESSAGE_SPU;
431 mssg->ctx = rctx; /* Will be returned in response */
433 /* Create rx scatterlist to catch result */
434 rx_frag_num += rctx->dst_nents;
436 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
437 spu->spu_xts_tweak_in_payload())
438 rx_frag_num++; /* extra sg to insert tweak */
440 err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
441 stat_pad_len);
442 if (err)
443 return err;
445 /* Create tx scatterlist containing SPU request message */
446 tx_frag_num += rctx->src_nents;
447 if (spu->spu_tx_status_len())
448 tx_frag_num++;
450 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
451 spu->spu_xts_tweak_in_payload())
452 tx_frag_num++; /* extra sg to insert tweak */
454 err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
455 pad_len);
456 if (err)
457 return err;
459 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
460 if (unlikely(err < 0))
461 return err;
463 return -EINPROGRESS;
467 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
468 * total received count for the request and updates global stats.
469 * @rctx: Crypto request context
471 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
473 struct spu_hw *spu = &iproc_priv.spu;
474 #ifdef DEBUG
475 struct crypto_async_request *areq = rctx->parent;
476 struct skcipher_request *req = skcipher_request_cast(areq);
477 #endif
478 struct iproc_ctx_s *ctx = rctx->ctx;
479 u32 payload_len;
481 /* See how much data was returned */
482 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
485 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
486 * encrypted tweak ("i") value; we don't count those.
488 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
489 spu->spu_xts_tweak_in_payload() &&
490 (payload_len >= SPU_XTS_TWEAK_SIZE))
491 payload_len -= SPU_XTS_TWEAK_SIZE;
493 atomic64_add(payload_len, &iproc_priv.bytes_in);
495 flow_log("%s() offset: %u, bd_len: %u BD:\n",
496 __func__, rctx->total_received, payload_len);
498 dump_sg(req->dst, rctx->total_received, payload_len);
500 rctx->total_received += payload_len;
501 if (rctx->total_received == rctx->total_todo) {
502 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
503 atomic_inc(
504 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
509 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
510 * receive a SPU response message for an ahash request.
511 * @mssg: mailbox message containing the receive sg
512 * @rctx: crypto request context
513 * @rx_frag_num: number of scatterlist elements required to hold the
514 * SPU response message
515 * @digestsize: length of hash digest, in bytes
516 * @stat_pad_len: Number of bytes required to pad the STAT field to
517 * a 4-byte boundary
519 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
520 * when the request completes, whether the request is handled successfully or
521 * there is an error.
523 * Return:
524 * 0 if successful
525 * < 0 if an error
527 static int
528 spu_ahash_rx_sg_create(struct brcm_message *mssg,
529 struct iproc_reqctx_s *rctx,
530 u8 rx_frag_num, unsigned int digestsize,
531 u32 stat_pad_len)
533 struct spu_hw *spu = &iproc_priv.spu;
534 struct scatterlist *sg; /* used to build sgs in mbox message */
535 struct iproc_ctx_s *ctx = rctx->ctx;
537 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
538 rctx->gfp);
539 if (!mssg->spu.dst)
540 return -ENOMEM;
542 sg = mssg->spu.dst;
543 sg_init_table(sg, rx_frag_num);
544 /* Space for SPU message header */
545 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
547 /* Space for digest */
548 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
550 if (stat_pad_len)
551 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
553 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
554 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
555 return 0;
559 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
560 * a SPU request message for an ahash request. Includes SPU message headers and
561 * the request data.
562 * @mssg: mailbox message containing the transmit sg
563 * @rctx: crypto request context
564 * @tx_frag_num: number of scatterlist elements required to construct the
565 * SPU request message
566 * @spu_hdr_len: length in bytes of SPU message header
567 * @hash_carry_len: Number of bytes of data carried over from previous req
568 * @new_data_len: Number of bytes of new request data
569 * @pad_len: Number of pad bytes
571 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
572 * when the request completes, whether the request is handled successfully or
573 * there is an error.
575 * Return:
576 * 0 if successful
577 * < 0 if an error
579 static int
580 spu_ahash_tx_sg_create(struct brcm_message *mssg,
581 struct iproc_reqctx_s *rctx,
582 u8 tx_frag_num,
583 u32 spu_hdr_len,
584 unsigned int hash_carry_len,
585 unsigned int new_data_len, u32 pad_len)
587 struct spu_hw *spu = &iproc_priv.spu;
588 struct scatterlist *sg; /* used to build sgs in mbox message */
589 u32 datalen; /* Number of bytes of response data expected */
590 u32 stat_len;
592 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
593 rctx->gfp);
594 if (!mssg->spu.src)
595 return -ENOMEM;
597 sg = mssg->spu.src;
598 sg_init_table(sg, tx_frag_num);
600 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
601 BCM_HDR_LEN + spu_hdr_len);
603 if (hash_carry_len)
604 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
606 if (new_data_len) {
607 /* Copy in each src sg entry from request, up to chunksize */
608 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
609 rctx->src_nents, new_data_len);
610 if (datalen < new_data_len) {
611 pr_err("%s(): failed to copy src sg to mbox msg",
612 __func__);
613 return -EFAULT;
617 if (pad_len)
618 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
620 stat_len = spu->spu_tx_status_len();
621 if (stat_len) {
622 memset(rctx->msg_buf.tx_stat, 0, stat_len);
623 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
626 return 0;
630 * handle_ahash_req() - Process an asynchronous hash request from the crypto
631 * API.
632 * @rctx: Crypto request context
634 * Builds a SPU request message embedded in a mailbox message and submits the
635 * mailbox message on a selected mailbox channel. The SPU request message is
636 * constructed as a scatterlist, including entries from the crypto API's
637 * src scatterlist to avoid copying the data to be hashed. This function is
638 * called either on the thread from the crypto API, or, in the case that the
639 * crypto API request is too large to fit in a single SPU request message,
640 * on the thread that invokes the receive callback with a response message.
641 * Because some operations require the response from one chunk before the next
642 * chunk can be submitted, we always wait for the response for the previous
643 * chunk before submitting the next chunk. Because requests are submitted in
644 * lock step like this, there is no need to synchronize access to request data
645 * structures.
647 * Return:
648 * -EINPROGRESS: request has been submitted to SPU and response will be
649 * returned asynchronously
650 * -EAGAIN: non-final request included a small amount of data, which for
651 * efficiency we did not submit to the SPU, but instead stored
652 * to be submitted to the SPU with the next part of the request
653 * other: an error code
655 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
657 struct spu_hw *spu = &iproc_priv.spu;
658 struct crypto_async_request *areq = rctx->parent;
659 struct ahash_request *req = ahash_request_cast(areq);
660 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
661 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
662 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
663 struct iproc_ctx_s *ctx = rctx->ctx;
665 /* number of bytes still to be hashed in this req */
666 unsigned int nbytes_to_hash = 0;
667 int err;
668 unsigned int chunksize = 0; /* length of hash carry + new data */
670 * length of new data, not from hash carry, to be submitted in
671 * this hw request
673 unsigned int new_data_len;
675 unsigned int __maybe_unused chunk_start = 0;
676 u32 db_size; /* Length of data field, incl gcm and hash padding */
677 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
678 u32 data_pad_len = 0; /* length of GCM/CCM padding */
679 u32 stat_pad_len = 0; /* length of padding to align STATUS word */
680 struct brcm_message *mssg; /* mailbox message */
681 struct spu_request_opts req_opts;
682 struct spu_cipher_parms cipher_parms;
683 struct spu_hash_parms hash_parms;
684 struct spu_aead_parms aead_parms;
685 unsigned int local_nbuf;
686 u32 spu_hdr_len;
687 unsigned int digestsize;
688 u16 rem = 0;
691 * number of entries in src and dst sg. Always includes SPU msg header.
692 * rx always includes a buffer to catch digest and STATUS.
694 u8 rx_frag_num = 3;
695 u8 tx_frag_num = 1;
697 flow_log("total_todo %u, total_sent %u\n",
698 rctx->total_todo, rctx->total_sent);
700 memset(&req_opts, 0, sizeof(req_opts));
701 memset(&cipher_parms, 0, sizeof(cipher_parms));
702 memset(&hash_parms, 0, sizeof(hash_parms));
703 memset(&aead_parms, 0, sizeof(aead_parms));
705 req_opts.bd_suppress = true;
706 hash_parms.alg = ctx->auth.alg;
707 hash_parms.mode = ctx->auth.mode;
708 hash_parms.type = HASH_TYPE_NONE;
709 hash_parms.key_buf = (u8 *)ctx->authkey;
710 hash_parms.key_len = ctx->authkeylen;
713 * For hash algorithms below assignment looks bit odd but
714 * it's needed for AES-XCBC and AES-CMAC hash algorithms
715 * to differentiate between 128, 192, 256 bit key values.
716 * Based on the key values, hash algorithm is selected.
717 * For example for 128 bit key, hash algorithm is AES-128.
719 cipher_parms.type = ctx->cipher_type;
721 mssg = &rctx->mb_mssg;
722 chunk_start = rctx->src_sent;
725 * Compute the amount remaining to hash. This may include data
726 * carried over from previous requests.
728 nbytes_to_hash = rctx->total_todo - rctx->total_sent;
729 chunksize = nbytes_to_hash;
730 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
731 (chunksize > ctx->max_payload))
732 chunksize = ctx->max_payload;
735 * If this is not a final request and the request data is not a multiple
736 * of a full block, then simply park the extra data and prefix it to the
737 * data for the next request.
739 if (!rctx->is_final) {
740 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
741 u16 new_len; /* len of data to add to hash carry */
743 rem = chunksize % blocksize; /* remainder */
744 if (rem) {
745 /* chunksize not a multiple of blocksize */
746 chunksize -= rem;
747 if (chunksize == 0) {
748 /* Don't have a full block to submit to hw */
749 new_len = rem - rctx->hash_carry_len;
750 sg_copy_part_to_buf(req->src, dest, new_len,
751 rctx->src_sent);
752 rctx->hash_carry_len = rem;
753 flow_log("Exiting with hash carry len: %u\n",
754 rctx->hash_carry_len);
755 packet_dump(" buf: ",
756 rctx->hash_carry,
757 rctx->hash_carry_len);
758 return -EAGAIN;
763 /* if we have hash carry, then prefix it to the data in this request */
764 local_nbuf = rctx->hash_carry_len;
765 rctx->hash_carry_len = 0;
766 if (local_nbuf)
767 tx_frag_num++;
768 new_data_len = chunksize - local_nbuf;
770 /* Count number of sg entries to be used in this request */
771 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
772 new_data_len);
774 /* AES hashing keeps key size in type field, so need to copy it here */
775 if (hash_parms.alg == HASH_ALG_AES)
776 hash_parms.type = (enum hash_type)cipher_parms.type;
777 else
778 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
780 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
781 hash_parms.type);
782 hash_parms.digestsize = digestsize;
784 /* update the indexes */
785 rctx->total_sent += chunksize;
786 /* if you sent a prebuf then that wasn't from this req->src */
787 rctx->src_sent += new_data_len;
789 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
790 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
791 hash_parms.mode,
792 chunksize,
793 blocksize);
796 * If a non-first chunk, then include the digest returned from the
797 * previous chunk so that hw can add to it (except for AES types).
799 if ((hash_parms.type == HASH_TYPE_UPDT) &&
800 (hash_parms.alg != HASH_ALG_AES)) {
801 hash_parms.key_buf = rctx->incr_hash;
802 hash_parms.key_len = digestsize;
805 atomic64_add(chunksize, &iproc_priv.bytes_out);
807 flow_log("%s() final: %u nbuf: %u ",
808 __func__, rctx->is_final, local_nbuf);
810 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
811 flow_log("max_payload infinite\n");
812 else
813 flow_log("max_payload %u\n", ctx->max_payload);
815 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
817 /* Prepend SPU header with type 3 BCM header */
818 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
820 hash_parms.prebuf_len = local_nbuf;
821 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
822 BCM_HDR_LEN,
823 &req_opts, &cipher_parms,
824 &hash_parms, &aead_parms,
825 new_data_len);
827 if (spu_hdr_len == 0) {
828 pr_err("Failed to create SPU request header\n");
829 return -EFAULT;
833 * Determine total length of padding required. Put all padding in one
834 * buffer.
836 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
837 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
838 0, 0, hash_parms.pad_len);
839 if (spu->spu_tx_status_len())
840 stat_pad_len = spu->spu_wordalign_padlen(db_size);
841 if (stat_pad_len)
842 rx_frag_num++;
843 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
844 if (pad_len) {
845 tx_frag_num++;
846 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
847 hash_parms.pad_len, ctx->auth.alg,
848 ctx->auth.mode, rctx->total_sent,
849 stat_pad_len);
852 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
853 spu_hdr_len);
854 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf);
855 flow_log("Data:\n");
856 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
857 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
860 * Build mailbox message containing SPU request msg and rx buffers
861 * to catch response message
863 memset(mssg, 0, sizeof(*mssg));
864 mssg->type = BRCM_MESSAGE_SPU;
865 mssg->ctx = rctx; /* Will be returned in response */
867 /* Create rx scatterlist to catch result */
868 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
869 stat_pad_len);
870 if (err)
871 return err;
873 /* Create tx scatterlist containing SPU request message */
874 tx_frag_num += rctx->src_nents;
875 if (spu->spu_tx_status_len())
876 tx_frag_num++;
877 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
878 local_nbuf, new_data_len, pad_len);
879 if (err)
880 return err;
882 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
883 if (unlikely(err < 0))
884 return err;
886 return -EINPROGRESS;
890 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
891 * for an HMAC request.
892 * @req: The HMAC request from the crypto API
893 * @ctx: The session context
895 * Return: 0 if synchronous hash operation successful
896 * -EINVAL if the hash algo is unrecognized
897 * any other value indicates an error
899 static int spu_hmac_outer_hash(struct ahash_request *req,
900 struct iproc_ctx_s *ctx)
902 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
903 unsigned int blocksize =
904 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
905 int rc;
907 switch (ctx->auth.alg) {
908 case HASH_ALG_MD5:
909 rc = do_shash("md5", req->result, ctx->opad, blocksize,
910 req->result, ctx->digestsize, NULL, 0);
911 break;
912 case HASH_ALG_SHA1:
913 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
914 req->result, ctx->digestsize, NULL, 0);
915 break;
916 case HASH_ALG_SHA224:
917 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
918 req->result, ctx->digestsize, NULL, 0);
919 break;
920 case HASH_ALG_SHA256:
921 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
922 req->result, ctx->digestsize, NULL, 0);
923 break;
924 case HASH_ALG_SHA384:
925 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
926 req->result, ctx->digestsize, NULL, 0);
927 break;
928 case HASH_ALG_SHA512:
929 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
930 req->result, ctx->digestsize, NULL, 0);
931 break;
932 default:
933 pr_err("%s() Error : unknown hmac type\n", __func__);
934 rc = -EINVAL;
936 return rc;
940 * ahash_req_done() - Process a hash result from the SPU hardware.
941 * @rctx: Crypto request context
943 * Return: 0 if successful
944 * < 0 if an error
946 static int ahash_req_done(struct iproc_reqctx_s *rctx)
948 struct spu_hw *spu = &iproc_priv.spu;
949 struct crypto_async_request *areq = rctx->parent;
950 struct ahash_request *req = ahash_request_cast(areq);
951 struct iproc_ctx_s *ctx = rctx->ctx;
952 int err;
954 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
956 if (spu->spu_type == SPU_TYPE_SPUM) {
957 /* byte swap the output from the UPDT function to network byte
958 * order
960 if (ctx->auth.alg == HASH_ALG_MD5) {
961 __swab32s((u32 *)req->result);
962 __swab32s(((u32 *)req->result) + 1);
963 __swab32s(((u32 *)req->result) + 2);
964 __swab32s(((u32 *)req->result) + 3);
965 __swab32s(((u32 *)req->result) + 4);
969 flow_dump(" digest ", req->result, ctx->digestsize);
971 /* if this an HMAC then do the outer hash */
972 if (rctx->is_sw_hmac) {
973 err = spu_hmac_outer_hash(req, ctx);
974 if (err < 0)
975 return err;
976 flow_dump(" hmac: ", req->result, ctx->digestsize);
979 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
980 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
981 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
982 } else {
983 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
984 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
987 return 0;
991 * handle_ahash_resp() - Process a SPU response message for a hash request.
992 * Checks if the entire crypto API request has been processed, and if so,
993 * invokes post processing on the result.
994 * @rctx: Crypto request context
996 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
998 struct iproc_ctx_s *ctx = rctx->ctx;
999 #ifdef DEBUG
1000 struct crypto_async_request *areq = rctx->parent;
1001 struct ahash_request *req = ahash_request_cast(areq);
1002 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1003 unsigned int blocksize =
1004 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1005 #endif
1007 * Save hash to use as input to next op if incremental. Might be copying
1008 * too much, but that's easier than figuring out actual digest size here
1010 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1012 flow_log("%s() blocksize:%u digestsize:%u\n",
1013 __func__, blocksize, ctx->digestsize);
1015 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1017 if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1018 ahash_req_done(rctx);
1022 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1023 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1024 * message headers and the response data.
1025 * @mssg: mailbox message containing the receive sg
1026 * @rctx: crypto request context
1027 * @rx_frag_num: number of scatterlist elements required to hold the
1028 * SPU response message
1029 * @assoc_len: Length of associated data included in the crypto request
1030 * @ret_iv_len: Length of IV returned in response
1031 * @resp_len: Number of bytes of response data expected to be written to
1032 * dst buffer from crypto API
1033 * @digestsize: Length of hash digest, in bytes
1034 * @stat_pad_len: Number of bytes required to pad the STAT field to
1035 * a 4-byte boundary
1037 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1038 * when the request completes, whether the request is handled successfully or
1039 * there is an error.
1041 * Returns:
1042 * 0 if successful
1043 * < 0 if an error
1045 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1046 struct aead_request *req,
1047 struct iproc_reqctx_s *rctx,
1048 u8 rx_frag_num,
1049 unsigned int assoc_len,
1050 u32 ret_iv_len, unsigned int resp_len,
1051 unsigned int digestsize, u32 stat_pad_len)
1053 struct spu_hw *spu = &iproc_priv.spu;
1054 struct scatterlist *sg; /* used to build sgs in mbox message */
1055 struct iproc_ctx_s *ctx = rctx->ctx;
1056 u32 datalen; /* Number of bytes of response data expected */
1057 u32 assoc_buf_len;
1058 u8 data_padlen = 0;
1060 if (ctx->is_rfc4543) {
1061 /* RFC4543: only pad after data, not after AAD */
1062 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1063 assoc_len + resp_len);
1064 assoc_buf_len = assoc_len;
1065 } else {
1066 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1067 resp_len);
1068 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1069 assoc_len, ret_iv_len,
1070 rctx->is_encrypt);
1073 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1074 /* ICV (after data) must be in the next 32-bit word for CCM */
1075 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1076 resp_len +
1077 data_padlen);
1079 if (data_padlen)
1080 /* have to catch gcm pad in separate buffer */
1081 rx_frag_num++;
1083 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1084 rctx->gfp);
1085 if (!mssg->spu.dst)
1086 return -ENOMEM;
1088 sg = mssg->spu.dst;
1089 sg_init_table(sg, rx_frag_num);
1091 /* Space for SPU message header */
1092 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1094 if (assoc_buf_len) {
1096 * Don't write directly to req->dst, because SPU may pad the
1097 * assoc data in the response
1099 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1100 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1103 if (resp_len) {
1105 * Copy in each dst sg entry from request, up to chunksize.
1106 * dst sg catches just the data. digest caught in separate buf.
1108 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1109 rctx->dst_nents, resp_len);
1110 if (datalen < (resp_len)) {
1111 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1112 __func__, resp_len, datalen);
1113 return -EFAULT;
1117 /* If GCM/CCM data is padded, catch padding in separate buffer */
1118 if (data_padlen) {
1119 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1120 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1123 /* Always catch ICV in separate buffer */
1124 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1126 flow_log("stat_pad_len %u\n", stat_pad_len);
1127 if (stat_pad_len) {
1128 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1129 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1132 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1133 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1135 return 0;
1139 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1140 * SPU request message for an AEAD request. Includes SPU message headers and the
1141 * request data.
1142 * @mssg: mailbox message containing the transmit sg
1143 * @rctx: crypto request context
1144 * @tx_frag_num: number of scatterlist elements required to construct the
1145 * SPU request message
1146 * @spu_hdr_len: length of SPU message header in bytes
1147 * @assoc: crypto API associated data scatterlist
1148 * @assoc_len: length of associated data
1149 * @assoc_nents: number of scatterlist entries containing assoc data
1150 * @aead_iv_len: length of AEAD IV, if included
1151 * @chunksize: Number of bytes of request data
1152 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1153 * @pad_len: Number of pad bytes
1154 * @incl_icv: If true, write separate ICV buffer after data and
1155 * any padding
1157 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1158 * when the request completes, whether the request is handled successfully or
1159 * there is an error.
1161 * Return:
1162 * 0 if successful
1163 * < 0 if an error
1165 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1166 struct iproc_reqctx_s *rctx,
1167 u8 tx_frag_num,
1168 u32 spu_hdr_len,
1169 struct scatterlist *assoc,
1170 unsigned int assoc_len,
1171 int assoc_nents,
1172 unsigned int aead_iv_len,
1173 unsigned int chunksize,
1174 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1176 struct spu_hw *spu = &iproc_priv.spu;
1177 struct scatterlist *sg; /* used to build sgs in mbox message */
1178 struct scatterlist *assoc_sg = assoc;
1179 struct iproc_ctx_s *ctx = rctx->ctx;
1180 u32 datalen; /* Number of bytes of data to write */
1181 u32 written; /* Number of bytes of data written */
1182 u32 assoc_offset = 0;
1183 u32 stat_len;
1185 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1186 rctx->gfp);
1187 if (!mssg->spu.src)
1188 return -ENOMEM;
1190 sg = mssg->spu.src;
1191 sg_init_table(sg, tx_frag_num);
1193 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1194 BCM_HDR_LEN + spu_hdr_len);
1196 if (assoc_len) {
1197 /* Copy in each associated data sg entry from request */
1198 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1199 assoc_nents, assoc_len);
1200 if (written < assoc_len) {
1201 pr_err("%s(): failed to copy assoc sg to mbox msg",
1202 __func__);
1203 return -EFAULT;
1207 if (aead_iv_len)
1208 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1210 if (aad_pad_len) {
1211 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1212 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1215 datalen = chunksize;
1216 if ((chunksize > ctx->digestsize) && incl_icv)
1217 datalen -= ctx->digestsize;
1218 if (datalen) {
1219 /* For aead, a single msg should consume the entire src sg */
1220 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1221 rctx->src_nents, datalen);
1222 if (written < datalen) {
1223 pr_err("%s(): failed to copy src sg to mbox msg",
1224 __func__);
1225 return -EFAULT;
1229 if (pad_len) {
1230 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1231 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1234 if (incl_icv)
1235 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1237 stat_len = spu->spu_tx_status_len();
1238 if (stat_len) {
1239 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1240 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1242 return 0;
1246 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1247 * current AEAD request.
1248 * @rctx: Crypto request context
1250 * Unlike other operation types, we assume the length of the request fits in
1251 * a single SPU request message. aead_enqueue() makes sure this is true.
1252 * Comments for other op types regarding threads applies here as well.
1254 * Unlike incremental hash ops, where the spu returns the entire hash for
1255 * truncated algs like sha-224, the SPU returns just the truncated hash in
1256 * response to aead requests. So digestsize is always ctx->digestsize here.
1258 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1259 * returned asynchronously
1260 * Any other value indicates an error
1262 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1264 struct spu_hw *spu = &iproc_priv.spu;
1265 struct crypto_async_request *areq = rctx->parent;
1266 struct aead_request *req = container_of(areq,
1267 struct aead_request, base);
1268 struct iproc_ctx_s *ctx = rctx->ctx;
1269 int err;
1270 unsigned int chunksize;
1271 unsigned int resp_len;
1272 u32 spu_hdr_len;
1273 u32 db_size;
1274 u32 stat_pad_len;
1275 u32 pad_len;
1276 struct brcm_message *mssg; /* mailbox message */
1277 struct spu_request_opts req_opts;
1278 struct spu_cipher_parms cipher_parms;
1279 struct spu_hash_parms hash_parms;
1280 struct spu_aead_parms aead_parms;
1281 int assoc_nents = 0;
1282 bool incl_icv = false;
1283 unsigned int digestsize = ctx->digestsize;
1285 /* number of entries in src and dst sg. Always includes SPU msg header.
1287 u8 rx_frag_num = 2; /* and STATUS */
1288 u8 tx_frag_num = 1;
1290 /* doing the whole thing at once */
1291 chunksize = rctx->total_todo;
1293 flow_log("%s: chunksize %u\n", __func__, chunksize);
1295 memset(&req_opts, 0, sizeof(req_opts));
1296 memset(&hash_parms, 0, sizeof(hash_parms));
1297 memset(&aead_parms, 0, sizeof(aead_parms));
1299 req_opts.is_inbound = !(rctx->is_encrypt);
1300 req_opts.auth_first = ctx->auth_first;
1301 req_opts.is_aead = true;
1302 req_opts.is_esp = ctx->is_esp;
1304 cipher_parms.alg = ctx->cipher.alg;
1305 cipher_parms.mode = ctx->cipher.mode;
1306 cipher_parms.type = ctx->cipher_type;
1307 cipher_parms.key_buf = ctx->enckey;
1308 cipher_parms.key_len = ctx->enckeylen;
1309 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1310 cipher_parms.iv_len = rctx->iv_ctr_len;
1312 hash_parms.alg = ctx->auth.alg;
1313 hash_parms.mode = ctx->auth.mode;
1314 hash_parms.type = HASH_TYPE_NONE;
1315 hash_parms.key_buf = (u8 *)ctx->authkey;
1316 hash_parms.key_len = ctx->authkeylen;
1317 hash_parms.digestsize = digestsize;
1319 if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1320 (ctx->authkeylen < SHA224_DIGEST_SIZE))
1321 hash_parms.key_len = SHA224_DIGEST_SIZE;
1323 aead_parms.assoc_size = req->assoclen;
1324 if (ctx->is_esp && !ctx->is_rfc4543) {
1326 * 8-byte IV is included assoc data in request. SPU2
1327 * expects AAD to include just SPI and seqno. So
1328 * subtract off the IV len.
1330 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1332 if (rctx->is_encrypt) {
1333 aead_parms.return_iv = true;
1334 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1335 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1337 } else {
1338 aead_parms.ret_iv_len = 0;
1342 * Count number of sg entries from the crypto API request that are to
1343 * be included in this mailbox message. For dst sg, don't count space
1344 * for digest. Digest gets caught in a separate buffer and copied back
1345 * to dst sg when processing response.
1347 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1348 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1349 if (aead_parms.assoc_size)
1350 assoc_nents = spu_sg_count(rctx->assoc, 0,
1351 aead_parms.assoc_size);
1353 mssg = &rctx->mb_mssg;
1355 rctx->total_sent = chunksize;
1356 rctx->src_sent = chunksize;
1357 if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1358 aead_parms.assoc_size,
1359 aead_parms.ret_iv_len,
1360 rctx->is_encrypt))
1361 rx_frag_num++;
1363 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1364 rctx->iv_ctr_len);
1366 if (ctx->auth.alg == HASH_ALG_AES)
1367 hash_parms.type = (enum hash_type)ctx->cipher_type;
1369 /* General case AAD padding (CCM and RFC4543 special cases below) */
1370 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1371 aead_parms.assoc_size);
1373 /* General case data padding (CCM decrypt special case below) */
1374 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1375 chunksize);
1377 if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1379 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1380 * 128-bit aligned
1382 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1383 ctx->cipher.mode,
1384 aead_parms.assoc_size + 2);
1387 * And when decrypting CCM, need to pad without including
1388 * size of ICV which is tacked on to end of chunk
1390 if (!rctx->is_encrypt)
1391 aead_parms.data_pad_len =
1392 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1393 chunksize - digestsize);
1395 /* CCM also requires software to rewrite portions of IV: */
1396 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1397 chunksize, rctx->is_encrypt,
1398 ctx->is_esp);
1401 if (ctx->is_rfc4543) {
1403 * RFC4543: data is included in AAD, so don't pad after AAD
1404 * and pad data based on both AAD + data size
1406 aead_parms.aad_pad_len = 0;
1407 if (!rctx->is_encrypt)
1408 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1409 ctx->cipher.mode,
1410 aead_parms.assoc_size + chunksize -
1411 digestsize);
1412 else
1413 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1414 ctx->cipher.mode,
1415 aead_parms.assoc_size + chunksize);
1417 req_opts.is_rfc4543 = true;
1420 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1421 incl_icv = true;
1422 tx_frag_num++;
1423 /* Copy ICV from end of src scatterlist to digest buf */
1424 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1425 req->assoclen + rctx->total_sent -
1426 digestsize);
1429 atomic64_add(chunksize, &iproc_priv.bytes_out);
1431 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1433 /* Prepend SPU header with type 3 BCM header */
1434 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1436 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1437 BCM_HDR_LEN, &req_opts,
1438 &cipher_parms, &hash_parms,
1439 &aead_parms, chunksize);
1441 /* Determine total length of padding. Put all padding in one buffer. */
1442 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1443 chunksize, aead_parms.aad_pad_len,
1444 aead_parms.data_pad_len, 0);
1446 stat_pad_len = spu->spu_wordalign_padlen(db_size);
1448 if (stat_pad_len)
1449 rx_frag_num++;
1450 pad_len = aead_parms.data_pad_len + stat_pad_len;
1451 if (pad_len) {
1452 tx_frag_num++;
1453 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1454 aead_parms.data_pad_len, 0,
1455 ctx->auth.alg, ctx->auth.mode,
1456 rctx->total_sent, stat_pad_len);
1459 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1460 spu_hdr_len);
1461 dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1462 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1463 packet_log("BD:\n");
1464 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1465 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1468 * Build mailbox message containing SPU request msg and rx buffers
1469 * to catch response message
1471 memset(mssg, 0, sizeof(*mssg));
1472 mssg->type = BRCM_MESSAGE_SPU;
1473 mssg->ctx = rctx; /* Will be returned in response */
1475 /* Create rx scatterlist to catch result */
1476 rx_frag_num += rctx->dst_nents;
1477 resp_len = chunksize;
1480 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1481 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1482 * sends entire digest back.
1484 rx_frag_num++;
1486 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1487 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1489 * Input is ciphertxt plus ICV, but ICV not incl
1490 * in output.
1492 resp_len -= ctx->digestsize;
1493 if (resp_len == 0)
1494 /* no rx frags to catch output data */
1495 rx_frag_num -= rctx->dst_nents;
1498 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1499 aead_parms.assoc_size,
1500 aead_parms.ret_iv_len, resp_len, digestsize,
1501 stat_pad_len);
1502 if (err)
1503 return err;
1505 /* Create tx scatterlist containing SPU request message */
1506 tx_frag_num += rctx->src_nents;
1507 tx_frag_num += assoc_nents;
1508 if (aead_parms.aad_pad_len)
1509 tx_frag_num++;
1510 if (aead_parms.iv_len)
1511 tx_frag_num++;
1512 if (spu->spu_tx_status_len())
1513 tx_frag_num++;
1514 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1515 rctx->assoc, aead_parms.assoc_size,
1516 assoc_nents, aead_parms.iv_len, chunksize,
1517 aead_parms.aad_pad_len, pad_len, incl_icv);
1518 if (err)
1519 return err;
1521 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1522 if (unlikely(err < 0))
1523 return err;
1525 return -EINPROGRESS;
1529 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1530 * @rctx: Crypto request context
1532 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1534 struct spu_hw *spu = &iproc_priv.spu;
1535 struct crypto_async_request *areq = rctx->parent;
1536 struct aead_request *req = container_of(areq,
1537 struct aead_request, base);
1538 struct iproc_ctx_s *ctx = rctx->ctx;
1539 u32 payload_len;
1540 unsigned int icv_offset;
1541 u32 result_len;
1543 /* See how much data was returned */
1544 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1545 flow_log("payload_len %u\n", payload_len);
1547 /* only count payload */
1548 atomic64_add(payload_len, &iproc_priv.bytes_in);
1550 if (req->assoclen)
1551 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad,
1552 req->assoclen);
1555 * Copy the ICV back to the destination
1556 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1557 * API doesn't expect ICV in dst buffer.
1559 result_len = req->cryptlen;
1560 if (rctx->is_encrypt) {
1561 icv_offset = req->assoclen + rctx->total_sent;
1562 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1563 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1564 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1565 ctx->digestsize, icv_offset);
1566 result_len += ctx->digestsize;
1569 packet_log("response data: ");
1570 dump_sg(req->dst, req->assoclen, result_len);
1572 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1573 if (ctx->cipher.alg == CIPHER_ALG_AES) {
1574 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1575 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1576 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1577 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1578 else
1579 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1580 } else {
1581 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1586 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1587 * @rctx: request context
1589 * Mailbox scatterlists are allocated for each chunk. So free them after
1590 * processing each chunk.
1592 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1594 /* mailbox message used to tx request */
1595 struct brcm_message *mssg = &rctx->mb_mssg;
1597 kfree(mssg->spu.src);
1598 kfree(mssg->spu.dst);
1599 memset(mssg, 0, sizeof(struct brcm_message));
1603 * finish_req() - Used to invoke the complete callback from the requester when
1604 * a request has been handled asynchronously.
1605 * @rctx: Request context
1606 * @err: Indicates whether the request was successful or not
1608 * Ensures that cleanup has been done for request
1610 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1612 struct crypto_async_request *areq = rctx->parent;
1614 flow_log("%s() err:%d\n\n", __func__, err);
1616 /* No harm done if already called */
1617 spu_chunk_cleanup(rctx);
1619 if (areq)
1620 areq->complete(areq, err);
1624 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1625 * @cl: mailbox client structure for SPU driver
1626 * @msg: mailbox message containing SPU response
1628 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1630 struct spu_hw *spu = &iproc_priv.spu;
1631 struct brcm_message *mssg = msg;
1632 struct iproc_reqctx_s *rctx;
1633 int err;
1635 rctx = mssg->ctx;
1636 if (unlikely(!rctx)) {
1637 /* This is fatal */
1638 pr_err("%s(): no request context", __func__);
1639 err = -EFAULT;
1640 goto cb_finish;
1643 /* process the SPU status */
1644 err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1645 if (err != 0) {
1646 if (err == SPU_INVALID_ICV)
1647 atomic_inc(&iproc_priv.bad_icv);
1648 err = -EBADMSG;
1649 goto cb_finish;
1652 /* Process the SPU response message */
1653 switch (rctx->ctx->alg->type) {
1654 case CRYPTO_ALG_TYPE_SKCIPHER:
1655 handle_skcipher_resp(rctx);
1656 break;
1657 case CRYPTO_ALG_TYPE_AHASH:
1658 handle_ahash_resp(rctx);
1659 break;
1660 case CRYPTO_ALG_TYPE_AEAD:
1661 handle_aead_resp(rctx);
1662 break;
1663 default:
1664 err = -EINVAL;
1665 goto cb_finish;
1669 * If this response does not complete the request, then send the next
1670 * request chunk.
1672 if (rctx->total_sent < rctx->total_todo) {
1673 /* Deallocate anything specific to previous chunk */
1674 spu_chunk_cleanup(rctx);
1676 switch (rctx->ctx->alg->type) {
1677 case CRYPTO_ALG_TYPE_SKCIPHER:
1678 err = handle_skcipher_req(rctx);
1679 break;
1680 case CRYPTO_ALG_TYPE_AHASH:
1681 err = handle_ahash_req(rctx);
1682 if (err == -EAGAIN)
1684 * we saved data in hash carry, but tell crypto
1685 * API we successfully completed request.
1687 err = 0;
1688 break;
1689 case CRYPTO_ALG_TYPE_AEAD:
1690 err = handle_aead_req(rctx);
1691 break;
1692 default:
1693 err = -EINVAL;
1696 if (err == -EINPROGRESS)
1697 /* Successfully submitted request for next chunk */
1698 return;
1701 cb_finish:
1702 finish_req(rctx, err);
1705 /* ==================== Kernel Cryptographic API ==================== */
1708 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1709 * @req: Crypto API request
1710 * @encrypt: true if encrypting; false if decrypting
1712 * Return: -EINPROGRESS if request accepted and result will be returned
1713 * asynchronously
1714 * < 0 if an error
1716 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1718 struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1719 struct iproc_ctx_s *ctx =
1720 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1721 int err;
1723 flow_log("%s() enc:%u\n", __func__, encrypt);
1725 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1726 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1727 rctx->parent = &req->base;
1728 rctx->is_encrypt = encrypt;
1729 rctx->bd_suppress = false;
1730 rctx->total_todo = req->cryptlen;
1731 rctx->src_sent = 0;
1732 rctx->total_sent = 0;
1733 rctx->total_received = 0;
1734 rctx->ctx = ctx;
1736 /* Initialize current position in src and dst scatterlists */
1737 rctx->src_sg = req->src;
1738 rctx->src_nents = 0;
1739 rctx->src_skip = 0;
1740 rctx->dst_sg = req->dst;
1741 rctx->dst_nents = 0;
1742 rctx->dst_skip = 0;
1744 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1745 ctx->cipher.mode == CIPHER_MODE_CTR ||
1746 ctx->cipher.mode == CIPHER_MODE_OFB ||
1747 ctx->cipher.mode == CIPHER_MODE_XTS ||
1748 ctx->cipher.mode == CIPHER_MODE_GCM ||
1749 ctx->cipher.mode == CIPHER_MODE_CCM) {
1750 rctx->iv_ctr_len =
1751 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1752 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1753 } else {
1754 rctx->iv_ctr_len = 0;
1757 /* Choose a SPU to process this request */
1758 rctx->chan_idx = select_channel();
1759 err = handle_skcipher_req(rctx);
1760 if (err != -EINPROGRESS)
1761 /* synchronous result */
1762 spu_chunk_cleanup(rctx);
1764 return err;
1767 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1768 unsigned int keylen)
1770 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1771 int err;
1773 err = verify_skcipher_des_key(cipher, key);
1774 if (err)
1775 return err;
1777 ctx->cipher_type = CIPHER_TYPE_DES;
1778 return 0;
1781 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1782 unsigned int keylen)
1784 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1785 int err;
1787 err = verify_skcipher_des3_key(cipher, key);
1788 if (err)
1789 return err;
1791 ctx->cipher_type = CIPHER_TYPE_3DES;
1792 return 0;
1795 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1796 unsigned int keylen)
1798 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1800 if (ctx->cipher.mode == CIPHER_MODE_XTS)
1801 /* XTS includes two keys of equal length */
1802 keylen = keylen / 2;
1804 switch (keylen) {
1805 case AES_KEYSIZE_128:
1806 ctx->cipher_type = CIPHER_TYPE_AES128;
1807 break;
1808 case AES_KEYSIZE_192:
1809 ctx->cipher_type = CIPHER_TYPE_AES192;
1810 break;
1811 case AES_KEYSIZE_256:
1812 ctx->cipher_type = CIPHER_TYPE_AES256;
1813 break;
1814 default:
1815 return -EINVAL;
1817 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1818 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1819 return 0;
1822 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1823 unsigned int keylen)
1825 struct spu_hw *spu = &iproc_priv.spu;
1826 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1827 struct spu_cipher_parms cipher_parms;
1828 u32 alloc_len = 0;
1829 int err;
1831 flow_log("skcipher_setkey() keylen: %d\n", keylen);
1832 flow_dump(" key: ", key, keylen);
1834 switch (ctx->cipher.alg) {
1835 case CIPHER_ALG_DES:
1836 err = des_setkey(cipher, key, keylen);
1837 break;
1838 case CIPHER_ALG_3DES:
1839 err = threedes_setkey(cipher, key, keylen);
1840 break;
1841 case CIPHER_ALG_AES:
1842 err = aes_setkey(cipher, key, keylen);
1843 break;
1844 default:
1845 pr_err("%s() Error: unknown cipher alg\n", __func__);
1846 err = -EINVAL;
1848 if (err)
1849 return err;
1851 memcpy(ctx->enckey, key, keylen);
1852 ctx->enckeylen = keylen;
1854 /* SPU needs XTS keys in the reverse order the crypto API presents */
1855 if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1856 (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1857 unsigned int xts_keylen = keylen / 2;
1859 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1860 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1863 if (spu->spu_type == SPU_TYPE_SPUM)
1864 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1865 else if (spu->spu_type == SPU_TYPE_SPU2)
1866 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1867 memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1868 cipher_parms.iv_buf = NULL;
1869 cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1870 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1872 cipher_parms.alg = ctx->cipher.alg;
1873 cipher_parms.mode = ctx->cipher.mode;
1874 cipher_parms.type = ctx->cipher_type;
1875 cipher_parms.key_buf = ctx->enckey;
1876 cipher_parms.key_len = ctx->enckeylen;
1878 /* Prepend SPU request message with BCM header */
1879 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1880 ctx->spu_req_hdr_len =
1881 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1882 &cipher_parms);
1884 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1885 ctx->enckeylen,
1886 false);
1888 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1890 return 0;
1893 static int skcipher_encrypt(struct skcipher_request *req)
1895 flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1897 return skcipher_enqueue(req, true);
1900 static int skcipher_decrypt(struct skcipher_request *req)
1902 flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1903 return skcipher_enqueue(req, false);
1906 static int ahash_enqueue(struct ahash_request *req)
1908 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1909 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1910 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1911 int err;
1912 const char *alg_name;
1914 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1916 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1917 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1918 rctx->parent = &req->base;
1919 rctx->ctx = ctx;
1920 rctx->bd_suppress = true;
1921 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1923 /* Initialize position in src scatterlist */
1924 rctx->src_sg = req->src;
1925 rctx->src_skip = 0;
1926 rctx->src_nents = 0;
1927 rctx->dst_sg = NULL;
1928 rctx->dst_skip = 0;
1929 rctx->dst_nents = 0;
1931 /* SPU2 hardware does not compute hash of zero length data */
1932 if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1933 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1934 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1935 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1936 rctx->is_final ? "" : "non-", alg_name);
1937 err = do_shash((unsigned char *)alg_name, req->result,
1938 NULL, 0, NULL, 0, ctx->authkey,
1939 ctx->authkeylen);
1940 if (err < 0)
1941 flow_log("Hash request failed with error %d\n", err);
1942 return err;
1944 /* Choose a SPU to process this request */
1945 rctx->chan_idx = select_channel();
1947 err = handle_ahash_req(rctx);
1948 if (err != -EINPROGRESS)
1949 /* synchronous result */
1950 spu_chunk_cleanup(rctx);
1952 if (err == -EAGAIN)
1954 * we saved data in hash carry, but tell crypto API
1955 * we successfully completed request.
1957 err = 0;
1959 return err;
1962 static int __ahash_init(struct ahash_request *req)
1964 struct spu_hw *spu = &iproc_priv.spu;
1965 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1966 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1967 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1969 flow_log("%s()\n", __func__);
1971 /* Initialize the context */
1972 rctx->hash_carry_len = 0;
1973 rctx->is_final = 0;
1975 rctx->total_todo = 0;
1976 rctx->src_sent = 0;
1977 rctx->total_sent = 0;
1978 rctx->total_received = 0;
1980 ctx->digestsize = crypto_ahash_digestsize(tfm);
1981 /* If we add a hash whose digest is larger, catch it here. */
1982 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
1984 rctx->is_sw_hmac = false;
1986 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
1987 true);
1989 return 0;
1993 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1994 * @ctx: Crypto session context
1996 * SPU-2 does not support incremental hashing (we'll have to revisit and
1997 * condition based on chip revision or device tree entry if future versions do
1998 * support incremental hash)
2000 * SPU-M also doesn't support incremental hashing of AES-XCBC
2002 * Return: true if incremental hashing is not supported
2003 * false otherwise
2005 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2007 struct spu_hw *spu = &iproc_priv.spu;
2009 if (spu->spu_type == SPU_TYPE_SPU2)
2010 return true;
2012 if ((ctx->auth.alg == HASH_ALG_AES) &&
2013 (ctx->auth.mode == HASH_MODE_XCBC))
2014 return true;
2016 /* Otherwise, incremental hashing is supported */
2017 return false;
2020 static int ahash_init(struct ahash_request *req)
2022 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2023 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2024 const char *alg_name;
2025 struct crypto_shash *hash;
2026 int ret;
2027 gfp_t gfp;
2029 if (spu_no_incr_hash(ctx)) {
2031 * If we get an incremental hashing request and it's not
2032 * supported by the hardware, we need to handle it in software
2033 * by calling synchronous hash functions.
2035 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2036 hash = crypto_alloc_shash(alg_name, 0, 0);
2037 if (IS_ERR(hash)) {
2038 ret = PTR_ERR(hash);
2039 goto err;
2042 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2043 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2044 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2045 crypto_shash_descsize(hash), gfp);
2046 if (!ctx->shash) {
2047 ret = -ENOMEM;
2048 goto err_hash;
2050 ctx->shash->tfm = hash;
2052 /* Set the key using data we already have from setkey */
2053 if (ctx->authkeylen > 0) {
2054 ret = crypto_shash_setkey(hash, ctx->authkey,
2055 ctx->authkeylen);
2056 if (ret)
2057 goto err_shash;
2060 /* Initialize hash w/ this key and other params */
2061 ret = crypto_shash_init(ctx->shash);
2062 if (ret)
2063 goto err_shash;
2064 } else {
2065 /* Otherwise call the internal function which uses SPU hw */
2066 ret = __ahash_init(req);
2069 return ret;
2071 err_shash:
2072 kfree(ctx->shash);
2073 err_hash:
2074 crypto_free_shash(hash);
2075 err:
2076 return ret;
2079 static int __ahash_update(struct ahash_request *req)
2081 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2083 flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2085 if (!req->nbytes)
2086 return 0;
2087 rctx->total_todo += req->nbytes;
2088 rctx->src_sent = 0;
2090 return ahash_enqueue(req);
2093 static int ahash_update(struct ahash_request *req)
2095 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2096 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2097 u8 *tmpbuf;
2098 int ret;
2099 int nents;
2100 gfp_t gfp;
2102 if (spu_no_incr_hash(ctx)) {
2104 * If we get an incremental hashing request and it's not
2105 * supported by the hardware, we need to handle it in software
2106 * by calling synchronous hash functions.
2108 if (req->src)
2109 nents = sg_nents(req->src);
2110 else
2111 return -EINVAL;
2113 /* Copy data from req scatterlist to tmp buffer */
2114 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2115 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2116 tmpbuf = kmalloc(req->nbytes, gfp);
2117 if (!tmpbuf)
2118 return -ENOMEM;
2120 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2121 req->nbytes) {
2122 kfree(tmpbuf);
2123 return -EINVAL;
2126 /* Call synchronous update */
2127 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2128 kfree(tmpbuf);
2129 } else {
2130 /* Otherwise call the internal function which uses SPU hw */
2131 ret = __ahash_update(req);
2134 return ret;
2137 static int __ahash_final(struct ahash_request *req)
2139 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2141 flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2143 rctx->is_final = 1;
2145 return ahash_enqueue(req);
2148 static int ahash_final(struct ahash_request *req)
2150 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2151 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2152 int ret;
2154 if (spu_no_incr_hash(ctx)) {
2156 * If we get an incremental hashing request and it's not
2157 * supported by the hardware, we need to handle it in software
2158 * by calling synchronous hash functions.
2160 ret = crypto_shash_final(ctx->shash, req->result);
2162 /* Done with hash, can deallocate it now */
2163 crypto_free_shash(ctx->shash->tfm);
2164 kfree(ctx->shash);
2166 } else {
2167 /* Otherwise call the internal function which uses SPU hw */
2168 ret = __ahash_final(req);
2171 return ret;
2174 static int __ahash_finup(struct ahash_request *req)
2176 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2178 flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2180 rctx->total_todo += req->nbytes;
2181 rctx->src_sent = 0;
2182 rctx->is_final = 1;
2184 return ahash_enqueue(req);
2187 static int ahash_finup(struct ahash_request *req)
2189 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2190 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2191 u8 *tmpbuf;
2192 int ret;
2193 int nents;
2194 gfp_t gfp;
2196 if (spu_no_incr_hash(ctx)) {
2198 * If we get an incremental hashing request and it's not
2199 * supported by the hardware, we need to handle it in software
2200 * by calling synchronous hash functions.
2202 if (req->src) {
2203 nents = sg_nents(req->src);
2204 } else {
2205 ret = -EINVAL;
2206 goto ahash_finup_exit;
2209 /* Copy data from req scatterlist to tmp buffer */
2210 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2211 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2212 tmpbuf = kmalloc(req->nbytes, gfp);
2213 if (!tmpbuf) {
2214 ret = -ENOMEM;
2215 goto ahash_finup_exit;
2218 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2219 req->nbytes) {
2220 ret = -EINVAL;
2221 goto ahash_finup_free;
2224 /* Call synchronous update */
2225 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2226 req->result);
2227 } else {
2228 /* Otherwise call the internal function which uses SPU hw */
2229 return __ahash_finup(req);
2231 ahash_finup_free:
2232 kfree(tmpbuf);
2234 ahash_finup_exit:
2235 /* Done with hash, can deallocate it now */
2236 crypto_free_shash(ctx->shash->tfm);
2237 kfree(ctx->shash);
2238 return ret;
2241 static int ahash_digest(struct ahash_request *req)
2243 int err;
2245 flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2247 /* whole thing at once */
2248 err = __ahash_init(req);
2249 if (!err)
2250 err = __ahash_finup(req);
2252 return err;
2255 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2256 unsigned int keylen)
2258 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2260 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2261 __func__, ahash, key, keylen);
2262 flow_dump(" key: ", key, keylen);
2264 if (ctx->auth.alg == HASH_ALG_AES) {
2265 switch (keylen) {
2266 case AES_KEYSIZE_128:
2267 ctx->cipher_type = CIPHER_TYPE_AES128;
2268 break;
2269 case AES_KEYSIZE_192:
2270 ctx->cipher_type = CIPHER_TYPE_AES192;
2271 break;
2272 case AES_KEYSIZE_256:
2273 ctx->cipher_type = CIPHER_TYPE_AES256;
2274 break;
2275 default:
2276 pr_err("%s() Error: Invalid key length\n", __func__);
2277 return -EINVAL;
2279 } else {
2280 pr_err("%s() Error: unknown hash alg\n", __func__);
2281 return -EINVAL;
2283 memcpy(ctx->authkey, key, keylen);
2284 ctx->authkeylen = keylen;
2286 return 0;
2289 static int ahash_export(struct ahash_request *req, void *out)
2291 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2292 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2294 spu_exp->total_todo = rctx->total_todo;
2295 spu_exp->total_sent = rctx->total_sent;
2296 spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2297 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2298 spu_exp->hash_carry_len = rctx->hash_carry_len;
2299 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2301 return 0;
2304 static int ahash_import(struct ahash_request *req, const void *in)
2306 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2307 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2309 rctx->total_todo = spu_exp->total_todo;
2310 rctx->total_sent = spu_exp->total_sent;
2311 rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2312 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2313 rctx->hash_carry_len = spu_exp->hash_carry_len;
2314 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2316 return 0;
2319 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2320 unsigned int keylen)
2322 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2323 unsigned int blocksize =
2324 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2325 unsigned int digestsize = crypto_ahash_digestsize(ahash);
2326 unsigned int index;
2327 int rc;
2329 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2330 __func__, ahash, key, keylen, blocksize, digestsize);
2331 flow_dump(" key: ", key, keylen);
2333 if (keylen > blocksize) {
2334 switch (ctx->auth.alg) {
2335 case HASH_ALG_MD5:
2336 rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2337 0, NULL, 0);
2338 break;
2339 case HASH_ALG_SHA1:
2340 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2341 0, NULL, 0);
2342 break;
2343 case HASH_ALG_SHA224:
2344 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2345 0, NULL, 0);
2346 break;
2347 case HASH_ALG_SHA256:
2348 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2349 0, NULL, 0);
2350 break;
2351 case HASH_ALG_SHA384:
2352 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2353 0, NULL, 0);
2354 break;
2355 case HASH_ALG_SHA512:
2356 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2357 0, NULL, 0);
2358 break;
2359 case HASH_ALG_SHA3_224:
2360 rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2361 NULL, 0, NULL, 0);
2362 break;
2363 case HASH_ALG_SHA3_256:
2364 rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2365 NULL, 0, NULL, 0);
2366 break;
2367 case HASH_ALG_SHA3_384:
2368 rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2369 NULL, 0, NULL, 0);
2370 break;
2371 case HASH_ALG_SHA3_512:
2372 rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2373 NULL, 0, NULL, 0);
2374 break;
2375 default:
2376 pr_err("%s() Error: unknown hash alg\n", __func__);
2377 return -EINVAL;
2379 if (rc < 0) {
2380 pr_err("%s() Error %d computing shash for %s\n",
2381 __func__, rc, hash_alg_name[ctx->auth.alg]);
2382 return rc;
2384 ctx->authkeylen = digestsize;
2386 flow_log(" keylen > digestsize... hashed\n");
2387 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen);
2388 } else {
2389 memcpy(ctx->authkey, key, keylen);
2390 ctx->authkeylen = keylen;
2394 * Full HMAC operation in SPUM is not verified,
2395 * So keeping the generation of IPAD, OPAD and
2396 * outer hashing in software.
2398 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2399 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2400 memset(ctx->ipad + ctx->authkeylen, 0,
2401 blocksize - ctx->authkeylen);
2402 ctx->authkeylen = 0;
2403 memcpy(ctx->opad, ctx->ipad, blocksize);
2405 for (index = 0; index < blocksize; index++) {
2406 ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2407 ctx->opad[index] ^= HMAC_OPAD_VALUE;
2410 flow_dump(" ipad: ", ctx->ipad, blocksize);
2411 flow_dump(" opad: ", ctx->opad, blocksize);
2413 ctx->digestsize = digestsize;
2414 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2416 return 0;
2419 static int ahash_hmac_init(struct ahash_request *req)
2421 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2422 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2423 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2424 unsigned int blocksize =
2425 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2427 flow_log("ahash_hmac_init()\n");
2429 /* init the context as a hash */
2430 ahash_init(req);
2432 if (!spu_no_incr_hash(ctx)) {
2433 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2434 rctx->is_sw_hmac = true;
2435 ctx->auth.mode = HASH_MODE_HASH;
2436 /* start with a prepended ipad */
2437 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2438 rctx->hash_carry_len = blocksize;
2439 rctx->total_todo += blocksize;
2442 return 0;
2445 static int ahash_hmac_update(struct ahash_request *req)
2447 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2449 if (!req->nbytes)
2450 return 0;
2452 return ahash_update(req);
2455 static int ahash_hmac_final(struct ahash_request *req)
2457 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2459 return ahash_final(req);
2462 static int ahash_hmac_finup(struct ahash_request *req)
2464 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2466 return ahash_finup(req);
2469 static int ahash_hmac_digest(struct ahash_request *req)
2471 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2472 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2473 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2474 unsigned int blocksize =
2475 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2477 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2479 /* Perform initialization and then call finup */
2480 __ahash_init(req);
2482 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2484 * SPU2 supports full HMAC implementation in the
2485 * hardware, need not to generate IPAD, OPAD and
2486 * outer hash in software.
2487 * Only for hash key len > hash block size, SPU2
2488 * expects to perform hashing on the key, shorten
2489 * it to digest size and feed it as hash key.
2491 rctx->is_sw_hmac = false;
2492 ctx->auth.mode = HASH_MODE_HMAC;
2493 } else {
2494 rctx->is_sw_hmac = true;
2495 ctx->auth.mode = HASH_MODE_HASH;
2496 /* start with a prepended ipad */
2497 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2498 rctx->hash_carry_len = blocksize;
2499 rctx->total_todo += blocksize;
2502 return __ahash_finup(req);
2505 /* aead helpers */
2507 static int aead_need_fallback(struct aead_request *req)
2509 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2510 struct spu_hw *spu = &iproc_priv.spu;
2511 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2512 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2513 u32 payload_len;
2516 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2517 * and AAD are both 0 bytes long. So use fallback in this case.
2519 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2520 (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2521 (req->assoclen == 0)) {
2522 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2523 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2524 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2525 return 1;
2529 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2530 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2531 (spu->spu_type == SPU_TYPE_SPUM) &&
2532 (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2533 (ctx->digestsize != 16)) {
2534 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2535 __func__, ctx->digestsize);
2536 return 1;
2540 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2541 * when AAD size is 0
2543 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2544 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2545 (req->assoclen == 0)) {
2546 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2547 __func__);
2548 return 1;
2552 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2553 * 16 or 20 bytes long. So use fallback in this case.
2555 if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2556 ctx->cipher.alg == CIPHER_ALG_AES &&
2557 rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2558 req->assoclen != 16 && req->assoclen != 20) {
2559 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2560 " other than 16 or 20 bytes\n");
2561 return 1;
2564 payload_len = req->cryptlen;
2565 if (spu->spu_type == SPU_TYPE_SPUM)
2566 payload_len += req->assoclen;
2568 flow_log("%s() payload len: %u\n", __func__, payload_len);
2570 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2571 return 0;
2572 else
2573 return payload_len > ctx->max_payload;
2576 static void aead_complete(struct crypto_async_request *areq, int err)
2578 struct aead_request *req =
2579 container_of(areq, struct aead_request, base);
2580 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2581 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2583 flow_log("%s() err:%d\n", __func__, err);
2585 areq->tfm = crypto_aead_tfm(aead);
2587 areq->complete = rctx->old_complete;
2588 areq->data = rctx->old_data;
2590 areq->complete(areq, err);
2593 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2595 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2596 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2597 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2598 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2599 int err;
2600 u32 req_flags;
2602 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2604 if (ctx->fallback_cipher) {
2605 /* Store the cipher tfm and then use the fallback tfm */
2606 rctx->old_tfm = tfm;
2607 aead_request_set_tfm(req, ctx->fallback_cipher);
2609 * Save the callback and chain ourselves in, so we can restore
2610 * the tfm
2612 rctx->old_complete = req->base.complete;
2613 rctx->old_data = req->base.data;
2614 req_flags = aead_request_flags(req);
2615 aead_request_set_callback(req, req_flags, aead_complete, req);
2616 err = is_encrypt ? crypto_aead_encrypt(req) :
2617 crypto_aead_decrypt(req);
2619 if (err == 0) {
2621 * fallback was synchronous (did not return
2622 * -EINPROGRESS). So restore request state here.
2624 aead_request_set_callback(req, req_flags,
2625 rctx->old_complete, req);
2626 req->base.data = rctx->old_data;
2627 aead_request_set_tfm(req, aead);
2628 flow_log("%s() fallback completed successfully\n\n",
2629 __func__);
2631 } else {
2632 err = -EINVAL;
2635 return err;
2638 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2640 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2641 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2642 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2643 int err;
2645 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2647 if (req->assoclen > MAX_ASSOC_SIZE) {
2648 pr_err
2649 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2650 __func__, req->assoclen, MAX_ASSOC_SIZE);
2651 return -EINVAL;
2654 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2655 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2656 rctx->parent = &req->base;
2657 rctx->is_encrypt = is_encrypt;
2658 rctx->bd_suppress = false;
2659 rctx->total_todo = req->cryptlen;
2660 rctx->src_sent = 0;
2661 rctx->total_sent = 0;
2662 rctx->total_received = 0;
2663 rctx->is_sw_hmac = false;
2664 rctx->ctx = ctx;
2665 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2667 /* assoc data is at start of src sg */
2668 rctx->assoc = req->src;
2671 * Init current position in src scatterlist to be after assoc data.
2672 * src_skip set to buffer offset where data begins. (Assoc data could
2673 * end in the middle of a buffer.)
2675 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2676 &rctx->src_skip) < 0) {
2677 pr_err("%s() Error: Unable to find start of src data\n",
2678 __func__);
2679 return -EINVAL;
2682 rctx->src_nents = 0;
2683 rctx->dst_nents = 0;
2684 if (req->dst == req->src) {
2685 rctx->dst_sg = rctx->src_sg;
2686 rctx->dst_skip = rctx->src_skip;
2687 } else {
2689 * Expect req->dst to have room for assoc data followed by
2690 * output data and ICV, if encrypt. So initialize dst_sg
2691 * to point beyond assoc len offset.
2693 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2694 &rctx->dst_skip) < 0) {
2695 pr_err("%s() Error: Unable to find start of dst data\n",
2696 __func__);
2697 return -EINVAL;
2701 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2702 ctx->cipher.mode == CIPHER_MODE_CTR ||
2703 ctx->cipher.mode == CIPHER_MODE_OFB ||
2704 ctx->cipher.mode == CIPHER_MODE_XTS ||
2705 ctx->cipher.mode == CIPHER_MODE_GCM) {
2706 rctx->iv_ctr_len =
2707 ctx->salt_len +
2708 crypto_aead_ivsize(crypto_aead_reqtfm(req));
2709 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2710 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2711 } else {
2712 rctx->iv_ctr_len = 0;
2715 rctx->hash_carry_len = 0;
2717 flow_log(" src sg: %p\n", req->src);
2718 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2719 rctx->src_sg, rctx->src_skip);
2720 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen);
2721 flow_log(" dst sg: %p\n", req->dst);
2722 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2723 rctx->dst_sg, rctx->dst_skip);
2724 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len);
2725 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len);
2726 flow_log(" authkeylen:%u\n", ctx->authkeylen);
2727 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2729 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2730 flow_log(" max_payload infinite");
2731 else
2732 flow_log(" max_payload: %u\n", ctx->max_payload);
2734 if (unlikely(aead_need_fallback(req)))
2735 return aead_do_fallback(req, is_encrypt);
2738 * Do memory allocations for request after fallback check, because if we
2739 * do fallback, we won't call finish_req() to dealloc.
2741 if (rctx->iv_ctr_len) {
2742 if (ctx->salt_len)
2743 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2744 ctx->salt, ctx->salt_len);
2745 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2746 req->iv,
2747 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2750 rctx->chan_idx = select_channel();
2751 err = handle_aead_req(rctx);
2752 if (err != -EINPROGRESS)
2753 /* synchronous result */
2754 spu_chunk_cleanup(rctx);
2756 return err;
2759 static int aead_authenc_setkey(struct crypto_aead *cipher,
2760 const u8 *key, unsigned int keylen)
2762 struct spu_hw *spu = &iproc_priv.spu;
2763 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2764 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2765 struct crypto_authenc_keys keys;
2766 int ret;
2768 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2769 keylen);
2770 flow_dump(" key: ", key, keylen);
2772 ret = crypto_authenc_extractkeys(&keys, key, keylen);
2773 if (ret)
2774 goto badkey;
2776 if (keys.enckeylen > MAX_KEY_SIZE ||
2777 keys.authkeylen > MAX_KEY_SIZE)
2778 goto badkey;
2780 ctx->enckeylen = keys.enckeylen;
2781 ctx->authkeylen = keys.authkeylen;
2783 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2784 /* May end up padding auth key. So make sure it's zeroed. */
2785 memset(ctx->authkey, 0, sizeof(ctx->authkey));
2786 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2788 switch (ctx->alg->cipher_info.alg) {
2789 case CIPHER_ALG_DES:
2790 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2791 return -EINVAL;
2793 ctx->cipher_type = CIPHER_TYPE_DES;
2794 break;
2795 case CIPHER_ALG_3DES:
2796 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2797 return -EINVAL;
2799 ctx->cipher_type = CIPHER_TYPE_3DES;
2800 break;
2801 case CIPHER_ALG_AES:
2802 switch (ctx->enckeylen) {
2803 case AES_KEYSIZE_128:
2804 ctx->cipher_type = CIPHER_TYPE_AES128;
2805 break;
2806 case AES_KEYSIZE_192:
2807 ctx->cipher_type = CIPHER_TYPE_AES192;
2808 break;
2809 case AES_KEYSIZE_256:
2810 ctx->cipher_type = CIPHER_TYPE_AES256;
2811 break;
2812 default:
2813 goto badkey;
2815 break;
2816 default:
2817 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2818 return -EINVAL;
2821 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2822 ctx->authkeylen);
2823 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2824 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2826 /* setkey the fallback just in case we needto use it */
2827 if (ctx->fallback_cipher) {
2828 flow_log(" running fallback setkey()\n");
2830 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2831 ctx->fallback_cipher->base.crt_flags |=
2832 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2833 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2834 if (ret)
2835 flow_log(" fallback setkey() returned:%d\n", ret);
2838 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2839 ctx->enckeylen,
2840 false);
2842 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2844 return ret;
2846 badkey:
2847 ctx->enckeylen = 0;
2848 ctx->authkeylen = 0;
2849 ctx->digestsize = 0;
2851 return -EINVAL;
2854 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2855 const u8 *key, unsigned int keylen)
2857 struct spu_hw *spu = &iproc_priv.spu;
2858 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2859 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2861 int ret = 0;
2863 flow_log("%s() keylen:%u\n", __func__, keylen);
2864 flow_dump(" key: ", key, keylen);
2866 if (!ctx->is_esp)
2867 ctx->digestsize = keylen;
2869 ctx->enckeylen = keylen;
2870 ctx->authkeylen = 0;
2872 switch (ctx->enckeylen) {
2873 case AES_KEYSIZE_128:
2874 ctx->cipher_type = CIPHER_TYPE_AES128;
2875 break;
2876 case AES_KEYSIZE_192:
2877 ctx->cipher_type = CIPHER_TYPE_AES192;
2878 break;
2879 case AES_KEYSIZE_256:
2880 ctx->cipher_type = CIPHER_TYPE_AES256;
2881 break;
2882 default:
2883 goto badkey;
2886 memcpy(ctx->enckey, key, ctx->enckeylen);
2888 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2889 ctx->authkeylen);
2890 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2891 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2893 /* setkey the fallback just in case we need to use it */
2894 if (ctx->fallback_cipher) {
2895 flow_log(" running fallback setkey()\n");
2897 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2898 ctx->fallback_cipher->base.crt_flags |=
2899 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2900 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2901 keylen + ctx->salt_len);
2902 if (ret)
2903 flow_log(" fallback setkey() returned:%d\n", ret);
2906 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2907 ctx->enckeylen,
2908 false);
2910 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2912 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2913 ctx->authkeylen);
2915 return ret;
2917 badkey:
2918 ctx->enckeylen = 0;
2919 ctx->authkeylen = 0;
2920 ctx->digestsize = 0;
2922 return -EINVAL;
2926 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2927 * @cipher: AEAD structure
2928 * @key: Key followed by 4 bytes of salt
2929 * @keylen: Length of key plus salt, in bytes
2931 * Extracts salt from key and stores it to be prepended to IV on each request.
2932 * Digest is always 16 bytes
2934 * Return: Value from generic gcm setkey.
2936 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2937 const u8 *key, unsigned int keylen)
2939 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2941 flow_log("%s\n", __func__);
2943 if (keylen < GCM_ESP_SALT_SIZE)
2944 return -EINVAL;
2946 ctx->salt_len = GCM_ESP_SALT_SIZE;
2947 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2948 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2949 keylen -= GCM_ESP_SALT_SIZE;
2950 ctx->digestsize = GCM_ESP_DIGESTSIZE;
2951 ctx->is_esp = true;
2952 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2954 return aead_gcm_ccm_setkey(cipher, key, keylen);
2958 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2959 * cipher: AEAD structure
2960 * key: Key followed by 4 bytes of salt
2961 * keylen: Length of key plus salt, in bytes
2963 * Extracts salt from key and stores it to be prepended to IV on each request.
2964 * Digest is always 16 bytes
2966 * Return: Value from generic gcm setkey.
2968 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
2969 const u8 *key, unsigned int keylen)
2971 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2973 flow_log("%s\n", __func__);
2975 if (keylen < GCM_ESP_SALT_SIZE)
2976 return -EINVAL;
2978 ctx->salt_len = GCM_ESP_SALT_SIZE;
2979 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2980 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2981 keylen -= GCM_ESP_SALT_SIZE;
2982 ctx->digestsize = GCM_ESP_DIGESTSIZE;
2983 ctx->is_esp = true;
2984 ctx->is_rfc4543 = true;
2985 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2987 return aead_gcm_ccm_setkey(cipher, key, keylen);
2991 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2992 * @cipher: AEAD structure
2993 * @key: Key followed by 4 bytes of salt
2994 * @keylen: Length of key plus salt, in bytes
2996 * Extracts salt from key and stores it to be prepended to IV on each request.
2997 * Digest is always 16 bytes
2999 * Return: Value from generic ccm setkey.
3001 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3002 const u8 *key, unsigned int keylen)
3004 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3006 flow_log("%s\n", __func__);
3008 if (keylen < CCM_ESP_SALT_SIZE)
3009 return -EINVAL;
3011 ctx->salt_len = CCM_ESP_SALT_SIZE;
3012 ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3013 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3014 keylen -= CCM_ESP_SALT_SIZE;
3015 ctx->is_esp = true;
3016 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3018 return aead_gcm_ccm_setkey(cipher, key, keylen);
3021 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3023 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3024 int ret = 0;
3026 flow_log("%s() authkeylen:%u authsize:%u\n",
3027 __func__, ctx->authkeylen, authsize);
3029 ctx->digestsize = authsize;
3031 /* setkey the fallback just in case we needto use it */
3032 if (ctx->fallback_cipher) {
3033 flow_log(" running fallback setauth()\n");
3035 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3036 if (ret)
3037 flow_log(" fallback setauth() returned:%d\n", ret);
3040 return ret;
3043 static int aead_encrypt(struct aead_request *req)
3045 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3046 req->cryptlen);
3047 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3048 flow_log(" assoc_len:%u\n", req->assoclen);
3050 return aead_enqueue(req, true);
3053 static int aead_decrypt(struct aead_request *req)
3055 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3056 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3057 flow_log(" assoc_len:%u\n", req->assoclen);
3059 return aead_enqueue(req, false);
3062 /* ==================== Supported Cipher Algorithms ==================== */
3064 static struct iproc_alg_s driver_algs[] = {
3066 .type = CRYPTO_ALG_TYPE_AEAD,
3067 .alg.aead = {
3068 .base = {
3069 .cra_name = "gcm(aes)",
3070 .cra_driver_name = "gcm-aes-iproc",
3071 .cra_blocksize = AES_BLOCK_SIZE,
3072 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3074 .setkey = aead_gcm_ccm_setkey,
3075 .ivsize = GCM_AES_IV_SIZE,
3076 .maxauthsize = AES_BLOCK_SIZE,
3078 .cipher_info = {
3079 .alg = CIPHER_ALG_AES,
3080 .mode = CIPHER_MODE_GCM,
3082 .auth_info = {
3083 .alg = HASH_ALG_AES,
3084 .mode = HASH_MODE_GCM,
3086 .auth_first = 0,
3089 .type = CRYPTO_ALG_TYPE_AEAD,
3090 .alg.aead = {
3091 .base = {
3092 .cra_name = "ccm(aes)",
3093 .cra_driver_name = "ccm-aes-iproc",
3094 .cra_blocksize = AES_BLOCK_SIZE,
3095 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3097 .setkey = aead_gcm_ccm_setkey,
3098 .ivsize = CCM_AES_IV_SIZE,
3099 .maxauthsize = AES_BLOCK_SIZE,
3101 .cipher_info = {
3102 .alg = CIPHER_ALG_AES,
3103 .mode = CIPHER_MODE_CCM,
3105 .auth_info = {
3106 .alg = HASH_ALG_AES,
3107 .mode = HASH_MODE_CCM,
3109 .auth_first = 0,
3112 .type = CRYPTO_ALG_TYPE_AEAD,
3113 .alg.aead = {
3114 .base = {
3115 .cra_name = "rfc4106(gcm(aes))",
3116 .cra_driver_name = "gcm-aes-esp-iproc",
3117 .cra_blocksize = AES_BLOCK_SIZE,
3118 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3120 .setkey = aead_gcm_esp_setkey,
3121 .ivsize = GCM_RFC4106_IV_SIZE,
3122 .maxauthsize = AES_BLOCK_SIZE,
3124 .cipher_info = {
3125 .alg = CIPHER_ALG_AES,
3126 .mode = CIPHER_MODE_GCM,
3128 .auth_info = {
3129 .alg = HASH_ALG_AES,
3130 .mode = HASH_MODE_GCM,
3132 .auth_first = 0,
3135 .type = CRYPTO_ALG_TYPE_AEAD,
3136 .alg.aead = {
3137 .base = {
3138 .cra_name = "rfc4309(ccm(aes))",
3139 .cra_driver_name = "ccm-aes-esp-iproc",
3140 .cra_blocksize = AES_BLOCK_SIZE,
3141 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3143 .setkey = aead_ccm_esp_setkey,
3144 .ivsize = CCM_AES_IV_SIZE,
3145 .maxauthsize = AES_BLOCK_SIZE,
3147 .cipher_info = {
3148 .alg = CIPHER_ALG_AES,
3149 .mode = CIPHER_MODE_CCM,
3151 .auth_info = {
3152 .alg = HASH_ALG_AES,
3153 .mode = HASH_MODE_CCM,
3155 .auth_first = 0,
3158 .type = CRYPTO_ALG_TYPE_AEAD,
3159 .alg.aead = {
3160 .base = {
3161 .cra_name = "rfc4543(gcm(aes))",
3162 .cra_driver_name = "gmac-aes-esp-iproc",
3163 .cra_blocksize = AES_BLOCK_SIZE,
3164 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3166 .setkey = rfc4543_gcm_esp_setkey,
3167 .ivsize = GCM_RFC4106_IV_SIZE,
3168 .maxauthsize = AES_BLOCK_SIZE,
3170 .cipher_info = {
3171 .alg = CIPHER_ALG_AES,
3172 .mode = CIPHER_MODE_GCM,
3174 .auth_info = {
3175 .alg = HASH_ALG_AES,
3176 .mode = HASH_MODE_GCM,
3178 .auth_first = 0,
3181 .type = CRYPTO_ALG_TYPE_AEAD,
3182 .alg.aead = {
3183 .base = {
3184 .cra_name = "authenc(hmac(md5),cbc(aes))",
3185 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3186 .cra_blocksize = AES_BLOCK_SIZE,
3187 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3188 CRYPTO_ALG_ASYNC |
3189 CRYPTO_ALG_ALLOCATES_MEMORY
3191 .setkey = aead_authenc_setkey,
3192 .ivsize = AES_BLOCK_SIZE,
3193 .maxauthsize = MD5_DIGEST_SIZE,
3195 .cipher_info = {
3196 .alg = CIPHER_ALG_AES,
3197 .mode = CIPHER_MODE_CBC,
3199 .auth_info = {
3200 .alg = HASH_ALG_MD5,
3201 .mode = HASH_MODE_HMAC,
3203 .auth_first = 0,
3206 .type = CRYPTO_ALG_TYPE_AEAD,
3207 .alg.aead = {
3208 .base = {
3209 .cra_name = "authenc(hmac(sha1),cbc(aes))",
3210 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3211 .cra_blocksize = AES_BLOCK_SIZE,
3212 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3213 CRYPTO_ALG_ASYNC |
3214 CRYPTO_ALG_ALLOCATES_MEMORY
3216 .setkey = aead_authenc_setkey,
3217 .ivsize = AES_BLOCK_SIZE,
3218 .maxauthsize = SHA1_DIGEST_SIZE,
3220 .cipher_info = {
3221 .alg = CIPHER_ALG_AES,
3222 .mode = CIPHER_MODE_CBC,
3224 .auth_info = {
3225 .alg = HASH_ALG_SHA1,
3226 .mode = HASH_MODE_HMAC,
3228 .auth_first = 0,
3231 .type = CRYPTO_ALG_TYPE_AEAD,
3232 .alg.aead = {
3233 .base = {
3234 .cra_name = "authenc(hmac(sha256),cbc(aes))",
3235 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3236 .cra_blocksize = AES_BLOCK_SIZE,
3237 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3238 CRYPTO_ALG_ASYNC |
3239 CRYPTO_ALG_ALLOCATES_MEMORY
3241 .setkey = aead_authenc_setkey,
3242 .ivsize = AES_BLOCK_SIZE,
3243 .maxauthsize = SHA256_DIGEST_SIZE,
3245 .cipher_info = {
3246 .alg = CIPHER_ALG_AES,
3247 .mode = CIPHER_MODE_CBC,
3249 .auth_info = {
3250 .alg = HASH_ALG_SHA256,
3251 .mode = HASH_MODE_HMAC,
3253 .auth_first = 0,
3256 .type = CRYPTO_ALG_TYPE_AEAD,
3257 .alg.aead = {
3258 .base = {
3259 .cra_name = "authenc(hmac(md5),cbc(des))",
3260 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3261 .cra_blocksize = DES_BLOCK_SIZE,
3262 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3263 CRYPTO_ALG_ASYNC |
3264 CRYPTO_ALG_ALLOCATES_MEMORY
3266 .setkey = aead_authenc_setkey,
3267 .ivsize = DES_BLOCK_SIZE,
3268 .maxauthsize = MD5_DIGEST_SIZE,
3270 .cipher_info = {
3271 .alg = CIPHER_ALG_DES,
3272 .mode = CIPHER_MODE_CBC,
3274 .auth_info = {
3275 .alg = HASH_ALG_MD5,
3276 .mode = HASH_MODE_HMAC,
3278 .auth_first = 0,
3281 .type = CRYPTO_ALG_TYPE_AEAD,
3282 .alg.aead = {
3283 .base = {
3284 .cra_name = "authenc(hmac(sha1),cbc(des))",
3285 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3286 .cra_blocksize = DES_BLOCK_SIZE,
3287 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3288 CRYPTO_ALG_ASYNC |
3289 CRYPTO_ALG_ALLOCATES_MEMORY
3291 .setkey = aead_authenc_setkey,
3292 .ivsize = DES_BLOCK_SIZE,
3293 .maxauthsize = SHA1_DIGEST_SIZE,
3295 .cipher_info = {
3296 .alg = CIPHER_ALG_DES,
3297 .mode = CIPHER_MODE_CBC,
3299 .auth_info = {
3300 .alg = HASH_ALG_SHA1,
3301 .mode = HASH_MODE_HMAC,
3303 .auth_first = 0,
3306 .type = CRYPTO_ALG_TYPE_AEAD,
3307 .alg.aead = {
3308 .base = {
3309 .cra_name = "authenc(hmac(sha224),cbc(des))",
3310 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3311 .cra_blocksize = DES_BLOCK_SIZE,
3312 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3313 CRYPTO_ALG_ASYNC |
3314 CRYPTO_ALG_ALLOCATES_MEMORY
3316 .setkey = aead_authenc_setkey,
3317 .ivsize = DES_BLOCK_SIZE,
3318 .maxauthsize = SHA224_DIGEST_SIZE,
3320 .cipher_info = {
3321 .alg = CIPHER_ALG_DES,
3322 .mode = CIPHER_MODE_CBC,
3324 .auth_info = {
3325 .alg = HASH_ALG_SHA224,
3326 .mode = HASH_MODE_HMAC,
3328 .auth_first = 0,
3331 .type = CRYPTO_ALG_TYPE_AEAD,
3332 .alg.aead = {
3333 .base = {
3334 .cra_name = "authenc(hmac(sha256),cbc(des))",
3335 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3336 .cra_blocksize = DES_BLOCK_SIZE,
3337 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3338 CRYPTO_ALG_ASYNC |
3339 CRYPTO_ALG_ALLOCATES_MEMORY
3341 .setkey = aead_authenc_setkey,
3342 .ivsize = DES_BLOCK_SIZE,
3343 .maxauthsize = SHA256_DIGEST_SIZE,
3345 .cipher_info = {
3346 .alg = CIPHER_ALG_DES,
3347 .mode = CIPHER_MODE_CBC,
3349 .auth_info = {
3350 .alg = HASH_ALG_SHA256,
3351 .mode = HASH_MODE_HMAC,
3353 .auth_first = 0,
3356 .type = CRYPTO_ALG_TYPE_AEAD,
3357 .alg.aead = {
3358 .base = {
3359 .cra_name = "authenc(hmac(sha384),cbc(des))",
3360 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3361 .cra_blocksize = DES_BLOCK_SIZE,
3362 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3363 CRYPTO_ALG_ASYNC |
3364 CRYPTO_ALG_ALLOCATES_MEMORY
3366 .setkey = aead_authenc_setkey,
3367 .ivsize = DES_BLOCK_SIZE,
3368 .maxauthsize = SHA384_DIGEST_SIZE,
3370 .cipher_info = {
3371 .alg = CIPHER_ALG_DES,
3372 .mode = CIPHER_MODE_CBC,
3374 .auth_info = {
3375 .alg = HASH_ALG_SHA384,
3376 .mode = HASH_MODE_HMAC,
3378 .auth_first = 0,
3381 .type = CRYPTO_ALG_TYPE_AEAD,
3382 .alg.aead = {
3383 .base = {
3384 .cra_name = "authenc(hmac(sha512),cbc(des))",
3385 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3386 .cra_blocksize = DES_BLOCK_SIZE,
3387 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3388 CRYPTO_ALG_ASYNC |
3389 CRYPTO_ALG_ALLOCATES_MEMORY
3391 .setkey = aead_authenc_setkey,
3392 .ivsize = DES_BLOCK_SIZE,
3393 .maxauthsize = SHA512_DIGEST_SIZE,
3395 .cipher_info = {
3396 .alg = CIPHER_ALG_DES,
3397 .mode = CIPHER_MODE_CBC,
3399 .auth_info = {
3400 .alg = HASH_ALG_SHA512,
3401 .mode = HASH_MODE_HMAC,
3403 .auth_first = 0,
3406 .type = CRYPTO_ALG_TYPE_AEAD,
3407 .alg.aead = {
3408 .base = {
3409 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3410 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3411 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3412 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3413 CRYPTO_ALG_ASYNC |
3414 CRYPTO_ALG_ALLOCATES_MEMORY
3416 .setkey = aead_authenc_setkey,
3417 .ivsize = DES3_EDE_BLOCK_SIZE,
3418 .maxauthsize = MD5_DIGEST_SIZE,
3420 .cipher_info = {
3421 .alg = CIPHER_ALG_3DES,
3422 .mode = CIPHER_MODE_CBC,
3424 .auth_info = {
3425 .alg = HASH_ALG_MD5,
3426 .mode = HASH_MODE_HMAC,
3428 .auth_first = 0,
3431 .type = CRYPTO_ALG_TYPE_AEAD,
3432 .alg.aead = {
3433 .base = {
3434 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3435 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3436 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3437 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3438 CRYPTO_ALG_ASYNC |
3439 CRYPTO_ALG_ALLOCATES_MEMORY
3441 .setkey = aead_authenc_setkey,
3442 .ivsize = DES3_EDE_BLOCK_SIZE,
3443 .maxauthsize = SHA1_DIGEST_SIZE,
3445 .cipher_info = {
3446 .alg = CIPHER_ALG_3DES,
3447 .mode = CIPHER_MODE_CBC,
3449 .auth_info = {
3450 .alg = HASH_ALG_SHA1,
3451 .mode = HASH_MODE_HMAC,
3453 .auth_first = 0,
3456 .type = CRYPTO_ALG_TYPE_AEAD,
3457 .alg.aead = {
3458 .base = {
3459 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3460 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3461 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3462 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3463 CRYPTO_ALG_ASYNC |
3464 CRYPTO_ALG_ALLOCATES_MEMORY
3466 .setkey = aead_authenc_setkey,
3467 .ivsize = DES3_EDE_BLOCK_SIZE,
3468 .maxauthsize = SHA224_DIGEST_SIZE,
3470 .cipher_info = {
3471 .alg = CIPHER_ALG_3DES,
3472 .mode = CIPHER_MODE_CBC,
3474 .auth_info = {
3475 .alg = HASH_ALG_SHA224,
3476 .mode = HASH_MODE_HMAC,
3478 .auth_first = 0,
3481 .type = CRYPTO_ALG_TYPE_AEAD,
3482 .alg.aead = {
3483 .base = {
3484 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3485 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3486 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3487 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3488 CRYPTO_ALG_ASYNC |
3489 CRYPTO_ALG_ALLOCATES_MEMORY
3491 .setkey = aead_authenc_setkey,
3492 .ivsize = DES3_EDE_BLOCK_SIZE,
3493 .maxauthsize = SHA256_DIGEST_SIZE,
3495 .cipher_info = {
3496 .alg = CIPHER_ALG_3DES,
3497 .mode = CIPHER_MODE_CBC,
3499 .auth_info = {
3500 .alg = HASH_ALG_SHA256,
3501 .mode = HASH_MODE_HMAC,
3503 .auth_first = 0,
3506 .type = CRYPTO_ALG_TYPE_AEAD,
3507 .alg.aead = {
3508 .base = {
3509 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3510 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3511 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3512 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3513 CRYPTO_ALG_ASYNC |
3514 CRYPTO_ALG_ALLOCATES_MEMORY
3516 .setkey = aead_authenc_setkey,
3517 .ivsize = DES3_EDE_BLOCK_SIZE,
3518 .maxauthsize = SHA384_DIGEST_SIZE,
3520 .cipher_info = {
3521 .alg = CIPHER_ALG_3DES,
3522 .mode = CIPHER_MODE_CBC,
3524 .auth_info = {
3525 .alg = HASH_ALG_SHA384,
3526 .mode = HASH_MODE_HMAC,
3528 .auth_first = 0,
3531 .type = CRYPTO_ALG_TYPE_AEAD,
3532 .alg.aead = {
3533 .base = {
3534 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3535 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3536 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3537 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3538 CRYPTO_ALG_ASYNC |
3539 CRYPTO_ALG_ALLOCATES_MEMORY
3541 .setkey = aead_authenc_setkey,
3542 .ivsize = DES3_EDE_BLOCK_SIZE,
3543 .maxauthsize = SHA512_DIGEST_SIZE,
3545 .cipher_info = {
3546 .alg = CIPHER_ALG_3DES,
3547 .mode = CIPHER_MODE_CBC,
3549 .auth_info = {
3550 .alg = HASH_ALG_SHA512,
3551 .mode = HASH_MODE_HMAC,
3553 .auth_first = 0,
3556 /* SKCIPHER algorithms. */
3558 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3559 .alg.skcipher = {
3560 .base.cra_name = "ofb(des)",
3561 .base.cra_driver_name = "ofb-des-iproc",
3562 .base.cra_blocksize = DES_BLOCK_SIZE,
3563 .min_keysize = DES_KEY_SIZE,
3564 .max_keysize = DES_KEY_SIZE,
3565 .ivsize = DES_BLOCK_SIZE,
3567 .cipher_info = {
3568 .alg = CIPHER_ALG_DES,
3569 .mode = CIPHER_MODE_OFB,
3571 .auth_info = {
3572 .alg = HASH_ALG_NONE,
3573 .mode = HASH_MODE_NONE,
3577 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3578 .alg.skcipher = {
3579 .base.cra_name = "cbc(des)",
3580 .base.cra_driver_name = "cbc-des-iproc",
3581 .base.cra_blocksize = DES_BLOCK_SIZE,
3582 .min_keysize = DES_KEY_SIZE,
3583 .max_keysize = DES_KEY_SIZE,
3584 .ivsize = DES_BLOCK_SIZE,
3586 .cipher_info = {
3587 .alg = CIPHER_ALG_DES,
3588 .mode = CIPHER_MODE_CBC,
3590 .auth_info = {
3591 .alg = HASH_ALG_NONE,
3592 .mode = HASH_MODE_NONE,
3596 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3597 .alg.skcipher = {
3598 .base.cra_name = "ecb(des)",
3599 .base.cra_driver_name = "ecb-des-iproc",
3600 .base.cra_blocksize = DES_BLOCK_SIZE,
3601 .min_keysize = DES_KEY_SIZE,
3602 .max_keysize = DES_KEY_SIZE,
3603 .ivsize = 0,
3605 .cipher_info = {
3606 .alg = CIPHER_ALG_DES,
3607 .mode = CIPHER_MODE_ECB,
3609 .auth_info = {
3610 .alg = HASH_ALG_NONE,
3611 .mode = HASH_MODE_NONE,
3615 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3616 .alg.skcipher = {
3617 .base.cra_name = "ofb(des3_ede)",
3618 .base.cra_driver_name = "ofb-des3-iproc",
3619 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3620 .min_keysize = DES3_EDE_KEY_SIZE,
3621 .max_keysize = DES3_EDE_KEY_SIZE,
3622 .ivsize = DES3_EDE_BLOCK_SIZE,
3624 .cipher_info = {
3625 .alg = CIPHER_ALG_3DES,
3626 .mode = CIPHER_MODE_OFB,
3628 .auth_info = {
3629 .alg = HASH_ALG_NONE,
3630 .mode = HASH_MODE_NONE,
3634 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3635 .alg.skcipher = {
3636 .base.cra_name = "cbc(des3_ede)",
3637 .base.cra_driver_name = "cbc-des3-iproc",
3638 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3639 .min_keysize = DES3_EDE_KEY_SIZE,
3640 .max_keysize = DES3_EDE_KEY_SIZE,
3641 .ivsize = DES3_EDE_BLOCK_SIZE,
3643 .cipher_info = {
3644 .alg = CIPHER_ALG_3DES,
3645 .mode = CIPHER_MODE_CBC,
3647 .auth_info = {
3648 .alg = HASH_ALG_NONE,
3649 .mode = HASH_MODE_NONE,
3653 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3654 .alg.skcipher = {
3655 .base.cra_name = "ecb(des3_ede)",
3656 .base.cra_driver_name = "ecb-des3-iproc",
3657 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3658 .min_keysize = DES3_EDE_KEY_SIZE,
3659 .max_keysize = DES3_EDE_KEY_SIZE,
3660 .ivsize = 0,
3662 .cipher_info = {
3663 .alg = CIPHER_ALG_3DES,
3664 .mode = CIPHER_MODE_ECB,
3666 .auth_info = {
3667 .alg = HASH_ALG_NONE,
3668 .mode = HASH_MODE_NONE,
3672 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3673 .alg.skcipher = {
3674 .base.cra_name = "ofb(aes)",
3675 .base.cra_driver_name = "ofb-aes-iproc",
3676 .base.cra_blocksize = AES_BLOCK_SIZE,
3677 .min_keysize = AES_MIN_KEY_SIZE,
3678 .max_keysize = AES_MAX_KEY_SIZE,
3679 .ivsize = AES_BLOCK_SIZE,
3681 .cipher_info = {
3682 .alg = CIPHER_ALG_AES,
3683 .mode = CIPHER_MODE_OFB,
3685 .auth_info = {
3686 .alg = HASH_ALG_NONE,
3687 .mode = HASH_MODE_NONE,
3691 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3692 .alg.skcipher = {
3693 .base.cra_name = "cbc(aes)",
3694 .base.cra_driver_name = "cbc-aes-iproc",
3695 .base.cra_blocksize = AES_BLOCK_SIZE,
3696 .min_keysize = AES_MIN_KEY_SIZE,
3697 .max_keysize = AES_MAX_KEY_SIZE,
3698 .ivsize = AES_BLOCK_SIZE,
3700 .cipher_info = {
3701 .alg = CIPHER_ALG_AES,
3702 .mode = CIPHER_MODE_CBC,
3704 .auth_info = {
3705 .alg = HASH_ALG_NONE,
3706 .mode = HASH_MODE_NONE,
3710 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3711 .alg.skcipher = {
3712 .base.cra_name = "ecb(aes)",
3713 .base.cra_driver_name = "ecb-aes-iproc",
3714 .base.cra_blocksize = AES_BLOCK_SIZE,
3715 .min_keysize = AES_MIN_KEY_SIZE,
3716 .max_keysize = AES_MAX_KEY_SIZE,
3717 .ivsize = 0,
3719 .cipher_info = {
3720 .alg = CIPHER_ALG_AES,
3721 .mode = CIPHER_MODE_ECB,
3723 .auth_info = {
3724 .alg = HASH_ALG_NONE,
3725 .mode = HASH_MODE_NONE,
3729 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3730 .alg.skcipher = {
3731 .base.cra_name = "ctr(aes)",
3732 .base.cra_driver_name = "ctr-aes-iproc",
3733 .base.cra_blocksize = AES_BLOCK_SIZE,
3734 .min_keysize = AES_MIN_KEY_SIZE,
3735 .max_keysize = AES_MAX_KEY_SIZE,
3736 .ivsize = AES_BLOCK_SIZE,
3738 .cipher_info = {
3739 .alg = CIPHER_ALG_AES,
3740 .mode = CIPHER_MODE_CTR,
3742 .auth_info = {
3743 .alg = HASH_ALG_NONE,
3744 .mode = HASH_MODE_NONE,
3748 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3749 .alg.skcipher = {
3750 .base.cra_name = "xts(aes)",
3751 .base.cra_driver_name = "xts-aes-iproc",
3752 .base.cra_blocksize = AES_BLOCK_SIZE,
3753 .min_keysize = 2 * AES_MIN_KEY_SIZE,
3754 .max_keysize = 2 * AES_MAX_KEY_SIZE,
3755 .ivsize = AES_BLOCK_SIZE,
3757 .cipher_info = {
3758 .alg = CIPHER_ALG_AES,
3759 .mode = CIPHER_MODE_XTS,
3761 .auth_info = {
3762 .alg = HASH_ALG_NONE,
3763 .mode = HASH_MODE_NONE,
3767 /* AHASH algorithms. */
3769 .type = CRYPTO_ALG_TYPE_AHASH,
3770 .alg.hash = {
3771 .halg.digestsize = MD5_DIGEST_SIZE,
3772 .halg.base = {
3773 .cra_name = "md5",
3774 .cra_driver_name = "md5-iproc",
3775 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3776 .cra_flags = CRYPTO_ALG_ASYNC |
3777 CRYPTO_ALG_ALLOCATES_MEMORY,
3780 .cipher_info = {
3781 .alg = CIPHER_ALG_NONE,
3782 .mode = CIPHER_MODE_NONE,
3784 .auth_info = {
3785 .alg = HASH_ALG_MD5,
3786 .mode = HASH_MODE_HASH,
3790 .type = CRYPTO_ALG_TYPE_AHASH,
3791 .alg.hash = {
3792 .halg.digestsize = MD5_DIGEST_SIZE,
3793 .halg.base = {
3794 .cra_name = "hmac(md5)",
3795 .cra_driver_name = "hmac-md5-iproc",
3796 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3799 .cipher_info = {
3800 .alg = CIPHER_ALG_NONE,
3801 .mode = CIPHER_MODE_NONE,
3803 .auth_info = {
3804 .alg = HASH_ALG_MD5,
3805 .mode = HASH_MODE_HMAC,
3808 {.type = CRYPTO_ALG_TYPE_AHASH,
3809 .alg.hash = {
3810 .halg.digestsize = SHA1_DIGEST_SIZE,
3811 .halg.base = {
3812 .cra_name = "sha1",
3813 .cra_driver_name = "sha1-iproc",
3814 .cra_blocksize = SHA1_BLOCK_SIZE,
3817 .cipher_info = {
3818 .alg = CIPHER_ALG_NONE,
3819 .mode = CIPHER_MODE_NONE,
3821 .auth_info = {
3822 .alg = HASH_ALG_SHA1,
3823 .mode = HASH_MODE_HASH,
3826 {.type = CRYPTO_ALG_TYPE_AHASH,
3827 .alg.hash = {
3828 .halg.digestsize = SHA1_DIGEST_SIZE,
3829 .halg.base = {
3830 .cra_name = "hmac(sha1)",
3831 .cra_driver_name = "hmac-sha1-iproc",
3832 .cra_blocksize = SHA1_BLOCK_SIZE,
3835 .cipher_info = {
3836 .alg = CIPHER_ALG_NONE,
3837 .mode = CIPHER_MODE_NONE,
3839 .auth_info = {
3840 .alg = HASH_ALG_SHA1,
3841 .mode = HASH_MODE_HMAC,
3844 {.type = CRYPTO_ALG_TYPE_AHASH,
3845 .alg.hash = {
3846 .halg.digestsize = SHA224_DIGEST_SIZE,
3847 .halg.base = {
3848 .cra_name = "sha224",
3849 .cra_driver_name = "sha224-iproc",
3850 .cra_blocksize = SHA224_BLOCK_SIZE,
3853 .cipher_info = {
3854 .alg = CIPHER_ALG_NONE,
3855 .mode = CIPHER_MODE_NONE,
3857 .auth_info = {
3858 .alg = HASH_ALG_SHA224,
3859 .mode = HASH_MODE_HASH,
3862 {.type = CRYPTO_ALG_TYPE_AHASH,
3863 .alg.hash = {
3864 .halg.digestsize = SHA224_DIGEST_SIZE,
3865 .halg.base = {
3866 .cra_name = "hmac(sha224)",
3867 .cra_driver_name = "hmac-sha224-iproc",
3868 .cra_blocksize = SHA224_BLOCK_SIZE,
3871 .cipher_info = {
3872 .alg = CIPHER_ALG_NONE,
3873 .mode = CIPHER_MODE_NONE,
3875 .auth_info = {
3876 .alg = HASH_ALG_SHA224,
3877 .mode = HASH_MODE_HMAC,
3880 {.type = CRYPTO_ALG_TYPE_AHASH,
3881 .alg.hash = {
3882 .halg.digestsize = SHA256_DIGEST_SIZE,
3883 .halg.base = {
3884 .cra_name = "sha256",
3885 .cra_driver_name = "sha256-iproc",
3886 .cra_blocksize = SHA256_BLOCK_SIZE,
3889 .cipher_info = {
3890 .alg = CIPHER_ALG_NONE,
3891 .mode = CIPHER_MODE_NONE,
3893 .auth_info = {
3894 .alg = HASH_ALG_SHA256,
3895 .mode = HASH_MODE_HASH,
3898 {.type = CRYPTO_ALG_TYPE_AHASH,
3899 .alg.hash = {
3900 .halg.digestsize = SHA256_DIGEST_SIZE,
3901 .halg.base = {
3902 .cra_name = "hmac(sha256)",
3903 .cra_driver_name = "hmac-sha256-iproc",
3904 .cra_blocksize = SHA256_BLOCK_SIZE,
3907 .cipher_info = {
3908 .alg = CIPHER_ALG_NONE,
3909 .mode = CIPHER_MODE_NONE,
3911 .auth_info = {
3912 .alg = HASH_ALG_SHA256,
3913 .mode = HASH_MODE_HMAC,
3917 .type = CRYPTO_ALG_TYPE_AHASH,
3918 .alg.hash = {
3919 .halg.digestsize = SHA384_DIGEST_SIZE,
3920 .halg.base = {
3921 .cra_name = "sha384",
3922 .cra_driver_name = "sha384-iproc",
3923 .cra_blocksize = SHA384_BLOCK_SIZE,
3926 .cipher_info = {
3927 .alg = CIPHER_ALG_NONE,
3928 .mode = CIPHER_MODE_NONE,
3930 .auth_info = {
3931 .alg = HASH_ALG_SHA384,
3932 .mode = HASH_MODE_HASH,
3936 .type = CRYPTO_ALG_TYPE_AHASH,
3937 .alg.hash = {
3938 .halg.digestsize = SHA384_DIGEST_SIZE,
3939 .halg.base = {
3940 .cra_name = "hmac(sha384)",
3941 .cra_driver_name = "hmac-sha384-iproc",
3942 .cra_blocksize = SHA384_BLOCK_SIZE,
3945 .cipher_info = {
3946 .alg = CIPHER_ALG_NONE,
3947 .mode = CIPHER_MODE_NONE,
3949 .auth_info = {
3950 .alg = HASH_ALG_SHA384,
3951 .mode = HASH_MODE_HMAC,
3955 .type = CRYPTO_ALG_TYPE_AHASH,
3956 .alg.hash = {
3957 .halg.digestsize = SHA512_DIGEST_SIZE,
3958 .halg.base = {
3959 .cra_name = "sha512",
3960 .cra_driver_name = "sha512-iproc",
3961 .cra_blocksize = SHA512_BLOCK_SIZE,
3964 .cipher_info = {
3965 .alg = CIPHER_ALG_NONE,
3966 .mode = CIPHER_MODE_NONE,
3968 .auth_info = {
3969 .alg = HASH_ALG_SHA512,
3970 .mode = HASH_MODE_HASH,
3974 .type = CRYPTO_ALG_TYPE_AHASH,
3975 .alg.hash = {
3976 .halg.digestsize = SHA512_DIGEST_SIZE,
3977 .halg.base = {
3978 .cra_name = "hmac(sha512)",
3979 .cra_driver_name = "hmac-sha512-iproc",
3980 .cra_blocksize = SHA512_BLOCK_SIZE,
3983 .cipher_info = {
3984 .alg = CIPHER_ALG_NONE,
3985 .mode = CIPHER_MODE_NONE,
3987 .auth_info = {
3988 .alg = HASH_ALG_SHA512,
3989 .mode = HASH_MODE_HMAC,
3993 .type = CRYPTO_ALG_TYPE_AHASH,
3994 .alg.hash = {
3995 .halg.digestsize = SHA3_224_DIGEST_SIZE,
3996 .halg.base = {
3997 .cra_name = "sha3-224",
3998 .cra_driver_name = "sha3-224-iproc",
3999 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4002 .cipher_info = {
4003 .alg = CIPHER_ALG_NONE,
4004 .mode = CIPHER_MODE_NONE,
4006 .auth_info = {
4007 .alg = HASH_ALG_SHA3_224,
4008 .mode = HASH_MODE_HASH,
4012 .type = CRYPTO_ALG_TYPE_AHASH,
4013 .alg.hash = {
4014 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4015 .halg.base = {
4016 .cra_name = "hmac(sha3-224)",
4017 .cra_driver_name = "hmac-sha3-224-iproc",
4018 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4021 .cipher_info = {
4022 .alg = CIPHER_ALG_NONE,
4023 .mode = CIPHER_MODE_NONE,
4025 .auth_info = {
4026 .alg = HASH_ALG_SHA3_224,
4027 .mode = HASH_MODE_HMAC
4031 .type = CRYPTO_ALG_TYPE_AHASH,
4032 .alg.hash = {
4033 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4034 .halg.base = {
4035 .cra_name = "sha3-256",
4036 .cra_driver_name = "sha3-256-iproc",
4037 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4040 .cipher_info = {
4041 .alg = CIPHER_ALG_NONE,
4042 .mode = CIPHER_MODE_NONE,
4044 .auth_info = {
4045 .alg = HASH_ALG_SHA3_256,
4046 .mode = HASH_MODE_HASH,
4050 .type = CRYPTO_ALG_TYPE_AHASH,
4051 .alg.hash = {
4052 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4053 .halg.base = {
4054 .cra_name = "hmac(sha3-256)",
4055 .cra_driver_name = "hmac-sha3-256-iproc",
4056 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4059 .cipher_info = {
4060 .alg = CIPHER_ALG_NONE,
4061 .mode = CIPHER_MODE_NONE,
4063 .auth_info = {
4064 .alg = HASH_ALG_SHA3_256,
4065 .mode = HASH_MODE_HMAC,
4069 .type = CRYPTO_ALG_TYPE_AHASH,
4070 .alg.hash = {
4071 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4072 .halg.base = {
4073 .cra_name = "sha3-384",
4074 .cra_driver_name = "sha3-384-iproc",
4075 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4078 .cipher_info = {
4079 .alg = CIPHER_ALG_NONE,
4080 .mode = CIPHER_MODE_NONE,
4082 .auth_info = {
4083 .alg = HASH_ALG_SHA3_384,
4084 .mode = HASH_MODE_HASH,
4088 .type = CRYPTO_ALG_TYPE_AHASH,
4089 .alg.hash = {
4090 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4091 .halg.base = {
4092 .cra_name = "hmac(sha3-384)",
4093 .cra_driver_name = "hmac-sha3-384-iproc",
4094 .cra_blocksize = SHA3_384_BLOCK_SIZE,
4097 .cipher_info = {
4098 .alg = CIPHER_ALG_NONE,
4099 .mode = CIPHER_MODE_NONE,
4101 .auth_info = {
4102 .alg = HASH_ALG_SHA3_384,
4103 .mode = HASH_MODE_HMAC,
4107 .type = CRYPTO_ALG_TYPE_AHASH,
4108 .alg.hash = {
4109 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4110 .halg.base = {
4111 .cra_name = "sha3-512",
4112 .cra_driver_name = "sha3-512-iproc",
4113 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4116 .cipher_info = {
4117 .alg = CIPHER_ALG_NONE,
4118 .mode = CIPHER_MODE_NONE,
4120 .auth_info = {
4121 .alg = HASH_ALG_SHA3_512,
4122 .mode = HASH_MODE_HASH,
4126 .type = CRYPTO_ALG_TYPE_AHASH,
4127 .alg.hash = {
4128 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4129 .halg.base = {
4130 .cra_name = "hmac(sha3-512)",
4131 .cra_driver_name = "hmac-sha3-512-iproc",
4132 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4135 .cipher_info = {
4136 .alg = CIPHER_ALG_NONE,
4137 .mode = CIPHER_MODE_NONE,
4139 .auth_info = {
4140 .alg = HASH_ALG_SHA3_512,
4141 .mode = HASH_MODE_HMAC,
4145 .type = CRYPTO_ALG_TYPE_AHASH,
4146 .alg.hash = {
4147 .halg.digestsize = AES_BLOCK_SIZE,
4148 .halg.base = {
4149 .cra_name = "xcbc(aes)",
4150 .cra_driver_name = "xcbc-aes-iproc",
4151 .cra_blocksize = AES_BLOCK_SIZE,
4154 .cipher_info = {
4155 .alg = CIPHER_ALG_NONE,
4156 .mode = CIPHER_MODE_NONE,
4158 .auth_info = {
4159 .alg = HASH_ALG_AES,
4160 .mode = HASH_MODE_XCBC,
4164 .type = CRYPTO_ALG_TYPE_AHASH,
4165 .alg.hash = {
4166 .halg.digestsize = AES_BLOCK_SIZE,
4167 .halg.base = {
4168 .cra_name = "cmac(aes)",
4169 .cra_driver_name = "cmac-aes-iproc",
4170 .cra_blocksize = AES_BLOCK_SIZE,
4173 .cipher_info = {
4174 .alg = CIPHER_ALG_NONE,
4175 .mode = CIPHER_MODE_NONE,
4177 .auth_info = {
4178 .alg = HASH_ALG_AES,
4179 .mode = HASH_MODE_CMAC,
4184 static int generic_cra_init(struct crypto_tfm *tfm,
4185 struct iproc_alg_s *cipher_alg)
4187 struct spu_hw *spu = &iproc_priv.spu;
4188 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4189 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4191 flow_log("%s()\n", __func__);
4193 ctx->alg = cipher_alg;
4194 ctx->cipher = cipher_alg->cipher_info;
4195 ctx->auth = cipher_alg->auth_info;
4196 ctx->auth_first = cipher_alg->auth_first;
4197 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4198 ctx->cipher.mode,
4199 blocksize);
4200 ctx->fallback_cipher = NULL;
4202 ctx->enckeylen = 0;
4203 ctx->authkeylen = 0;
4205 atomic_inc(&iproc_priv.stream_count);
4206 atomic_inc(&iproc_priv.session_count);
4208 return 0;
4211 static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4213 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4214 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4215 struct iproc_alg_s *cipher_alg;
4217 flow_log("%s()\n", __func__);
4219 crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4221 cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4222 return generic_cra_init(tfm, cipher_alg);
4225 static int ahash_cra_init(struct crypto_tfm *tfm)
4227 int err;
4228 struct crypto_alg *alg = tfm->__crt_alg;
4229 struct iproc_alg_s *cipher_alg;
4231 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4232 alg.hash);
4234 err = generic_cra_init(tfm, cipher_alg);
4235 flow_log("%s()\n", __func__);
4238 * export state size has to be < 512 bytes. So don't include msg bufs
4239 * in state size.
4241 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4242 sizeof(struct iproc_reqctx_s));
4244 return err;
4247 static int aead_cra_init(struct crypto_aead *aead)
4249 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4250 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4251 struct crypto_alg *alg = tfm->__crt_alg;
4252 struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4253 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4254 alg.aead);
4256 int err = generic_cra_init(tfm, cipher_alg);
4258 flow_log("%s()\n", __func__);
4260 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4261 ctx->is_esp = false;
4262 ctx->salt_len = 0;
4263 ctx->salt_offset = 0;
4265 /* random first IV */
4266 get_random_bytes(ctx->iv, MAX_IV_SIZE);
4267 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE);
4269 if (!err) {
4270 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4271 flow_log("%s() creating fallback cipher\n", __func__);
4273 ctx->fallback_cipher =
4274 crypto_alloc_aead(alg->cra_name, 0,
4275 CRYPTO_ALG_ASYNC |
4276 CRYPTO_ALG_NEED_FALLBACK);
4277 if (IS_ERR(ctx->fallback_cipher)) {
4278 pr_err("%s() Error: failed to allocate fallback for %s\n",
4279 __func__, alg->cra_name);
4280 return PTR_ERR(ctx->fallback_cipher);
4285 return err;
4288 static void generic_cra_exit(struct crypto_tfm *tfm)
4290 atomic_dec(&iproc_priv.session_count);
4293 static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4295 generic_cra_exit(crypto_skcipher_tfm(tfm));
4298 static void aead_cra_exit(struct crypto_aead *aead)
4300 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4301 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4303 generic_cra_exit(tfm);
4305 if (ctx->fallback_cipher) {
4306 crypto_free_aead(ctx->fallback_cipher);
4307 ctx->fallback_cipher = NULL;
4312 * spu_functions_register() - Specify hardware-specific SPU functions based on
4313 * SPU type read from device tree.
4314 * @dev: device structure
4315 * @spu_type: SPU hardware generation
4316 * @spu_subtype: SPU hardware version
4318 static void spu_functions_register(struct device *dev,
4319 enum spu_spu_type spu_type,
4320 enum spu_spu_subtype spu_subtype)
4322 struct spu_hw *spu = &iproc_priv.spu;
4324 if (spu_type == SPU_TYPE_SPUM) {
4325 dev_dbg(dev, "Registering SPUM functions");
4326 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4327 spu->spu_payload_length = spum_payload_length;
4328 spu->spu_response_hdr_len = spum_response_hdr_len;
4329 spu->spu_hash_pad_len = spum_hash_pad_len;
4330 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4331 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4332 spu->spu_aead_ivlen = spum_aead_ivlen;
4333 spu->spu_hash_type = spum_hash_type;
4334 spu->spu_digest_size = spum_digest_size;
4335 spu->spu_create_request = spum_create_request;
4336 spu->spu_cipher_req_init = spum_cipher_req_init;
4337 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4338 spu->spu_request_pad = spum_request_pad;
4339 spu->spu_tx_status_len = spum_tx_status_len;
4340 spu->spu_rx_status_len = spum_rx_status_len;
4341 spu->spu_status_process = spum_status_process;
4342 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4343 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4344 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4345 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4346 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4347 else
4348 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4349 } else {
4350 dev_dbg(dev, "Registering SPU2 functions");
4351 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4352 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4353 spu->spu_payload_length = spu2_payload_length;
4354 spu->spu_response_hdr_len = spu2_response_hdr_len;
4355 spu->spu_hash_pad_len = spu2_hash_pad_len;
4356 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4357 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4358 spu->spu_aead_ivlen = spu2_aead_ivlen;
4359 spu->spu_hash_type = spu2_hash_type;
4360 spu->spu_digest_size = spu2_digest_size;
4361 spu->spu_create_request = spu2_create_request;
4362 spu->spu_cipher_req_init = spu2_cipher_req_init;
4363 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4364 spu->spu_request_pad = spu2_request_pad;
4365 spu->spu_tx_status_len = spu2_tx_status_len;
4366 spu->spu_rx_status_len = spu2_rx_status_len;
4367 spu->spu_status_process = spu2_status_process;
4368 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4369 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4370 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4375 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4376 * channel for the SPU being probed.
4377 * @dev: SPU driver device structure
4379 * Return: 0 if successful
4380 * < 0 otherwise
4382 static int spu_mb_init(struct device *dev)
4384 struct mbox_client *mcl = &iproc_priv.mcl;
4385 int err, i;
4387 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4388 sizeof(struct mbox_chan *), GFP_KERNEL);
4389 if (!iproc_priv.mbox)
4390 return -ENOMEM;
4392 mcl->dev = dev;
4393 mcl->tx_block = false;
4394 mcl->tx_tout = 0;
4395 mcl->knows_txdone = true;
4396 mcl->rx_callback = spu_rx_callback;
4397 mcl->tx_done = NULL;
4399 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4400 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4401 if (IS_ERR(iproc_priv.mbox[i])) {
4402 err = PTR_ERR(iproc_priv.mbox[i]);
4403 dev_err(dev,
4404 "Mbox channel %d request failed with err %d",
4405 i, err);
4406 iproc_priv.mbox[i] = NULL;
4407 goto free_channels;
4411 return 0;
4412 free_channels:
4413 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4414 if (iproc_priv.mbox[i])
4415 mbox_free_channel(iproc_priv.mbox[i]);
4418 return err;
4421 static void spu_mb_release(struct platform_device *pdev)
4423 int i;
4425 for (i = 0; i < iproc_priv.spu.num_chan; i++)
4426 mbox_free_channel(iproc_priv.mbox[i]);
4429 static void spu_counters_init(void)
4431 int i;
4432 int j;
4434 atomic_set(&iproc_priv.session_count, 0);
4435 atomic_set(&iproc_priv.stream_count, 0);
4436 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4437 atomic64_set(&iproc_priv.bytes_in, 0);
4438 atomic64_set(&iproc_priv.bytes_out, 0);
4439 for (i = 0; i < SPU_OP_NUM; i++) {
4440 atomic_set(&iproc_priv.op_counts[i], 0);
4441 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4443 for (i = 0; i < CIPHER_ALG_LAST; i++)
4444 for (j = 0; j < CIPHER_MODE_LAST; j++)
4445 atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4447 for (i = 0; i < HASH_ALG_LAST; i++) {
4448 atomic_set(&iproc_priv.hash_cnt[i], 0);
4449 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4451 for (i = 0; i < AEAD_TYPE_LAST; i++)
4452 atomic_set(&iproc_priv.aead_cnt[i], 0);
4454 atomic_set(&iproc_priv.mb_no_spc, 0);
4455 atomic_set(&iproc_priv.mb_send_fail, 0);
4456 atomic_set(&iproc_priv.bad_icv, 0);
4459 static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4461 struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4462 int err;
4464 crypto->base.cra_module = THIS_MODULE;
4465 crypto->base.cra_priority = cipher_pri;
4466 crypto->base.cra_alignmask = 0;
4467 crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4468 crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4469 CRYPTO_ALG_ALLOCATES_MEMORY |
4470 CRYPTO_ALG_KERN_DRIVER_ONLY;
4472 crypto->init = skcipher_init_tfm;
4473 crypto->exit = skcipher_exit_tfm;
4474 crypto->setkey = skcipher_setkey;
4475 crypto->encrypt = skcipher_encrypt;
4476 crypto->decrypt = skcipher_decrypt;
4478 err = crypto_register_skcipher(crypto);
4479 /* Mark alg as having been registered, if successful */
4480 if (err == 0)
4481 driver_alg->registered = true;
4482 pr_debug(" registered skcipher %s\n", crypto->base.cra_driver_name);
4483 return err;
4486 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4488 struct spu_hw *spu = &iproc_priv.spu;
4489 struct ahash_alg *hash = &driver_alg->alg.hash;
4490 int err;
4492 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4493 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4494 (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4495 (spu->spu_type == SPU_TYPE_SPUM))
4496 return 0;
4498 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4499 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4500 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4501 return 0;
4503 hash->halg.base.cra_module = THIS_MODULE;
4504 hash->halg.base.cra_priority = hash_pri;
4505 hash->halg.base.cra_alignmask = 0;
4506 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4507 hash->halg.base.cra_init = ahash_cra_init;
4508 hash->halg.base.cra_exit = generic_cra_exit;
4509 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4510 CRYPTO_ALG_ALLOCATES_MEMORY;
4511 hash->halg.statesize = sizeof(struct spu_hash_export_s);
4513 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4514 hash->init = ahash_init;
4515 hash->update = ahash_update;
4516 hash->final = ahash_final;
4517 hash->finup = ahash_finup;
4518 hash->digest = ahash_digest;
4519 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4520 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4521 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4522 hash->setkey = ahash_setkey;
4524 } else {
4525 hash->setkey = ahash_hmac_setkey;
4526 hash->init = ahash_hmac_init;
4527 hash->update = ahash_hmac_update;
4528 hash->final = ahash_hmac_final;
4529 hash->finup = ahash_hmac_finup;
4530 hash->digest = ahash_hmac_digest;
4532 hash->export = ahash_export;
4533 hash->import = ahash_import;
4535 err = crypto_register_ahash(hash);
4536 /* Mark alg as having been registered, if successful */
4537 if (err == 0)
4538 driver_alg->registered = true;
4539 pr_debug(" registered ahash %s\n",
4540 hash->halg.base.cra_driver_name);
4541 return err;
4544 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4546 struct aead_alg *aead = &driver_alg->alg.aead;
4547 int err;
4549 aead->base.cra_module = THIS_MODULE;
4550 aead->base.cra_priority = aead_pri;
4551 aead->base.cra_alignmask = 0;
4552 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4554 aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4555 /* setkey set in alg initialization */
4556 aead->setauthsize = aead_setauthsize;
4557 aead->encrypt = aead_encrypt;
4558 aead->decrypt = aead_decrypt;
4559 aead->init = aead_cra_init;
4560 aead->exit = aead_cra_exit;
4562 err = crypto_register_aead(aead);
4563 /* Mark alg as having been registered, if successful */
4564 if (err == 0)
4565 driver_alg->registered = true;
4566 pr_debug(" registered aead %s\n", aead->base.cra_driver_name);
4567 return err;
4570 /* register crypto algorithms the device supports */
4571 static int spu_algs_register(struct device *dev)
4573 int i, j;
4574 int err;
4576 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4577 switch (driver_algs[i].type) {
4578 case CRYPTO_ALG_TYPE_SKCIPHER:
4579 err = spu_register_skcipher(&driver_algs[i]);
4580 break;
4581 case CRYPTO_ALG_TYPE_AHASH:
4582 err = spu_register_ahash(&driver_algs[i]);
4583 break;
4584 case CRYPTO_ALG_TYPE_AEAD:
4585 err = spu_register_aead(&driver_algs[i]);
4586 break;
4587 default:
4588 dev_err(dev,
4589 "iproc-crypto: unknown alg type: %d",
4590 driver_algs[i].type);
4591 err = -EINVAL;
4594 if (err) {
4595 dev_err(dev, "alg registration failed with error %d\n",
4596 err);
4597 goto err_algs;
4601 return 0;
4603 err_algs:
4604 for (j = 0; j < i; j++) {
4605 /* Skip any algorithm not registered */
4606 if (!driver_algs[j].registered)
4607 continue;
4608 switch (driver_algs[j].type) {
4609 case CRYPTO_ALG_TYPE_SKCIPHER:
4610 crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4611 driver_algs[j].registered = false;
4612 break;
4613 case CRYPTO_ALG_TYPE_AHASH:
4614 crypto_unregister_ahash(&driver_algs[j].alg.hash);
4615 driver_algs[j].registered = false;
4616 break;
4617 case CRYPTO_ALG_TYPE_AEAD:
4618 crypto_unregister_aead(&driver_algs[j].alg.aead);
4619 driver_algs[j].registered = false;
4620 break;
4623 return err;
4626 /* ==================== Kernel Platform API ==================== */
4628 static struct spu_type_subtype spum_ns2_types = {
4629 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4632 static struct spu_type_subtype spum_nsp_types = {
4633 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4636 static struct spu_type_subtype spu2_types = {
4637 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4640 static struct spu_type_subtype spu2_v2_types = {
4641 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4644 static const struct of_device_id bcm_spu_dt_ids[] = {
4646 .compatible = "brcm,spum-crypto",
4647 .data = &spum_ns2_types,
4650 .compatible = "brcm,spum-nsp-crypto",
4651 .data = &spum_nsp_types,
4654 .compatible = "brcm,spu2-crypto",
4655 .data = &spu2_types,
4658 .compatible = "brcm,spu2-v2-crypto",
4659 .data = &spu2_v2_types,
4661 { /* sentinel */ }
4664 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4666 static int spu_dt_read(struct platform_device *pdev)
4668 struct device *dev = &pdev->dev;
4669 struct spu_hw *spu = &iproc_priv.spu;
4670 struct resource *spu_ctrl_regs;
4671 const struct spu_type_subtype *matched_spu_type;
4672 struct device_node *dn = pdev->dev.of_node;
4673 int err, i;
4675 /* Count number of mailbox channels */
4676 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4678 matched_spu_type = of_device_get_match_data(dev);
4679 if (!matched_spu_type) {
4680 dev_err(dev, "Failed to match device\n");
4681 return -ENODEV;
4684 spu->spu_type = matched_spu_type->type;
4685 spu->spu_subtype = matched_spu_type->subtype;
4687 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4688 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4690 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4691 if (IS_ERR(spu->reg_vbase[i])) {
4692 err = PTR_ERR(spu->reg_vbase[i]);
4693 dev_err(dev, "Failed to map registers: %d\n",
4694 err);
4695 spu->reg_vbase[i] = NULL;
4696 return err;
4699 spu->num_spu = i;
4700 dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4702 return 0;
4705 static int bcm_spu_probe(struct platform_device *pdev)
4707 struct device *dev = &pdev->dev;
4708 struct spu_hw *spu = &iproc_priv.spu;
4709 int err;
4711 iproc_priv.pdev = pdev;
4712 platform_set_drvdata(iproc_priv.pdev,
4713 &iproc_priv);
4715 err = spu_dt_read(pdev);
4716 if (err < 0)
4717 goto failure;
4719 err = spu_mb_init(dev);
4720 if (err < 0)
4721 goto failure;
4723 if (spu->spu_type == SPU_TYPE_SPUM)
4724 iproc_priv.bcm_hdr_len = 8;
4725 else if (spu->spu_type == SPU_TYPE_SPU2)
4726 iproc_priv.bcm_hdr_len = 0;
4728 spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4730 spu_counters_init();
4732 spu_setup_debugfs();
4734 err = spu_algs_register(dev);
4735 if (err < 0)
4736 goto fail_reg;
4738 return 0;
4740 fail_reg:
4741 spu_free_debugfs();
4742 failure:
4743 spu_mb_release(pdev);
4744 dev_err(dev, "%s failed with error %d.\n", __func__, err);
4746 return err;
4749 static int bcm_spu_remove(struct platform_device *pdev)
4751 int i;
4752 struct device *dev = &pdev->dev;
4753 char *cdn;
4755 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4757 * Not all algorithms were registered, depending on whether
4758 * hardware is SPU or SPU2. So here we make sure to skip
4759 * those algorithms that were not previously registered.
4761 if (!driver_algs[i].registered)
4762 continue;
4764 switch (driver_algs[i].type) {
4765 case CRYPTO_ALG_TYPE_SKCIPHER:
4766 crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4767 dev_dbg(dev, " unregistered cipher %s\n",
4768 driver_algs[i].alg.skcipher.base.cra_driver_name);
4769 driver_algs[i].registered = false;
4770 break;
4771 case CRYPTO_ALG_TYPE_AHASH:
4772 crypto_unregister_ahash(&driver_algs[i].alg.hash);
4773 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4774 dev_dbg(dev, " unregistered hash %s\n", cdn);
4775 driver_algs[i].registered = false;
4776 break;
4777 case CRYPTO_ALG_TYPE_AEAD:
4778 crypto_unregister_aead(&driver_algs[i].alg.aead);
4779 dev_dbg(dev, " unregistered aead %s\n",
4780 driver_algs[i].alg.aead.base.cra_driver_name);
4781 driver_algs[i].registered = false;
4782 break;
4785 spu_free_debugfs();
4786 spu_mb_release(pdev);
4787 return 0;
4790 /* ===== Kernel Module API ===== */
4792 static struct platform_driver bcm_spu_pdriver = {
4793 .driver = {
4794 .name = "brcm-spu-crypto",
4795 .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4797 .probe = bcm_spu_probe,
4798 .remove = bcm_spu_remove,
4800 module_platform_driver(bcm_spu_pdriver);
4802 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4803 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4804 MODULE_LICENSE("GPL v2");