WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / drm_managed.c
blob37d7db6223be666679368e6b19488ef671074d78
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020 Intel
5 * Based on drivers/base/devres.c
6 */
8 #include <drm/drm_managed.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
14 #include <drm/drm_device.h>
15 #include <drm/drm_print.h>
17 #include "drm_internal.h"
19 /**
20 * DOC: managed resources
22 * Inspired by struct &device managed resources, but tied to the lifetime of
23 * struct &drm_device, which can outlive the underlying physical device, usually
24 * when userspace has some open files and other handles to resources still open.
26 * Release actions can be added with drmm_add_action(), memory allocations can
27 * be done directly with drmm_kmalloc() and the related functions. Everything
28 * will be released on the final drm_dev_put() in reverse order of how the
29 * release actions have been added and memory has been allocated since driver
30 * loading started with devm_drm_dev_alloc().
32 * Note that release actions and managed memory can also be added and removed
33 * during the lifetime of the driver, all the functions are fully concurrent
34 * safe. But it is recommended to use managed resources only for resources that
35 * change rarely, if ever, during the lifetime of the &drm_device instance.
38 struct drmres_node {
39 struct list_head entry;
40 drmres_release_t release;
41 const char *name;
42 size_t size;
45 struct drmres {
46 struct drmres_node node;
48 * Some archs want to perform DMA into kmalloc caches
49 * and need a guaranteed alignment larger than
50 * the alignment of a 64-bit integer.
51 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
52 * buffer alignment as if it was allocated by plain kmalloc().
54 u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
57 static void free_dr(struct drmres *dr)
59 kfree_const(dr->node.name);
60 kfree(dr);
63 void drm_managed_release(struct drm_device *dev)
65 struct drmres *dr, *tmp;
67 drm_dbg_drmres(dev, "drmres release begin\n");
68 list_for_each_entry_safe(dr, tmp, &dev->managed.resources, node.entry) {
69 drm_dbg_drmres(dev, "REL %p %s (%zu bytes)\n",
70 dr, dr->node.name, dr->node.size);
72 if (dr->node.release)
73 dr->node.release(dev, dr->node.size ? *(void **)&dr->data : NULL);
75 list_del(&dr->node.entry);
76 free_dr(dr);
78 drm_dbg_drmres(dev, "drmres release end\n");
82 * Always inline so that kmalloc_track_caller tracks the actual interesting
83 * caller outside of drm_managed.c.
85 static __always_inline struct drmres * alloc_dr(drmres_release_t release,
86 size_t size, gfp_t gfp, int nid)
88 size_t tot_size;
89 struct drmres *dr;
91 /* We must catch any near-SIZE_MAX cases that could overflow. */
92 if (unlikely(check_add_overflow(sizeof(*dr), size, &tot_size)))
93 return NULL;
95 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
96 if (unlikely(!dr))
97 return NULL;
99 memset(dr, 0, offsetof(struct drmres, data));
101 INIT_LIST_HEAD(&dr->node.entry);
102 dr->node.release = release;
103 dr->node.size = size;
105 return dr;
108 static void del_dr(struct drm_device *dev, struct drmres *dr)
110 list_del_init(&dr->node.entry);
112 drm_dbg_drmres(dev, "DEL %p %s (%lu bytes)\n",
113 dr, dr->node.name, (unsigned long) dr->node.size);
116 static void add_dr(struct drm_device *dev, struct drmres *dr)
118 unsigned long flags;
120 spin_lock_irqsave(&dev->managed.lock, flags);
121 list_add(&dr->node.entry, &dev->managed.resources);
122 spin_unlock_irqrestore(&dev->managed.lock, flags);
124 drm_dbg_drmres(dev, "ADD %p %s (%lu bytes)\n",
125 dr, dr->node.name, (unsigned long) dr->node.size);
128 void drmm_add_final_kfree(struct drm_device *dev, void *container)
130 WARN_ON(dev->managed.final_kfree);
131 WARN_ON(dev < (struct drm_device *) container);
132 WARN_ON(dev + 1 > (struct drm_device *) (container + ksize(container)));
133 dev->managed.final_kfree = container;
136 int __drmm_add_action(struct drm_device *dev,
137 drmres_release_t action,
138 void *data, const char *name)
140 struct drmres *dr;
141 void **void_ptr;
143 dr = alloc_dr(action, data ? sizeof(void*) : 0,
144 GFP_KERNEL | __GFP_ZERO,
145 dev_to_node(dev->dev));
146 if (!dr) {
147 drm_dbg_drmres(dev, "failed to add action %s for %p\n",
148 name, data);
149 return -ENOMEM;
152 dr->node.name = kstrdup_const(name, GFP_KERNEL);
153 if (data) {
154 void_ptr = (void **)&dr->data;
155 *void_ptr = data;
158 add_dr(dev, dr);
160 return 0;
162 EXPORT_SYMBOL(__drmm_add_action);
164 int __drmm_add_action_or_reset(struct drm_device *dev,
165 drmres_release_t action,
166 void *data, const char *name)
168 int ret;
170 ret = __drmm_add_action(dev, action, data, name);
171 if (ret)
172 action(dev, data);
174 return ret;
176 EXPORT_SYMBOL(__drmm_add_action_or_reset);
179 * drmm_kmalloc - &drm_device managed kmalloc()
180 * @dev: DRM device
181 * @size: size of the memory allocation
182 * @gfp: GFP allocation flags
184 * This is a &drm_device managed version of kmalloc(). The allocated memory is
185 * automatically freed on the final drm_dev_put(). Memory can also be freed
186 * before the final drm_dev_put() by calling drmm_kfree().
188 void *drmm_kmalloc(struct drm_device *dev, size_t size, gfp_t gfp)
190 struct drmres *dr;
192 dr = alloc_dr(NULL, size, gfp, dev_to_node(dev->dev));
193 if (!dr) {
194 drm_dbg_drmres(dev, "failed to allocate %zu bytes, %u flags\n",
195 size, gfp);
196 return NULL;
198 dr->node.name = kstrdup_const("kmalloc", GFP_KERNEL);
200 add_dr(dev, dr);
202 return dr->data;
204 EXPORT_SYMBOL(drmm_kmalloc);
207 * drmm_kstrdup - &drm_device managed kstrdup()
208 * @dev: DRM device
209 * @s: 0-terminated string to be duplicated
210 * @gfp: GFP allocation flags
212 * This is a &drm_device managed version of kstrdup(). The allocated memory is
213 * automatically freed on the final drm_dev_put() and works exactly like a
214 * memory allocation obtained by drmm_kmalloc().
216 char *drmm_kstrdup(struct drm_device *dev, const char *s, gfp_t gfp)
218 size_t size;
219 char *buf;
221 if (!s)
222 return NULL;
224 size = strlen(s) + 1;
225 buf = drmm_kmalloc(dev, size, gfp);
226 if (buf)
227 memcpy(buf, s, size);
228 return buf;
230 EXPORT_SYMBOL_GPL(drmm_kstrdup);
233 * drmm_kfree - &drm_device managed kfree()
234 * @dev: DRM device
235 * @data: memory allocation to be freed
237 * This is a &drm_device managed version of kfree() which can be used to
238 * release memory allocated through drmm_kmalloc() or any of its related
239 * functions before the final drm_dev_put() of @dev.
241 void drmm_kfree(struct drm_device *dev, void *data)
243 struct drmres *dr_match = NULL, *dr;
244 unsigned long flags;
246 if (!data)
247 return;
249 spin_lock_irqsave(&dev->managed.lock, flags);
250 list_for_each_entry(dr, &dev->managed.resources, node.entry) {
251 if (dr->data == data) {
252 dr_match = dr;
253 del_dr(dev, dr_match);
254 break;
257 spin_unlock_irqrestore(&dev->managed.lock, flags);
259 if (WARN_ON(!dr_match))
260 return;
262 free_dr(dr_match);
264 EXPORT_SYMBOL(drmm_kfree);