WIP FPC-III support
[linux/fpc-iii.git] / drivers / crypto / stm32 / stm32-crc32.c
blob75867c0b00172a013edcb2bfea5070e785ec5557
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 */
7 #include <linux/bitrev.h>
8 #include <linux/clk.h>
9 #include <linux/crc32.h>
10 #include <linux/crc32poly.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
18 #include <crypto/internal/hash.h>
20 #include <asm/unaligned.h>
22 #define DRIVER_NAME "stm32-crc32"
23 #define CHKSUM_DIGEST_SIZE 4
24 #define CHKSUM_BLOCK_SIZE 1
26 /* Registers */
27 #define CRC_DR 0x00000000
28 #define CRC_CR 0x00000008
29 #define CRC_INIT 0x00000010
30 #define CRC_POL 0x00000014
32 /* Registers values */
33 #define CRC_CR_RESET BIT(0)
34 #define CRC_CR_REV_IN_WORD (BIT(6) | BIT(5))
35 #define CRC_CR_REV_IN_BYTE BIT(5)
36 #define CRC_CR_REV_OUT BIT(7)
37 #define CRC32C_INIT_DEFAULT 0xFFFFFFFF
39 #define CRC_AUTOSUSPEND_DELAY 50
41 static unsigned int burst_size;
42 module_param(burst_size, uint, 0644);
43 MODULE_PARM_DESC(burst_size, "Select burst byte size (0 unlimited)");
45 struct stm32_crc {
46 struct list_head list;
47 struct device *dev;
48 void __iomem *regs;
49 struct clk *clk;
50 spinlock_t lock;
53 struct stm32_crc_list {
54 struct list_head dev_list;
55 spinlock_t lock; /* protect dev_list */
58 static struct stm32_crc_list crc_list = {
59 .dev_list = LIST_HEAD_INIT(crc_list.dev_list),
60 .lock = __SPIN_LOCK_UNLOCKED(crc_list.lock),
63 struct stm32_crc_ctx {
64 u32 key;
65 u32 poly;
68 struct stm32_crc_desc_ctx {
69 u32 partial; /* crc32c: partial in first 4 bytes of that struct */
72 static int stm32_crc32_cra_init(struct crypto_tfm *tfm)
74 struct stm32_crc_ctx *mctx = crypto_tfm_ctx(tfm);
76 mctx->key = 0;
77 mctx->poly = CRC32_POLY_LE;
78 return 0;
81 static int stm32_crc32c_cra_init(struct crypto_tfm *tfm)
83 struct stm32_crc_ctx *mctx = crypto_tfm_ctx(tfm);
85 mctx->key = CRC32C_INIT_DEFAULT;
86 mctx->poly = CRC32C_POLY_LE;
87 return 0;
90 static int stm32_crc_setkey(struct crypto_shash *tfm, const u8 *key,
91 unsigned int keylen)
93 struct stm32_crc_ctx *mctx = crypto_shash_ctx(tfm);
95 if (keylen != sizeof(u32))
96 return -EINVAL;
98 mctx->key = get_unaligned_le32(key);
99 return 0;
102 static struct stm32_crc *stm32_crc_get_next_crc(void)
104 struct stm32_crc *crc;
106 spin_lock_bh(&crc_list.lock);
107 crc = list_first_entry(&crc_list.dev_list, struct stm32_crc, list);
108 if (crc)
109 list_move_tail(&crc->list, &crc_list.dev_list);
110 spin_unlock_bh(&crc_list.lock);
112 return crc;
115 static int stm32_crc_init(struct shash_desc *desc)
117 struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc);
118 struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
119 struct stm32_crc *crc;
120 unsigned long flags;
122 crc = stm32_crc_get_next_crc();
123 if (!crc)
124 return -ENODEV;
126 pm_runtime_get_sync(crc->dev);
128 spin_lock_irqsave(&crc->lock, flags);
130 /* Reset, set key, poly and configure in bit reverse mode */
131 writel_relaxed(bitrev32(mctx->key), crc->regs + CRC_INIT);
132 writel_relaxed(bitrev32(mctx->poly), crc->regs + CRC_POL);
133 writel_relaxed(CRC_CR_RESET | CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT,
134 crc->regs + CRC_CR);
136 /* Store partial result */
137 ctx->partial = readl_relaxed(crc->regs + CRC_DR);
139 spin_unlock_irqrestore(&crc->lock, flags);
141 pm_runtime_mark_last_busy(crc->dev);
142 pm_runtime_put_autosuspend(crc->dev);
144 return 0;
147 static int burst_update(struct shash_desc *desc, const u8 *d8,
148 size_t length)
150 struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc);
151 struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
152 struct stm32_crc *crc;
154 crc = stm32_crc_get_next_crc();
155 if (!crc)
156 return -ENODEV;
158 pm_runtime_get_sync(crc->dev);
160 if (!spin_trylock(&crc->lock)) {
161 /* Hardware is busy, calculate crc32 by software */
162 if (mctx->poly == CRC32_POLY_LE)
163 ctx->partial = crc32_le(ctx->partial, d8, length);
164 else
165 ctx->partial = __crc32c_le(ctx->partial, d8, length);
167 goto pm_out;
171 * Restore previously calculated CRC for this context as init value
172 * Restore polynomial configuration
173 * Configure in register for word input data,
174 * Configure out register in reversed bit mode data.
176 writel_relaxed(bitrev32(ctx->partial), crc->regs + CRC_INIT);
177 writel_relaxed(bitrev32(mctx->poly), crc->regs + CRC_POL);
178 writel_relaxed(CRC_CR_RESET | CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT,
179 crc->regs + CRC_CR);
181 if (d8 != PTR_ALIGN(d8, sizeof(u32))) {
182 /* Configure for byte data */
183 writel_relaxed(CRC_CR_REV_IN_BYTE | CRC_CR_REV_OUT,
184 crc->regs + CRC_CR);
185 while (d8 != PTR_ALIGN(d8, sizeof(u32)) && length) {
186 writeb_relaxed(*d8++, crc->regs + CRC_DR);
187 length--;
189 /* Configure for word data */
190 writel_relaxed(CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT,
191 crc->regs + CRC_CR);
194 for (; length >= sizeof(u32); d8 += sizeof(u32), length -= sizeof(u32))
195 writel_relaxed(*((u32 *)d8), crc->regs + CRC_DR);
197 if (length) {
198 /* Configure for byte data */
199 writel_relaxed(CRC_CR_REV_IN_BYTE | CRC_CR_REV_OUT,
200 crc->regs + CRC_CR);
201 while (length--)
202 writeb_relaxed(*d8++, crc->regs + CRC_DR);
205 /* Store partial result */
206 ctx->partial = readl_relaxed(crc->regs + CRC_DR);
208 spin_unlock(&crc->lock);
210 pm_out:
211 pm_runtime_mark_last_busy(crc->dev);
212 pm_runtime_put_autosuspend(crc->dev);
214 return 0;
217 static int stm32_crc_update(struct shash_desc *desc, const u8 *d8,
218 unsigned int length)
220 const unsigned int burst_sz = burst_size;
221 unsigned int rem_sz;
222 const u8 *cur;
223 size_t size;
224 int ret;
226 if (!burst_sz)
227 return burst_update(desc, d8, length);
229 /* Digest first bytes not 32bit aligned at first pass in the loop */
230 size = min_t(size_t, length, burst_sz + (size_t)d8 -
231 ALIGN_DOWN((size_t)d8, sizeof(u32)));
232 for (rem_sz = length, cur = d8; rem_sz;
233 rem_sz -= size, cur += size, size = min(rem_sz, burst_sz)) {
234 ret = burst_update(desc, cur, size);
235 if (ret)
236 return ret;
239 return 0;
242 static int stm32_crc_final(struct shash_desc *desc, u8 *out)
244 struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc);
245 struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
247 /* Send computed CRC */
248 put_unaligned_le32(mctx->poly == CRC32C_POLY_LE ?
249 ~ctx->partial : ctx->partial, out);
251 return 0;
254 static int stm32_crc_finup(struct shash_desc *desc, const u8 *data,
255 unsigned int length, u8 *out)
257 return stm32_crc_update(desc, data, length) ?:
258 stm32_crc_final(desc, out);
261 static int stm32_crc_digest(struct shash_desc *desc, const u8 *data,
262 unsigned int length, u8 *out)
264 return stm32_crc_init(desc) ?: stm32_crc_finup(desc, data, length, out);
267 static unsigned int refcnt;
268 static DEFINE_MUTEX(refcnt_lock);
269 static struct shash_alg algs[] = {
270 /* CRC-32 */
272 .setkey = stm32_crc_setkey,
273 .init = stm32_crc_init,
274 .update = stm32_crc_update,
275 .final = stm32_crc_final,
276 .finup = stm32_crc_finup,
277 .digest = stm32_crc_digest,
278 .descsize = sizeof(struct stm32_crc_desc_ctx),
279 .digestsize = CHKSUM_DIGEST_SIZE,
280 .base = {
281 .cra_name = "crc32",
282 .cra_driver_name = DRIVER_NAME,
283 .cra_priority = 200,
284 .cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
285 .cra_blocksize = CHKSUM_BLOCK_SIZE,
286 .cra_alignmask = 3,
287 .cra_ctxsize = sizeof(struct stm32_crc_ctx),
288 .cra_module = THIS_MODULE,
289 .cra_init = stm32_crc32_cra_init,
292 /* CRC-32Castagnoli */
294 .setkey = stm32_crc_setkey,
295 .init = stm32_crc_init,
296 .update = stm32_crc_update,
297 .final = stm32_crc_final,
298 .finup = stm32_crc_finup,
299 .digest = stm32_crc_digest,
300 .descsize = sizeof(struct stm32_crc_desc_ctx),
301 .digestsize = CHKSUM_DIGEST_SIZE,
302 .base = {
303 .cra_name = "crc32c",
304 .cra_driver_name = DRIVER_NAME,
305 .cra_priority = 200,
306 .cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
307 .cra_blocksize = CHKSUM_BLOCK_SIZE,
308 .cra_alignmask = 3,
309 .cra_ctxsize = sizeof(struct stm32_crc_ctx),
310 .cra_module = THIS_MODULE,
311 .cra_init = stm32_crc32c_cra_init,
316 static int stm32_crc_probe(struct platform_device *pdev)
318 struct device *dev = &pdev->dev;
319 struct stm32_crc *crc;
320 int ret;
322 crc = devm_kzalloc(dev, sizeof(*crc), GFP_KERNEL);
323 if (!crc)
324 return -ENOMEM;
326 crc->dev = dev;
328 crc->regs = devm_platform_ioremap_resource(pdev, 0);
329 if (IS_ERR(crc->regs)) {
330 dev_err(dev, "Cannot map CRC IO\n");
331 return PTR_ERR(crc->regs);
334 crc->clk = devm_clk_get(dev, NULL);
335 if (IS_ERR(crc->clk)) {
336 dev_err(dev, "Could not get clock\n");
337 return PTR_ERR(crc->clk);
340 ret = clk_prepare_enable(crc->clk);
341 if (ret) {
342 dev_err(crc->dev, "Failed to enable clock\n");
343 return ret;
346 pm_runtime_set_autosuspend_delay(dev, CRC_AUTOSUSPEND_DELAY);
347 pm_runtime_use_autosuspend(dev);
349 pm_runtime_get_noresume(dev);
350 pm_runtime_set_active(dev);
351 pm_runtime_irq_safe(dev);
352 pm_runtime_enable(dev);
354 spin_lock_init(&crc->lock);
356 platform_set_drvdata(pdev, crc);
358 spin_lock(&crc_list.lock);
359 list_add(&crc->list, &crc_list.dev_list);
360 spin_unlock(&crc_list.lock);
362 mutex_lock(&refcnt_lock);
363 if (!refcnt) {
364 ret = crypto_register_shashes(algs, ARRAY_SIZE(algs));
365 if (ret) {
366 mutex_unlock(&refcnt_lock);
367 dev_err(dev, "Failed to register\n");
368 clk_disable_unprepare(crc->clk);
369 return ret;
372 refcnt++;
373 mutex_unlock(&refcnt_lock);
375 dev_info(dev, "Initialized\n");
377 pm_runtime_put_sync(dev);
379 return 0;
382 static int stm32_crc_remove(struct platform_device *pdev)
384 struct stm32_crc *crc = platform_get_drvdata(pdev);
385 int ret = pm_runtime_get_sync(crc->dev);
387 if (ret < 0)
388 return ret;
390 spin_lock(&crc_list.lock);
391 list_del(&crc->list);
392 spin_unlock(&crc_list.lock);
394 mutex_lock(&refcnt_lock);
395 if (!--refcnt)
396 crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
397 mutex_unlock(&refcnt_lock);
399 pm_runtime_disable(crc->dev);
400 pm_runtime_put_noidle(crc->dev);
402 clk_disable_unprepare(crc->clk);
404 return 0;
407 static int __maybe_unused stm32_crc_suspend(struct device *dev)
409 struct stm32_crc *crc = dev_get_drvdata(dev);
410 int ret;
412 ret = pm_runtime_force_suspend(dev);
413 if (ret)
414 return ret;
416 clk_unprepare(crc->clk);
418 return 0;
421 static int __maybe_unused stm32_crc_resume(struct device *dev)
423 struct stm32_crc *crc = dev_get_drvdata(dev);
424 int ret;
426 ret = clk_prepare(crc->clk);
427 if (ret) {
428 dev_err(crc->dev, "Failed to prepare clock\n");
429 return ret;
432 return pm_runtime_force_resume(dev);
435 static int __maybe_unused stm32_crc_runtime_suspend(struct device *dev)
437 struct stm32_crc *crc = dev_get_drvdata(dev);
439 clk_disable(crc->clk);
441 return 0;
444 static int __maybe_unused stm32_crc_runtime_resume(struct device *dev)
446 struct stm32_crc *crc = dev_get_drvdata(dev);
447 int ret;
449 ret = clk_enable(crc->clk);
450 if (ret) {
451 dev_err(crc->dev, "Failed to enable clock\n");
452 return ret;
455 return 0;
458 static const struct dev_pm_ops stm32_crc_pm_ops = {
459 SET_SYSTEM_SLEEP_PM_OPS(stm32_crc_suspend,
460 stm32_crc_resume)
461 SET_RUNTIME_PM_OPS(stm32_crc_runtime_suspend,
462 stm32_crc_runtime_resume, NULL)
465 static const struct of_device_id stm32_dt_ids[] = {
466 { .compatible = "st,stm32f7-crc", },
469 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
471 static struct platform_driver stm32_crc_driver = {
472 .probe = stm32_crc_probe,
473 .remove = stm32_crc_remove,
474 .driver = {
475 .name = DRIVER_NAME,
476 .pm = &stm32_crc_pm_ops,
477 .of_match_table = stm32_dt_ids,
481 module_platform_driver(stm32_crc_driver);
483 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
484 MODULE_DESCRIPTION("STMicrolectronics STM32 CRC32 hardware driver");
485 MODULE_LICENSE("GPL");