WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / amd / display / dc / dcn10 / dcn10_dpp_cm.c
blob4d3f7d5e1473afa1f61b379729f6528eb5702c64
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: AMD
26 #include "dm_services.h"
28 #include "core_types.h"
30 #include "reg_helper.h"
31 #include "dcn10_dpp.h"
32 #include "basics/conversion.h"
33 #include "dcn10_cm_common.h"
35 #define NUM_PHASES 64
36 #define HORZ_MAX_TAPS 8
37 #define VERT_MAX_TAPS 8
39 #define BLACK_OFFSET_RGB_Y 0x0
40 #define BLACK_OFFSET_CBCR 0x8000
42 #define REG(reg)\
43 dpp->tf_regs->reg
45 #define CTX \
46 dpp->base.ctx
48 #undef FN
49 #define FN(reg_name, field_name) \
50 dpp->tf_shift->field_name, dpp->tf_mask->field_name
52 #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
55 enum dcn10_coef_filter_type_sel {
56 SCL_COEF_LUMA_VERT_FILTER = 0,
57 SCL_COEF_LUMA_HORZ_FILTER = 1,
58 SCL_COEF_CHROMA_VERT_FILTER = 2,
59 SCL_COEF_CHROMA_HORZ_FILTER = 3,
60 SCL_COEF_ALPHA_VERT_FILTER = 4,
61 SCL_COEF_ALPHA_HORZ_FILTER = 5
64 enum dscl_autocal_mode {
65 AUTOCAL_MODE_OFF = 0,
67 /* Autocal calculate the scaling ratio and initial phase and the
68 * DSCL_MODE_SEL must be set to 1
70 AUTOCAL_MODE_AUTOSCALE = 1,
71 /* Autocal perform auto centering without replication and the
72 * DSCL_MODE_SEL must be set to 0
74 AUTOCAL_MODE_AUTOCENTER = 2,
75 /* Autocal perform auto centering and auto replication and the
76 * DSCL_MODE_SEL must be set to 0
78 AUTOCAL_MODE_AUTOREPLICATE = 3
81 enum dscl_mode_sel {
82 DSCL_MODE_SCALING_444_BYPASS = 0,
83 DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
84 DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
85 DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
86 DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
87 DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
88 DSCL_MODE_DSCL_BYPASS = 6
91 static void program_gamut_remap(
92 struct dcn10_dpp *dpp,
93 const uint16_t *regval,
94 enum gamut_remap_select select)
96 uint16_t selection = 0;
97 struct color_matrices_reg gam_regs;
99 if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
100 REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
101 CM_GAMUT_REMAP_MODE, 0);
102 return;
104 switch (select) {
105 case GAMUT_REMAP_COEFF:
106 selection = 1;
107 break;
108 case GAMUT_REMAP_COMA_COEFF:
109 selection = 2;
110 break;
111 case GAMUT_REMAP_COMB_COEFF:
112 selection = 3;
113 break;
114 default:
115 break;
118 gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
119 gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11;
120 gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
121 gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;
124 if (select == GAMUT_REMAP_COEFF) {
125 gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
126 gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);
128 cm_helper_program_color_matrices(
129 dpp->base.ctx,
130 regval,
131 &gam_regs);
133 } else if (select == GAMUT_REMAP_COMA_COEFF) {
135 gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
136 gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
138 cm_helper_program_color_matrices(
139 dpp->base.ctx,
140 regval,
141 &gam_regs);
143 } else {
145 gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
146 gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
148 cm_helper_program_color_matrices(
149 dpp->base.ctx,
150 regval,
151 &gam_regs);
154 REG_SET(
155 CM_GAMUT_REMAP_CONTROL, 0,
156 CM_GAMUT_REMAP_MODE, selection);
160 void dpp1_cm_set_gamut_remap(
161 struct dpp *dpp_base,
162 const struct dpp_grph_csc_adjustment *adjust)
164 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
165 int i = 0;
167 if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
168 /* Bypass if type is bypass or hw */
169 program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS);
170 else {
171 struct fixed31_32 arr_matrix[12];
172 uint16_t arr_reg_val[12];
174 for (i = 0; i < 12; i++)
175 arr_matrix[i] = adjust->temperature_matrix[i];
177 convert_float_matrix(
178 arr_reg_val, arr_matrix, 12);
180 program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF);
184 static void dpp1_cm_program_color_matrix(
185 struct dcn10_dpp *dpp,
186 const uint16_t *regval)
188 uint32_t ocsc_mode;
189 uint32_t cur_mode;
190 struct color_matrices_reg gam_regs;
192 if (regval == NULL) {
193 BREAK_TO_DEBUGGER();
194 return;
197 /* determine which CSC matrix (ocsc or comb) we are using
198 * currently. select the alternate set to double buffer
199 * the CSC update so CSC is updated on frame boundary
201 REG_SET(CM_TEST_DEBUG_INDEX, 0,
202 CM_TEST_DEBUG_INDEX, 9);
204 REG_GET(CM_TEST_DEBUG_DATA,
205 CM_TEST_DEBUG_DATA_ID9_OCSC_MODE, &cur_mode);
207 if (cur_mode != 4)
208 ocsc_mode = 4;
209 else
210 ocsc_mode = 5;
213 gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11;
214 gam_regs.masks.csc_c11 = dpp->tf_mask->CM_OCSC_C11;
215 gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12;
216 gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12;
218 if (ocsc_mode == 4) {
220 gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12);
221 gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34);
223 } else {
225 gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
226 gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
230 cm_helper_program_color_matrices(
231 dpp->base.ctx,
232 regval,
233 &gam_regs);
235 REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode);
239 void dpp1_cm_set_output_csc_default(
240 struct dpp *dpp_base,
241 enum dc_color_space colorspace)
243 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
244 const uint16_t *regval = NULL;
245 int arr_size;
247 regval = find_color_matrix(colorspace, &arr_size);
248 if (regval == NULL) {
249 BREAK_TO_DEBUGGER();
250 return;
253 dpp1_cm_program_color_matrix(dpp, regval);
256 static void dpp1_cm_get_reg_field(
257 struct dcn10_dpp *dpp,
258 struct xfer_func_reg *reg)
260 reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
261 reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
262 reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
263 reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
264 reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
265 reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
266 reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
267 reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
269 reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B;
270 reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B;
271 reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
272 reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
273 reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
274 reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
275 reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
276 reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
277 reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B;
278 reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B;
279 reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
280 reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
283 static void dpp1_cm_get_degamma_reg_field(
284 struct dcn10_dpp *dpp,
285 struct xfer_func_reg *reg)
287 reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
288 reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
289 reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
290 reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
291 reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
292 reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
293 reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
294 reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
296 reg->shifts.field_region_end = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_B;
297 reg->masks.field_region_end = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_B;
298 reg->shifts.field_region_end_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
299 reg->masks.field_region_end_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
300 reg->shifts.field_region_end_base = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
301 reg->masks.field_region_end_base = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
302 reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
303 reg->masks.field_region_linear_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
304 reg->shifts.exp_region_start = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_B;
305 reg->masks.exp_region_start = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_B;
306 reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
307 reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
309 void dpp1_cm_set_output_csc_adjustment(
310 struct dpp *dpp_base,
311 const uint16_t *regval)
313 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
315 dpp1_cm_program_color_matrix(dpp, regval);
318 void dpp1_cm_power_on_regamma_lut(struct dpp *dpp_base,
319 bool power_on)
321 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
323 REG_SET(CM_MEM_PWR_CTRL, 0,
324 RGAM_MEM_PWR_FORCE, power_on == true ? 0:1);
328 void dpp1_cm_program_regamma_lut(struct dpp *dpp_base,
329 const struct pwl_result_data *rgb,
330 uint32_t num)
332 uint32_t i;
333 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
335 REG_SEQ_START();
337 for (i = 0 ; i < num; i++) {
338 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg);
339 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg);
340 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg);
342 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_red_reg);
343 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_green_reg);
344 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg);
350 void dpp1_cm_configure_regamma_lut(
351 struct dpp *dpp_base,
352 bool is_ram_a)
354 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
356 REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
357 CM_RGAM_LUT_WRITE_EN_MASK, 7);
358 REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
359 CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
360 REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0);
363 /*program re gamma RAM A*/
364 void dpp1_cm_program_regamma_luta_settings(
365 struct dpp *dpp_base,
366 const struct pwl_params *params)
368 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
369 struct xfer_func_reg gam_regs;
371 dpp1_cm_get_reg_field(dpp, &gam_regs);
373 gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B);
374 gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G);
375 gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R);
376 gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B);
377 gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G);
378 gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R);
379 gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B);
380 gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B);
381 gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G);
382 gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G);
383 gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R);
384 gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R);
385 gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1);
386 gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33);
388 cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
392 /*program re gamma RAM B*/
393 void dpp1_cm_program_regamma_lutb_settings(
394 struct dpp *dpp_base,
395 const struct pwl_params *params)
397 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
398 struct xfer_func_reg gam_regs;
400 dpp1_cm_get_reg_field(dpp, &gam_regs);
402 gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B);
403 gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G);
404 gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R);
405 gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B);
406 gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G);
407 gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R);
408 gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B);
409 gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B);
410 gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G);
411 gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G);
412 gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R);
413 gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R);
414 gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1);
415 gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33);
417 cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
420 void dpp1_program_input_csc(
421 struct dpp *dpp_base,
422 enum dc_color_space color_space,
423 enum dcn10_input_csc_select input_select,
424 const struct out_csc_color_matrix *tbl_entry)
426 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
427 int i;
428 int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix);
429 const uint16_t *regval = NULL;
430 uint32_t cur_select = 0;
431 enum dcn10_input_csc_select select;
432 struct color_matrices_reg gam_regs;
434 if (input_select == INPUT_CSC_SELECT_BYPASS) {
435 REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0);
436 return;
439 if (tbl_entry == NULL) {
440 for (i = 0; i < arr_size; i++)
441 if (dpp_input_csc_matrix[i].color_space == color_space) {
442 regval = dpp_input_csc_matrix[i].regval;
443 break;
446 if (regval == NULL) {
447 BREAK_TO_DEBUGGER();
448 return;
450 } else {
451 regval = tbl_entry->regval;
454 /* determine which CSC matrix (icsc or coma) we are using
455 * currently. select the alternate set to double buffer
456 * the CSC update so CSC is updated on frame boundary
458 REG_SET(CM_TEST_DEBUG_INDEX, 0,
459 CM_TEST_DEBUG_INDEX, 9);
461 REG_GET(CM_TEST_DEBUG_DATA,
462 CM_TEST_DEBUG_DATA_ID9_ICSC_MODE, &cur_select);
464 if (cur_select != INPUT_CSC_SELECT_ICSC)
465 select = INPUT_CSC_SELECT_ICSC;
466 else
467 select = INPUT_CSC_SELECT_COMA;
469 gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11;
470 gam_regs.masks.csc_c11 = dpp->tf_mask->CM_ICSC_C11;
471 gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12;
472 gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12;
474 if (select == INPUT_CSC_SELECT_ICSC) {
476 gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12);
477 gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34);
479 } else {
481 gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
482 gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
486 cm_helper_program_color_matrices(
487 dpp->base.ctx,
488 regval,
489 &gam_regs);
491 REG_SET(CM_ICSC_CONTROL, 0,
492 CM_ICSC_MODE, select);
495 //keep here for now, decide multi dce support later
496 void dpp1_program_bias_and_scale(
497 struct dpp *dpp_base,
498 struct dc_bias_and_scale *params)
500 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
502 REG_SET_2(CM_BNS_VALUES_R, 0,
503 CM_BNS_SCALE_R, params->scale_red,
504 CM_BNS_BIAS_R, params->bias_red);
506 REG_SET_2(CM_BNS_VALUES_G, 0,
507 CM_BNS_SCALE_G, params->scale_green,
508 CM_BNS_BIAS_G, params->bias_green);
510 REG_SET_2(CM_BNS_VALUES_B, 0,
511 CM_BNS_SCALE_B, params->scale_blue,
512 CM_BNS_BIAS_B, params->bias_blue);
516 /*program de gamma RAM B*/
517 void dpp1_program_degamma_lutb_settings(
518 struct dpp *dpp_base,
519 const struct pwl_params *params)
521 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
522 struct xfer_func_reg gam_regs;
524 dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
526 gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B);
527 gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G);
528 gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R);
529 gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B);
530 gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G);
531 gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R);
532 gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B);
533 gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B);
534 gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G);
535 gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G);
536 gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R);
537 gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R);
538 gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1);
539 gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15);
542 cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
545 /*program de gamma RAM A*/
546 void dpp1_program_degamma_luta_settings(
547 struct dpp *dpp_base,
548 const struct pwl_params *params)
550 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
551 struct xfer_func_reg gam_regs;
553 dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
555 gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B);
556 gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G);
557 gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R);
558 gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B);
559 gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G);
560 gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R);
561 gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B);
562 gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B);
563 gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G);
564 gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G);
565 gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R);
566 gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R);
567 gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1);
568 gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15);
570 cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
573 void dpp1_power_on_degamma_lut(
574 struct dpp *dpp_base,
575 bool power_on)
577 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
579 REG_SET(CM_MEM_PWR_CTRL, 0,
580 SHARED_MEM_PWR_DIS, power_on == true ? 0:1);
584 static void dpp1_enable_cm_block(
585 struct dpp *dpp_base)
587 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
589 REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8);
590 REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0);
593 void dpp1_set_degamma(
594 struct dpp *dpp_base,
595 enum ipp_degamma_mode mode)
597 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
598 dpp1_enable_cm_block(dpp_base);
600 switch (mode) {
601 case IPP_DEGAMMA_MODE_BYPASS:
602 /* Setting de gamma bypass for now */
603 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0);
604 break;
605 case IPP_DEGAMMA_MODE_HW_sRGB:
606 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1);
607 break;
608 case IPP_DEGAMMA_MODE_HW_xvYCC:
609 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2);
610 break;
611 case IPP_DEGAMMA_MODE_USER_PWL:
612 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
613 break;
614 default:
615 BREAK_TO_DEBUGGER();
616 break;
619 REG_SEQ_SUBMIT();
620 REG_SEQ_WAIT_DONE();
623 void dpp1_degamma_ram_select(
624 struct dpp *dpp_base,
625 bool use_ram_a)
627 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
629 if (use_ram_a)
630 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
631 else
632 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4);
636 static bool dpp1_degamma_ram_inuse(
637 struct dpp *dpp_base,
638 bool *ram_a_inuse)
640 bool ret = false;
641 uint32_t status_reg = 0;
642 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
644 REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
645 &status_reg);
647 if (status_reg == 9) {
648 *ram_a_inuse = true;
649 ret = true;
650 } else if (status_reg == 10) {
651 *ram_a_inuse = false;
652 ret = true;
654 return ret;
657 void dpp1_program_degamma_lut(
658 struct dpp *dpp_base,
659 const struct pwl_result_data *rgb,
660 uint32_t num,
661 bool is_ram_a)
663 uint32_t i;
665 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
666 REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0);
667 REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK,
668 CM_DGAM_LUT_WRITE_EN_MASK, 7);
669 REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL,
670 is_ram_a == true ? 0:1);
672 REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0);
673 for (i = 0 ; i < num; i++) {
674 REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg);
675 REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg);
676 REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg);
678 REG_SET(CM_DGAM_LUT_DATA, 0,
679 CM_DGAM_LUT_DATA, rgb[i].delta_red_reg);
680 REG_SET(CM_DGAM_LUT_DATA, 0,
681 CM_DGAM_LUT_DATA, rgb[i].delta_green_reg);
682 REG_SET(CM_DGAM_LUT_DATA, 0,
683 CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg);
687 void dpp1_set_degamma_pwl(struct dpp *dpp_base,
688 const struct pwl_params *params)
690 bool is_ram_a = true;
692 dpp1_power_on_degamma_lut(dpp_base, true);
693 dpp1_enable_cm_block(dpp_base);
694 dpp1_degamma_ram_inuse(dpp_base, &is_ram_a);
695 if (is_ram_a == true)
696 dpp1_program_degamma_lutb_settings(dpp_base, params);
697 else
698 dpp1_program_degamma_luta_settings(dpp_base, params);
700 dpp1_program_degamma_lut(dpp_base, params->rgb_resulted,
701 params->hw_points_num, !is_ram_a);
702 dpp1_degamma_ram_select(dpp_base, !is_ram_a);
705 void dpp1_full_bypass(struct dpp *dpp_base)
707 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
709 /* Input pixel format: ARGB8888 */
710 REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0,
711 CNVC_SURFACE_PIXEL_FORMAT, 0x8);
713 /* Zero expansion */
714 REG_SET_3(FORMAT_CONTROL, 0,
715 CNVC_BYPASS, 0,
716 FORMAT_CONTROL__ALPHA_EN, 0,
717 FORMAT_EXPANSION_MODE, 0);
719 /* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */
720 if (dpp->tf_mask->CM_BYPASS_EN)
721 REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1);
722 else
723 REG_SET(CM_CONTROL, 0, CM_BYPASS, 1);
725 /* Setting degamma bypass for now */
726 REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0);
729 static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base,
730 bool *ram_a_inuse)
732 bool in_use = false;
733 uint32_t status_reg = 0;
734 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
736 REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
737 &status_reg);
739 // 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB
740 if (status_reg == 1 || status_reg == 3 || status_reg == 4) {
741 *ram_a_inuse = true;
742 in_use = true;
743 // 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB
744 } else if (status_reg == 2 || status_reg == 5 || status_reg == 6) {
745 *ram_a_inuse = false;
746 in_use = true;
748 return in_use;
752 * Input gamma LUT currently supports 256 values only. This means input color
753 * can have a maximum of 8 bits per channel (= 256 possible values) in order to
754 * have a one-to-one mapping with the LUT. Truncation will occur with color
755 * values greater than 8 bits.
757 * In the future, this function should support additional input gamma methods,
758 * such as piecewise linear mapping, and input gamma bypass.
760 void dpp1_program_input_lut(
761 struct dpp *dpp_base,
762 const struct dc_gamma *gamma)
764 int i;
765 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
766 bool rama_occupied = false;
767 uint32_t ram_num;
768 // Power on LUT memory.
769 REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1);
770 dpp1_enable_cm_block(dpp_base);
771 // Determine whether to use RAM A or RAM B
772 dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied);
773 if (!rama_occupied)
774 REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0);
775 else
776 REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1);
777 // RW mode is 256-entry LUT
778 REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0);
779 // IGAM Input format should be 8 bits per channel.
780 REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0);
781 // Do not mask any R,G,B values
782 REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7);
783 // LUT-256, unsigned, integer, new u0.12 format
784 REG_UPDATE_3(
785 CM_IGAM_CONTROL,
786 CM_IGAM_LUT_FORMAT_R, 3,
787 CM_IGAM_LUT_FORMAT_G, 3,
788 CM_IGAM_LUT_FORMAT_B, 3);
789 // Start at index 0 of IGAM LUT
790 REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0);
791 for (i = 0; i < gamma->num_entries; i++) {
792 REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
793 dc_fixpt_round(
794 gamma->entries.red[i]));
795 REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
796 dc_fixpt_round(
797 gamma->entries.green[i]));
798 REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
799 dc_fixpt_round(
800 gamma->entries.blue[i]));
802 // Power off LUT memory
803 REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0);
804 // Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB
805 REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2);
806 REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num);
809 void dpp1_set_hdr_multiplier(
810 struct dpp *dpp_base,
811 uint32_t multiplier)
813 struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
815 REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier);