WIP FPC-III support
[linux/fpc-iii.git] / drivers / dma-buf / dma-heap.c
blobafd22c9dbdcfa16864f07e2fdab2e1ed8f5992fb
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Framework for userspace DMA-BUF allocations
5 * Copyright (C) 2011 Google, Inc.
6 * Copyright (C) 2019 Linaro Ltd.
7 */
9 #include <linux/cdev.h>
10 #include <linux/debugfs.h>
11 #include <linux/device.h>
12 #include <linux/dma-buf.h>
13 #include <linux/err.h>
14 #include <linux/xarray.h>
15 #include <linux/list.h>
16 #include <linux/slab.h>
17 #include <linux/uaccess.h>
18 #include <linux/syscalls.h>
19 #include <linux/dma-heap.h>
20 #include <uapi/linux/dma-heap.h>
22 #define DEVNAME "dma_heap"
24 #define NUM_HEAP_MINORS 128
26 /**
27 * struct dma_heap - represents a dmabuf heap in the system
28 * @name: used for debugging/device-node name
29 * @ops: ops struct for this heap
30 * @heap_devt heap device node
31 * @list list head connecting to list of heaps
32 * @heap_cdev heap char device
34 * Represents a heap of memory from which buffers can be made.
36 struct dma_heap {
37 const char *name;
38 const struct dma_heap_ops *ops;
39 void *priv;
40 dev_t heap_devt;
41 struct list_head list;
42 struct cdev heap_cdev;
45 static LIST_HEAD(heap_list);
46 static DEFINE_MUTEX(heap_list_lock);
47 static dev_t dma_heap_devt;
48 static struct class *dma_heap_class;
49 static DEFINE_XARRAY_ALLOC(dma_heap_minors);
51 static int dma_heap_buffer_alloc(struct dma_heap *heap, size_t len,
52 unsigned int fd_flags,
53 unsigned int heap_flags)
56 * Allocations from all heaps have to begin
57 * and end on page boundaries.
59 len = PAGE_ALIGN(len);
60 if (!len)
61 return -EINVAL;
63 return heap->ops->allocate(heap, len, fd_flags, heap_flags);
66 static int dma_heap_open(struct inode *inode, struct file *file)
68 struct dma_heap *heap;
70 heap = xa_load(&dma_heap_minors, iminor(inode));
71 if (!heap) {
72 pr_err("dma_heap: minor %d unknown.\n", iminor(inode));
73 return -ENODEV;
76 /* instance data as context */
77 file->private_data = heap;
78 nonseekable_open(inode, file);
80 return 0;
83 static long dma_heap_ioctl_allocate(struct file *file, void *data)
85 struct dma_heap_allocation_data *heap_allocation = data;
86 struct dma_heap *heap = file->private_data;
87 int fd;
89 if (heap_allocation->fd)
90 return -EINVAL;
92 if (heap_allocation->fd_flags & ~DMA_HEAP_VALID_FD_FLAGS)
93 return -EINVAL;
95 if (heap_allocation->heap_flags & ~DMA_HEAP_VALID_HEAP_FLAGS)
96 return -EINVAL;
98 fd = dma_heap_buffer_alloc(heap, heap_allocation->len,
99 heap_allocation->fd_flags,
100 heap_allocation->heap_flags);
101 if (fd < 0)
102 return fd;
104 heap_allocation->fd = fd;
106 return 0;
109 static unsigned int dma_heap_ioctl_cmds[] = {
110 DMA_HEAP_IOCTL_ALLOC,
113 static long dma_heap_ioctl(struct file *file, unsigned int ucmd,
114 unsigned long arg)
116 char stack_kdata[128];
117 char *kdata = stack_kdata;
118 unsigned int kcmd;
119 unsigned int in_size, out_size, drv_size, ksize;
120 int nr = _IOC_NR(ucmd);
121 int ret = 0;
123 if (nr >= ARRAY_SIZE(dma_heap_ioctl_cmds))
124 return -EINVAL;
126 /* Get the kernel ioctl cmd that matches */
127 kcmd = dma_heap_ioctl_cmds[nr];
129 /* Figure out the delta between user cmd size and kernel cmd size */
130 drv_size = _IOC_SIZE(kcmd);
131 out_size = _IOC_SIZE(ucmd);
132 in_size = out_size;
133 if ((ucmd & kcmd & IOC_IN) == 0)
134 in_size = 0;
135 if ((ucmd & kcmd & IOC_OUT) == 0)
136 out_size = 0;
137 ksize = max(max(in_size, out_size), drv_size);
139 /* If necessary, allocate buffer for ioctl argument */
140 if (ksize > sizeof(stack_kdata)) {
141 kdata = kmalloc(ksize, GFP_KERNEL);
142 if (!kdata)
143 return -ENOMEM;
146 if (copy_from_user(kdata, (void __user *)arg, in_size) != 0) {
147 ret = -EFAULT;
148 goto err;
151 /* zero out any difference between the kernel/user structure size */
152 if (ksize > in_size)
153 memset(kdata + in_size, 0, ksize - in_size);
155 switch (kcmd) {
156 case DMA_HEAP_IOCTL_ALLOC:
157 ret = dma_heap_ioctl_allocate(file, kdata);
158 break;
159 default:
160 ret = -ENOTTY;
161 goto err;
164 if (copy_to_user((void __user *)arg, kdata, out_size) != 0)
165 ret = -EFAULT;
166 err:
167 if (kdata != stack_kdata)
168 kfree(kdata);
169 return ret;
172 static const struct file_operations dma_heap_fops = {
173 .owner = THIS_MODULE,
174 .open = dma_heap_open,
175 .unlocked_ioctl = dma_heap_ioctl,
176 #ifdef CONFIG_COMPAT
177 .compat_ioctl = dma_heap_ioctl,
178 #endif
182 * dma_heap_get_drvdata() - get per-subdriver data for the heap
183 * @heap: DMA-Heap to retrieve private data for
185 * Returns:
186 * The per-subdriver data for the heap.
188 void *dma_heap_get_drvdata(struct dma_heap *heap)
190 return heap->priv;
193 struct dma_heap *dma_heap_add(const struct dma_heap_export_info *exp_info)
195 struct dma_heap *heap, *h, *err_ret;
196 struct device *dev_ret;
197 unsigned int minor;
198 int ret;
200 if (!exp_info->name || !strcmp(exp_info->name, "")) {
201 pr_err("dma_heap: Cannot add heap without a name\n");
202 return ERR_PTR(-EINVAL);
205 if (!exp_info->ops || !exp_info->ops->allocate) {
206 pr_err("dma_heap: Cannot add heap with invalid ops struct\n");
207 return ERR_PTR(-EINVAL);
210 /* check the name is unique */
211 mutex_lock(&heap_list_lock);
212 list_for_each_entry(h, &heap_list, list) {
213 if (!strcmp(h->name, exp_info->name)) {
214 mutex_unlock(&heap_list_lock);
215 pr_err("dma_heap: Already registered heap named %s\n",
216 exp_info->name);
217 return ERR_PTR(-EINVAL);
220 mutex_unlock(&heap_list_lock);
222 heap = kzalloc(sizeof(*heap), GFP_KERNEL);
223 if (!heap)
224 return ERR_PTR(-ENOMEM);
226 heap->name = exp_info->name;
227 heap->ops = exp_info->ops;
228 heap->priv = exp_info->priv;
230 /* Find unused minor number */
231 ret = xa_alloc(&dma_heap_minors, &minor, heap,
232 XA_LIMIT(0, NUM_HEAP_MINORS - 1), GFP_KERNEL);
233 if (ret < 0) {
234 pr_err("dma_heap: Unable to get minor number for heap\n");
235 err_ret = ERR_PTR(ret);
236 goto err0;
239 /* Create device */
240 heap->heap_devt = MKDEV(MAJOR(dma_heap_devt), minor);
242 cdev_init(&heap->heap_cdev, &dma_heap_fops);
243 ret = cdev_add(&heap->heap_cdev, heap->heap_devt, 1);
244 if (ret < 0) {
245 pr_err("dma_heap: Unable to add char device\n");
246 err_ret = ERR_PTR(ret);
247 goto err1;
250 dev_ret = device_create(dma_heap_class,
251 NULL,
252 heap->heap_devt,
253 NULL,
254 heap->name);
255 if (IS_ERR(dev_ret)) {
256 pr_err("dma_heap: Unable to create device\n");
257 err_ret = ERR_CAST(dev_ret);
258 goto err2;
260 /* Add heap to the list */
261 mutex_lock(&heap_list_lock);
262 list_add(&heap->list, &heap_list);
263 mutex_unlock(&heap_list_lock);
265 return heap;
267 err2:
268 cdev_del(&heap->heap_cdev);
269 err1:
270 xa_erase(&dma_heap_minors, minor);
271 err0:
272 kfree(heap);
273 return err_ret;
276 static char *dma_heap_devnode(struct device *dev, umode_t *mode)
278 return kasprintf(GFP_KERNEL, "dma_heap/%s", dev_name(dev));
281 static int dma_heap_init(void)
283 int ret;
285 ret = alloc_chrdev_region(&dma_heap_devt, 0, NUM_HEAP_MINORS, DEVNAME);
286 if (ret)
287 return ret;
289 dma_heap_class = class_create(THIS_MODULE, DEVNAME);
290 if (IS_ERR(dma_heap_class)) {
291 unregister_chrdev_region(dma_heap_devt, NUM_HEAP_MINORS);
292 return PTR_ERR(dma_heap_class);
294 dma_heap_class->devnode = dma_heap_devnode;
296 return 0;
298 subsys_initcall(dma_heap_init);