2 * SPDX-License-Identifier: MIT
4 * Copyright © 2008,2010 Intel Corporation
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
12 #include <drm/drm_syncobj.h>
14 #include "display/intel_frontbuffer.h"
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29 #include "i915_user_extensions.h"
35 /** This vma's place in the execbuf reservation list */
36 struct drm_i915_gem_exec_object2
*exec
;
37 struct list_head bind_link
;
38 struct list_head reloc_link
;
40 struct hlist_node node
;
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 #define __EXEC_OBJECT_HAS_PIN BIT(31)
52 #define __EXEC_OBJECT_HAS_FENCE BIT(30)
53 #define __EXEC_OBJECT_NEEDS_MAP BIT(29)
54 #define __EXEC_OBJECT_NEEDS_BIAS BIT(28)
55 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */
56 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
58 #define __EXEC_HAS_RELOC BIT(31)
59 #define __EXEC_ENGINE_PINNED BIT(30)
60 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
61 #define UPDATE PIN_OFFSET_FIXED
63 #define BATCH_OFFSET_BIAS (256*1024)
65 #define __I915_EXEC_ILLEGAL_FLAGS \
66 (__I915_EXEC_UNKNOWN_FLAGS | \
67 I915_EXEC_CONSTANTS_MASK | \
68 I915_EXEC_RESOURCE_STREAMER)
70 /* Catch emission of unexpected errors for CI! */
71 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
74 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
80 * DOC: User command execution
82 * Userspace submits commands to be executed on the GPU as an instruction
83 * stream within a GEM object we call a batchbuffer. This instructions may
84 * refer to other GEM objects containing auxiliary state such as kernels,
85 * samplers, render targets and even secondary batchbuffers. Userspace does
86 * not know where in the GPU memory these objects reside and so before the
87 * batchbuffer is passed to the GPU for execution, those addresses in the
88 * batchbuffer and auxiliary objects are updated. This is known as relocation,
89 * or patching. To try and avoid having to relocate each object on the next
90 * execution, userspace is told the location of those objects in this pass,
91 * but this remains just a hint as the kernel may choose a new location for
92 * any object in the future.
94 * At the level of talking to the hardware, submitting a batchbuffer for the
95 * GPU to execute is to add content to a buffer from which the HW
96 * command streamer is reading.
98 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
99 * Execlists, this command is not placed on the same buffer as the
102 * 2. Add a command to invalidate caches to the buffer.
104 * 3. Add a batchbuffer start command to the buffer; the start command is
105 * essentially a token together with the GPU address of the batchbuffer
108 * 4. Add a pipeline flush to the buffer.
110 * 5. Add a memory write command to the buffer to record when the GPU
111 * is done executing the batchbuffer. The memory write writes the
112 * global sequence number of the request, ``i915_request::global_seqno``;
113 * the i915 driver uses the current value in the register to determine
114 * if the GPU has completed the batchbuffer.
116 * 6. Add a user interrupt command to the buffer. This command instructs
117 * the GPU to issue an interrupt when the command, pipeline flush and
118 * memory write are completed.
120 * 7. Inform the hardware of the additional commands added to the buffer
121 * (by updating the tail pointer).
123 * Processing an execbuf ioctl is conceptually split up into a few phases.
125 * 1. Validation - Ensure all the pointers, handles and flags are valid.
126 * 2. Reservation - Assign GPU address space for every object
127 * 3. Relocation - Update any addresses to point to the final locations
128 * 4. Serialisation - Order the request with respect to its dependencies
129 * 5. Construction - Construct a request to execute the batchbuffer
130 * 6. Submission (at some point in the future execution)
132 * Reserving resources for the execbuf is the most complicated phase. We
133 * neither want to have to migrate the object in the address space, nor do
134 * we want to have to update any relocations pointing to this object. Ideally,
135 * we want to leave the object where it is and for all the existing relocations
136 * to match. If the object is given a new address, or if userspace thinks the
137 * object is elsewhere, we have to parse all the relocation entries and update
138 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
139 * all the target addresses in all of its objects match the value in the
140 * relocation entries and that they all match the presumed offsets given by the
141 * list of execbuffer objects. Using this knowledge, we know that if we haven't
142 * moved any buffers, all the relocation entries are valid and we can skip
143 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
144 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
146 * The addresses written in the objects must match the corresponding
147 * reloc.presumed_offset which in turn must match the corresponding
150 * Any render targets written to in the batch must be flagged with
153 * To avoid stalling, execobject.offset should match the current
154 * address of that object within the active context.
156 * The reservation is done is multiple phases. First we try and keep any
157 * object already bound in its current location - so as long as meets the
158 * constraints imposed by the new execbuffer. Any object left unbound after the
159 * first pass is then fitted into any available idle space. If an object does
160 * not fit, all objects are removed from the reservation and the process rerun
161 * after sorting the objects into a priority order (more difficult to fit
162 * objects are tried first). Failing that, the entire VM is cleared and we try
163 * to fit the execbuf once last time before concluding that it simply will not
166 * A small complication to all of this is that we allow userspace not only to
167 * specify an alignment and a size for the object in the address space, but
168 * we also allow userspace to specify the exact offset. This objects are
169 * simpler to place (the location is known a priori) all we have to do is make
170 * sure the space is available.
172 * Once all the objects are in place, patching up the buried pointers to point
173 * to the final locations is a fairly simple job of walking over the relocation
174 * entry arrays, looking up the right address and rewriting the value into
175 * the object. Simple! ... The relocation entries are stored in user memory
176 * and so to access them we have to copy them into a local buffer. That copy
177 * has to avoid taking any pagefaults as they may lead back to a GEM object
178 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
179 * the relocation into multiple passes. First we try to do everything within an
180 * atomic context (avoid the pagefaults) which requires that we never wait. If
181 * we detect that we may wait, or if we need to fault, then we have to fallback
182 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
183 * bells yet?) Dropping the mutex means that we lose all the state we have
184 * built up so far for the execbuf and we must reset any global data. However,
185 * we do leave the objects pinned in their final locations - which is a
186 * potential issue for concurrent execbufs. Once we have left the mutex, we can
187 * allocate and copy all the relocation entries into a large array at our
188 * leisure, reacquire the mutex, reclaim all the objects and other state and
189 * then proceed to update any incorrect addresses with the objects.
191 * As we process the relocation entries, we maintain a record of whether the
192 * object is being written to. Using NORELOC, we expect userspace to provide
193 * this information instead. We also check whether we can skip the relocation
194 * by comparing the expected value inside the relocation entry with the target's
195 * final address. If they differ, we have to map the current object and rewrite
196 * the 4 or 8 byte pointer within.
198 * Serialising an execbuf is quite simple according to the rules of the GEM
199 * ABI. Execution within each context is ordered by the order of submission.
200 * Writes to any GEM object are in order of submission and are exclusive. Reads
201 * from a GEM object are unordered with respect to other reads, but ordered by
202 * writes. A write submitted after a read cannot occur before the read, and
203 * similarly any read submitted after a write cannot occur before the write.
204 * Writes are ordered between engines such that only one write occurs at any
205 * time (completing any reads beforehand) - using semaphores where available
206 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
207 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
208 * reads before starting, and any read (either using set-domain or pread) must
209 * flush all GPU writes before starting. (Note we only employ a barrier before,
210 * we currently rely on userspace not concurrently starting a new execution
211 * whilst reading or writing to an object. This may be an advantage or not
212 * depending on how much you trust userspace not to shoot themselves in the
213 * foot.) Serialisation may just result in the request being inserted into
214 * a DAG awaiting its turn, but most simple is to wait on the CPU until
215 * all dependencies are resolved.
217 * After all of that, is just a matter of closing the request and handing it to
218 * the hardware (well, leaving it in a queue to be executed). However, we also
219 * offer the ability for batchbuffers to be run with elevated privileges so
220 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
221 * Before any batch is given extra privileges we first must check that it
222 * contains no nefarious instructions, we check that each instruction is from
223 * our whitelist and all registers are also from an allowed list. We first
224 * copy the user's batchbuffer to a shadow (so that the user doesn't have
225 * access to it, either by the CPU or GPU as we scan it) and then parse each
226 * instruction. If everything is ok, we set a flag telling the hardware to run
227 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
231 struct drm_syncobj
*syncobj
; /* Use with ptr_mask_bits() */
232 struct dma_fence
*dma_fence
;
234 struct dma_fence_chain
*chain_fence
;
237 struct i915_execbuffer
{
238 struct drm_i915_private
*i915
; /** i915 backpointer */
239 struct drm_file
*file
; /** per-file lookup tables and limits */
240 struct drm_i915_gem_execbuffer2
*args
; /** ioctl parameters */
241 struct drm_i915_gem_exec_object2
*exec
; /** ioctl execobj[] */
244 struct intel_engine_cs
*engine
; /** engine to queue the request to */
245 struct intel_context
*context
; /* logical state for the request */
246 struct i915_gem_context
*gem_context
; /** caller's context */
248 struct i915_request
*request
; /** our request to build */
249 struct eb_vma
*batch
; /** identity of the batch obj/vma */
250 struct i915_vma
*trampoline
; /** trampoline used for chaining */
252 /** actual size of execobj[] as we may extend it for the cmdparser */
253 unsigned int buffer_count
;
255 /** list of vma not yet bound during reservation phase */
256 struct list_head unbound
;
258 /** list of vma that have execobj.relocation_count */
259 struct list_head relocs
;
261 struct i915_gem_ww_ctx ww
;
264 * Track the most recently used object for relocations, as we
265 * frequently have to perform multiple relocations within the same
269 struct drm_mm_node node
; /** temporary GTT binding */
270 unsigned long vaddr
; /** Current kmap address */
271 unsigned long page
; /** Currently mapped page index */
272 unsigned int gen
; /** Cached value of INTEL_GEN */
273 bool use_64bit_reloc
: 1;
276 bool needs_unfenced
: 1;
278 struct i915_request
*rq
;
280 unsigned int rq_size
;
281 struct intel_gt_buffer_pool_node
*pool
;
284 struct intel_gt_buffer_pool_node
*reloc_pool
; /** relocation pool for -EDEADLK handling */
285 struct intel_context
*reloc_context
;
287 u64 invalid_flags
; /** Set of execobj.flags that are invalid */
288 u32 context_flags
; /** Set of execobj.flags to insert from the ctx */
290 u64 batch_len
; /** Length of batch within object */
291 u32 batch_start_offset
; /** Location within object of batch */
292 u32 batch_flags
; /** Flags composed for emit_bb_start() */
293 struct intel_gt_buffer_pool_node
*batch_pool
; /** pool node for batch buffer */
296 * Indicate either the size of the hastable used to resolve
297 * relocation handles, or if negative that we are using a direct
298 * index into the execobj[].
301 struct hlist_head
*buckets
; /** ht for relocation handles */
303 struct eb_fence
*fences
;
304 unsigned long num_fences
;
307 static int eb_parse(struct i915_execbuffer
*eb
);
308 static struct i915_request
*eb_pin_engine(struct i915_execbuffer
*eb
,
310 static void eb_unpin_engine(struct i915_execbuffer
*eb
);
312 static inline bool eb_use_cmdparser(const struct i915_execbuffer
*eb
)
314 return intel_engine_requires_cmd_parser(eb
->engine
) ||
315 (intel_engine_using_cmd_parser(eb
->engine
) &&
316 eb
->args
->batch_len
);
319 static int eb_create(struct i915_execbuffer
*eb
)
321 if (!(eb
->args
->flags
& I915_EXEC_HANDLE_LUT
)) {
322 unsigned int size
= 1 + ilog2(eb
->buffer_count
);
325 * Without a 1:1 association between relocation handles and
326 * the execobject[] index, we instead create a hashtable.
327 * We size it dynamically based on available memory, starting
328 * first with 1:1 assocative hash and scaling back until
329 * the allocation succeeds.
331 * Later on we use a positive lut_size to indicate we are
332 * using this hashtable, and a negative value to indicate a
338 /* While we can still reduce the allocation size, don't
339 * raise a warning and allow the allocation to fail.
340 * On the last pass though, we want to try as hard
341 * as possible to perform the allocation and warn
346 flags
|= __GFP_NORETRY
| __GFP_NOWARN
;
348 eb
->buckets
= kzalloc(sizeof(struct hlist_head
) << size
,
359 eb
->lut_size
= -eb
->buffer_count
;
366 eb_vma_misplaced(const struct drm_i915_gem_exec_object2
*entry
,
367 const struct i915_vma
*vma
,
370 if (vma
->node
.size
< entry
->pad_to_size
)
373 if (entry
->alignment
&& !IS_ALIGNED(vma
->node
.start
, entry
->alignment
))
376 if (flags
& EXEC_OBJECT_PINNED
&&
377 vma
->node
.start
!= entry
->offset
)
380 if (flags
& __EXEC_OBJECT_NEEDS_BIAS
&&
381 vma
->node
.start
< BATCH_OFFSET_BIAS
)
384 if (!(flags
& EXEC_OBJECT_SUPPORTS_48B_ADDRESS
) &&
385 (vma
->node
.start
+ vma
->node
.size
+ 4095) >> 32)
388 if (flags
& __EXEC_OBJECT_NEEDS_MAP
&&
389 !i915_vma_is_map_and_fenceable(vma
))
395 static u64
eb_pin_flags(const struct drm_i915_gem_exec_object2
*entry
,
396 unsigned int exec_flags
)
400 if (exec_flags
& EXEC_OBJECT_NEEDS_GTT
)
401 pin_flags
|= PIN_GLOBAL
;
404 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
405 * limit address to the first 4GBs for unflagged objects.
407 if (!(exec_flags
& EXEC_OBJECT_SUPPORTS_48B_ADDRESS
))
408 pin_flags
|= PIN_ZONE_4G
;
410 if (exec_flags
& __EXEC_OBJECT_NEEDS_MAP
)
411 pin_flags
|= PIN_MAPPABLE
;
413 if (exec_flags
& EXEC_OBJECT_PINNED
)
414 pin_flags
|= entry
->offset
| PIN_OFFSET_FIXED
;
415 else if (exec_flags
& __EXEC_OBJECT_NEEDS_BIAS
)
416 pin_flags
|= BATCH_OFFSET_BIAS
| PIN_OFFSET_BIAS
;
422 eb_pin_vma(struct i915_execbuffer
*eb
,
423 const struct drm_i915_gem_exec_object2
*entry
,
426 struct i915_vma
*vma
= ev
->vma
;
430 pin_flags
= vma
->node
.start
;
432 pin_flags
= entry
->offset
& PIN_OFFSET_MASK
;
434 pin_flags
|= PIN_USER
| PIN_NOEVICT
| PIN_OFFSET_FIXED
;
435 if (unlikely(ev
->flags
& EXEC_OBJECT_NEEDS_GTT
))
436 pin_flags
|= PIN_GLOBAL
;
438 /* Attempt to reuse the current location if available */
439 /* TODO: Add -EDEADLK handling here */
440 if (unlikely(i915_vma_pin_ww(vma
, &eb
->ww
, 0, 0, pin_flags
))) {
441 if (entry
->flags
& EXEC_OBJECT_PINNED
)
444 /* Failing that pick any _free_ space if suitable */
445 if (unlikely(i915_vma_pin_ww(vma
, &eb
->ww
,
448 eb_pin_flags(entry
, ev
->flags
) |
449 PIN_USER
| PIN_NOEVICT
)))
453 if (unlikely(ev
->flags
& EXEC_OBJECT_NEEDS_FENCE
)) {
454 if (unlikely(i915_vma_pin_fence(vma
))) {
460 ev
->flags
|= __EXEC_OBJECT_HAS_FENCE
;
463 ev
->flags
|= __EXEC_OBJECT_HAS_PIN
;
464 return !eb_vma_misplaced(entry
, vma
, ev
->flags
);
468 eb_unreserve_vma(struct eb_vma
*ev
)
470 if (!(ev
->flags
& __EXEC_OBJECT_HAS_PIN
))
473 if (unlikely(ev
->flags
& __EXEC_OBJECT_HAS_FENCE
))
474 __i915_vma_unpin_fence(ev
->vma
);
476 __i915_vma_unpin(ev
->vma
);
477 ev
->flags
&= ~__EXEC_OBJECT_RESERVED
;
481 eb_validate_vma(struct i915_execbuffer
*eb
,
482 struct drm_i915_gem_exec_object2
*entry
,
483 struct i915_vma
*vma
)
485 if (unlikely(entry
->flags
& eb
->invalid_flags
))
488 if (unlikely(entry
->alignment
&&
489 !is_power_of_2_u64(entry
->alignment
)))
493 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
494 * any non-page-aligned or non-canonical addresses.
496 if (unlikely(entry
->flags
& EXEC_OBJECT_PINNED
&&
497 entry
->offset
!= gen8_canonical_addr(entry
->offset
& I915_GTT_PAGE_MASK
)))
500 /* pad_to_size was once a reserved field, so sanitize it */
501 if (entry
->flags
& EXEC_OBJECT_PAD_TO_SIZE
) {
502 if (unlikely(offset_in_page(entry
->pad_to_size
)))
505 entry
->pad_to_size
= 0;
508 * From drm_mm perspective address space is continuous,
509 * so from this point we're always using non-canonical
512 entry
->offset
= gen8_noncanonical_addr(entry
->offset
);
514 if (!eb
->reloc_cache
.has_fence
) {
515 entry
->flags
&= ~EXEC_OBJECT_NEEDS_FENCE
;
517 if ((entry
->flags
& EXEC_OBJECT_NEEDS_FENCE
||
518 eb
->reloc_cache
.needs_unfenced
) &&
519 i915_gem_object_is_tiled(vma
->obj
))
520 entry
->flags
|= EXEC_OBJECT_NEEDS_GTT
| __EXEC_OBJECT_NEEDS_MAP
;
523 if (!(entry
->flags
& EXEC_OBJECT_PINNED
))
524 entry
->flags
|= eb
->context_flags
;
530 eb_add_vma(struct i915_execbuffer
*eb
,
531 unsigned int i
, unsigned batch_idx
,
532 struct i915_vma
*vma
)
534 struct drm_i915_gem_exec_object2
*entry
= &eb
->exec
[i
];
535 struct eb_vma
*ev
= &eb
->vma
[i
];
537 GEM_BUG_ON(i915_vma_is_closed(vma
));
541 ev
->flags
= entry
->flags
;
543 if (eb
->lut_size
> 0) {
544 ev
->handle
= entry
->handle
;
545 hlist_add_head(&ev
->node
,
546 &eb
->buckets
[hash_32(entry
->handle
,
550 if (entry
->relocation_count
)
551 list_add_tail(&ev
->reloc_link
, &eb
->relocs
);
554 * SNA is doing fancy tricks with compressing batch buffers, which leads
555 * to negative relocation deltas. Usually that works out ok since the
556 * relocate address is still positive, except when the batch is placed
557 * very low in the GTT. Ensure this doesn't happen.
559 * Note that actual hangs have only been observed on gen7, but for
560 * paranoia do it everywhere.
562 if (i
== batch_idx
) {
563 if (entry
->relocation_count
&&
564 !(ev
->flags
& EXEC_OBJECT_PINNED
))
565 ev
->flags
|= __EXEC_OBJECT_NEEDS_BIAS
;
566 if (eb
->reloc_cache
.has_fence
)
567 ev
->flags
|= EXEC_OBJECT_NEEDS_FENCE
;
573 static inline int use_cpu_reloc(const struct reloc_cache
*cache
,
574 const struct drm_i915_gem_object
*obj
)
576 if (!i915_gem_object_has_struct_page(obj
))
579 if (DBG_FORCE_RELOC
== FORCE_CPU_RELOC
)
582 if (DBG_FORCE_RELOC
== FORCE_GTT_RELOC
)
585 return (cache
->has_llc
||
587 obj
->cache_level
!= I915_CACHE_NONE
);
590 static int eb_reserve_vma(struct i915_execbuffer
*eb
,
594 struct drm_i915_gem_exec_object2
*entry
= ev
->exec
;
595 struct i915_vma
*vma
= ev
->vma
;
598 if (drm_mm_node_allocated(&vma
->node
) &&
599 eb_vma_misplaced(entry
, vma
, ev
->flags
)) {
600 err
= i915_vma_unbind(vma
);
605 err
= i915_vma_pin_ww(vma
, &eb
->ww
,
606 entry
->pad_to_size
, entry
->alignment
,
607 eb_pin_flags(entry
, ev
->flags
) | pin_flags
);
611 if (entry
->offset
!= vma
->node
.start
) {
612 entry
->offset
= vma
->node
.start
| UPDATE
;
613 eb
->args
->flags
|= __EXEC_HAS_RELOC
;
616 if (unlikely(ev
->flags
& EXEC_OBJECT_NEEDS_FENCE
)) {
617 err
= i915_vma_pin_fence(vma
);
624 ev
->flags
|= __EXEC_OBJECT_HAS_FENCE
;
627 ev
->flags
|= __EXEC_OBJECT_HAS_PIN
;
628 GEM_BUG_ON(eb_vma_misplaced(entry
, vma
, ev
->flags
));
633 static int eb_reserve(struct i915_execbuffer
*eb
)
635 const unsigned int count
= eb
->buffer_count
;
636 unsigned int pin_flags
= PIN_USER
| PIN_NONBLOCK
;
637 struct list_head last
;
639 unsigned int i
, pass
;
643 * Attempt to pin all of the buffers into the GTT.
644 * This is done in 3 phases:
646 * 1a. Unbind all objects that do not match the GTT constraints for
647 * the execbuffer (fenceable, mappable, alignment etc).
648 * 1b. Increment pin count for already bound objects.
649 * 2. Bind new objects.
650 * 3. Decrement pin count.
652 * This avoid unnecessary unbinding of later objects in order to make
653 * room for the earlier objects *unless* we need to defragment.
657 list_for_each_entry(ev
, &eb
->unbound
, bind_link
) {
658 err
= eb_reserve_vma(eb
, ev
, pin_flags
);
665 /* Resort *all* the objects into priority order */
666 INIT_LIST_HEAD(&eb
->unbound
);
667 INIT_LIST_HEAD(&last
);
668 for (i
= 0; i
< count
; i
++) {
673 if (flags
& EXEC_OBJECT_PINNED
&&
674 flags
& __EXEC_OBJECT_HAS_PIN
)
677 eb_unreserve_vma(ev
);
679 if (flags
& EXEC_OBJECT_PINNED
)
680 /* Pinned must have their slot */
681 list_add(&ev
->bind_link
, &eb
->unbound
);
682 else if (flags
& __EXEC_OBJECT_NEEDS_MAP
)
683 /* Map require the lowest 256MiB (aperture) */
684 list_add_tail(&ev
->bind_link
, &eb
->unbound
);
685 else if (!(flags
& EXEC_OBJECT_SUPPORTS_48B_ADDRESS
))
686 /* Prioritise 4GiB region for restricted bo */
687 list_add(&ev
->bind_link
, &last
);
689 list_add_tail(&ev
->bind_link
, &last
);
691 list_splice_tail(&last
, &eb
->unbound
);
698 /* Too fragmented, unbind everything and retry */
699 mutex_lock(&eb
->context
->vm
->mutex
);
700 err
= i915_gem_evict_vm(eb
->context
->vm
);
701 mutex_unlock(&eb
->context
->vm
->mutex
);
710 pin_flags
= PIN_USER
;
714 static unsigned int eb_batch_index(const struct i915_execbuffer
*eb
)
716 if (eb
->args
->flags
& I915_EXEC_BATCH_FIRST
)
719 return eb
->buffer_count
- 1;
722 static int eb_select_context(struct i915_execbuffer
*eb
)
724 struct i915_gem_context
*ctx
;
726 ctx
= i915_gem_context_lookup(eb
->file
->driver_priv
, eb
->args
->rsvd1
);
730 eb
->gem_context
= ctx
;
731 if (rcu_access_pointer(ctx
->vm
))
732 eb
->invalid_flags
|= EXEC_OBJECT_NEEDS_GTT
;
734 eb
->context_flags
= 0;
735 if (test_bit(UCONTEXT_NO_ZEROMAP
, &ctx
->user_flags
))
736 eb
->context_flags
|= __EXEC_OBJECT_NEEDS_BIAS
;
741 static int __eb_add_lut(struct i915_execbuffer
*eb
,
742 u32 handle
, struct i915_vma
*vma
)
744 struct i915_gem_context
*ctx
= eb
->gem_context
;
745 struct i915_lut_handle
*lut
;
748 lut
= i915_lut_handle_alloc();
753 if (!atomic_fetch_inc(&vma
->open_count
))
754 i915_vma_reopen(vma
);
755 lut
->handle
= handle
;
758 /* Check that the context hasn't been closed in the meantime */
760 if (!mutex_lock_interruptible(&ctx
->lut_mutex
)) {
761 struct i915_address_space
*vm
= rcu_access_pointer(ctx
->vm
);
763 if (unlikely(vm
&& vma
->vm
!= vm
))
764 err
= -EAGAIN
; /* user racing with ctx set-vm */
765 else if (likely(!i915_gem_context_is_closed(ctx
)))
766 err
= radix_tree_insert(&ctx
->handles_vma
, handle
, vma
);
769 if (err
== 0) { /* And nor has this handle */
770 struct drm_i915_gem_object
*obj
= vma
->obj
;
772 spin_lock(&obj
->lut_lock
);
773 if (idr_find(&eb
->file
->object_idr
, handle
) == obj
) {
774 list_add(&lut
->obj_link
, &obj
->lut_list
);
776 radix_tree_delete(&ctx
->handles_vma
, handle
);
779 spin_unlock(&obj
->lut_lock
);
781 mutex_unlock(&ctx
->lut_mutex
);
791 i915_lut_handle_free(lut
);
795 static struct i915_vma
*eb_lookup_vma(struct i915_execbuffer
*eb
, u32 handle
)
797 struct i915_address_space
*vm
= eb
->context
->vm
;
800 struct drm_i915_gem_object
*obj
;
801 struct i915_vma
*vma
;
805 vma
= radix_tree_lookup(&eb
->gem_context
->handles_vma
, handle
);
806 if (likely(vma
&& vma
->vm
== vm
))
807 vma
= i915_vma_tryget(vma
);
812 obj
= i915_gem_object_lookup(eb
->file
, handle
);
814 return ERR_PTR(-ENOENT
);
816 vma
= i915_vma_instance(obj
, vm
, NULL
);
818 i915_gem_object_put(obj
);
822 err
= __eb_add_lut(eb
, handle
, vma
);
826 i915_gem_object_put(obj
);
832 static int eb_lookup_vmas(struct i915_execbuffer
*eb
)
834 struct drm_i915_private
*i915
= eb
->i915
;
835 unsigned int batch
= eb_batch_index(eb
);
839 INIT_LIST_HEAD(&eb
->relocs
);
841 for (i
= 0; i
< eb
->buffer_count
; i
++) {
842 struct i915_vma
*vma
;
844 vma
= eb_lookup_vma(eb
, eb
->exec
[i
].handle
);
850 err
= eb_validate_vma(eb
, &eb
->exec
[i
], vma
);
856 eb_add_vma(eb
, i
, batch
, vma
);
859 if (unlikely(eb
->batch
->flags
& EXEC_OBJECT_WRITE
)) {
861 "Attempting to use self-modifying batch buffer\n");
865 if (range_overflows_t(u64
,
866 eb
->batch_start_offset
, eb
->batch_len
,
867 eb
->batch
->vma
->size
)) {
868 drm_dbg(&i915
->drm
, "Attempting to use out-of-bounds batch\n");
872 if (eb
->batch_len
== 0)
873 eb
->batch_len
= eb
->batch
->vma
->size
- eb
->batch_start_offset
;
874 if (unlikely(eb
->batch_len
== 0)) { /* impossible! */
875 drm_dbg(&i915
->drm
, "Invalid batch length\n");
882 eb
->vma
[i
].vma
= NULL
;
886 static int eb_validate_vmas(struct i915_execbuffer
*eb
)
891 INIT_LIST_HEAD(&eb
->unbound
);
893 for (i
= 0; i
< eb
->buffer_count
; i
++) {
894 struct drm_i915_gem_exec_object2
*entry
= &eb
->exec
[i
];
895 struct eb_vma
*ev
= &eb
->vma
[i
];
896 struct i915_vma
*vma
= ev
->vma
;
898 err
= i915_gem_object_lock(vma
->obj
, &eb
->ww
);
902 if (eb_pin_vma(eb
, entry
, ev
)) {
903 if (entry
->offset
!= vma
->node
.start
) {
904 entry
->offset
= vma
->node
.start
| UPDATE
;
905 eb
->args
->flags
|= __EXEC_HAS_RELOC
;
908 eb_unreserve_vma(ev
);
910 list_add_tail(&ev
->bind_link
, &eb
->unbound
);
911 if (drm_mm_node_allocated(&vma
->node
)) {
912 err
= i915_vma_unbind(vma
);
918 GEM_BUG_ON(drm_mm_node_allocated(&vma
->node
) &&
919 eb_vma_misplaced(&eb
->exec
[i
], vma
, ev
->flags
));
922 if (!list_empty(&eb
->unbound
))
923 return eb_reserve(eb
);
928 static struct eb_vma
*
929 eb_get_vma(const struct i915_execbuffer
*eb
, unsigned long handle
)
931 if (eb
->lut_size
< 0) {
932 if (handle
>= -eb
->lut_size
)
934 return &eb
->vma
[handle
];
936 struct hlist_head
*head
;
939 head
= &eb
->buckets
[hash_32(handle
, eb
->lut_size
)];
940 hlist_for_each_entry(ev
, head
, node
) {
941 if (ev
->handle
== handle
)
948 static void eb_release_vmas(struct i915_execbuffer
*eb
, bool final
)
950 const unsigned int count
= eb
->buffer_count
;
953 for (i
= 0; i
< count
; i
++) {
954 struct eb_vma
*ev
= &eb
->vma
[i
];
955 struct i915_vma
*vma
= ev
->vma
;
960 eb_unreserve_vma(ev
);
969 static void eb_destroy(const struct i915_execbuffer
*eb
)
971 GEM_BUG_ON(eb
->reloc_cache
.rq
);
973 if (eb
->lut_size
> 0)
978 relocation_target(const struct drm_i915_gem_relocation_entry
*reloc
,
979 const struct i915_vma
*target
)
981 return gen8_canonical_addr((int)reloc
->delta
+ target
->node
.start
);
984 static void reloc_cache_clear(struct reloc_cache
*cache
)
987 cache
->rq_cmd
= NULL
;
992 static void reloc_cache_init(struct reloc_cache
*cache
,
993 struct drm_i915_private
*i915
)
997 /* Must be a variable in the struct to allow GCC to unroll. */
998 cache
->gen
= INTEL_GEN(i915
);
999 cache
->has_llc
= HAS_LLC(i915
);
1000 cache
->use_64bit_reloc
= HAS_64BIT_RELOC(i915
);
1001 cache
->has_fence
= cache
->gen
< 4;
1002 cache
->needs_unfenced
= INTEL_INFO(i915
)->unfenced_needs_alignment
;
1003 cache
->node
.flags
= 0;
1004 reloc_cache_clear(cache
);
1007 static inline void *unmask_page(unsigned long p
)
1009 return (void *)(uintptr_t)(p
& PAGE_MASK
);
1012 static inline unsigned int unmask_flags(unsigned long p
)
1014 return p
& ~PAGE_MASK
;
1017 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1019 static inline struct i915_ggtt
*cache_to_ggtt(struct reloc_cache
*cache
)
1021 struct drm_i915_private
*i915
=
1022 container_of(cache
, struct i915_execbuffer
, reloc_cache
)->i915
;
1026 static void reloc_cache_put_pool(struct i915_execbuffer
*eb
, struct reloc_cache
*cache
)
1032 * This is a bit nasty, normally we keep objects locked until the end
1033 * of execbuffer, but we already submit this, and have to unlock before
1034 * dropping the reference. Fortunately we can only hold 1 pool node at
1035 * a time, so this should be harmless.
1037 i915_gem_ww_unlock_single(cache
->pool
->obj
);
1038 intel_gt_buffer_pool_put(cache
->pool
);
1042 static void reloc_gpu_flush(struct i915_execbuffer
*eb
, struct reloc_cache
*cache
)
1044 struct drm_i915_gem_object
*obj
= cache
->rq
->batch
->obj
;
1046 GEM_BUG_ON(cache
->rq_size
>= obj
->base
.size
/ sizeof(u32
));
1047 cache
->rq_cmd
[cache
->rq_size
] = MI_BATCH_BUFFER_END
;
1049 i915_gem_object_flush_map(obj
);
1050 i915_gem_object_unpin_map(obj
);
1052 intel_gt_chipset_flush(cache
->rq
->engine
->gt
);
1054 i915_request_add(cache
->rq
);
1055 reloc_cache_put_pool(eb
, cache
);
1056 reloc_cache_clear(cache
);
1058 eb
->reloc_pool
= NULL
;
1061 static void reloc_cache_reset(struct reloc_cache
*cache
, struct i915_execbuffer
*eb
)
1066 reloc_gpu_flush(eb
, cache
);
1071 vaddr
= unmask_page(cache
->vaddr
);
1072 if (cache
->vaddr
& KMAP
) {
1073 struct drm_i915_gem_object
*obj
=
1074 (struct drm_i915_gem_object
*)cache
->node
.mm
;
1075 if (cache
->vaddr
& CLFLUSH_AFTER
)
1078 kunmap_atomic(vaddr
);
1079 i915_gem_object_finish_access(obj
);
1081 struct i915_ggtt
*ggtt
= cache_to_ggtt(cache
);
1083 intel_gt_flush_ggtt_writes(ggtt
->vm
.gt
);
1084 io_mapping_unmap_atomic((void __iomem
*)vaddr
);
1086 if (drm_mm_node_allocated(&cache
->node
)) {
1087 ggtt
->vm
.clear_range(&ggtt
->vm
,
1090 mutex_lock(&ggtt
->vm
.mutex
);
1091 drm_mm_remove_node(&cache
->node
);
1092 mutex_unlock(&ggtt
->vm
.mutex
);
1094 i915_vma_unpin((struct i915_vma
*)cache
->node
.mm
);
1102 static void *reloc_kmap(struct drm_i915_gem_object
*obj
,
1103 struct reloc_cache
*cache
,
1104 unsigned long pageno
)
1110 kunmap_atomic(unmask_page(cache
->vaddr
));
1112 unsigned int flushes
;
1115 err
= i915_gem_object_prepare_write(obj
, &flushes
);
1117 return ERR_PTR(err
);
1119 BUILD_BUG_ON(KMAP
& CLFLUSH_FLAGS
);
1120 BUILD_BUG_ON((KMAP
| CLFLUSH_FLAGS
) & PAGE_MASK
);
1122 cache
->vaddr
= flushes
| KMAP
;
1123 cache
->node
.mm
= (void *)obj
;
1128 page
= i915_gem_object_get_page(obj
, pageno
);
1130 set_page_dirty(page
);
1132 vaddr
= kmap_atomic(page
);
1133 cache
->vaddr
= unmask_flags(cache
->vaddr
) | (unsigned long)vaddr
;
1134 cache
->page
= pageno
;
1139 static void *reloc_iomap(struct drm_i915_gem_object
*obj
,
1140 struct i915_execbuffer
*eb
,
1143 struct reloc_cache
*cache
= &eb
->reloc_cache
;
1144 struct i915_ggtt
*ggtt
= cache_to_ggtt(cache
);
1145 unsigned long offset
;
1149 intel_gt_flush_ggtt_writes(ggtt
->vm
.gt
);
1150 io_mapping_unmap_atomic((void __force __iomem
*) unmask_page(cache
->vaddr
));
1152 struct i915_vma
*vma
;
1155 if (i915_gem_object_is_tiled(obj
))
1156 return ERR_PTR(-EINVAL
);
1158 if (use_cpu_reloc(cache
, obj
))
1161 err
= i915_gem_object_set_to_gtt_domain(obj
, true);
1163 return ERR_PTR(err
);
1165 vma
= i915_gem_object_ggtt_pin_ww(obj
, &eb
->ww
, NULL
, 0, 0,
1167 PIN_NONBLOCK
/* NOWARN */ |
1169 if (vma
== ERR_PTR(-EDEADLK
))
1173 memset(&cache
->node
, 0, sizeof(cache
->node
));
1174 mutex_lock(&ggtt
->vm
.mutex
);
1175 err
= drm_mm_insert_node_in_range
1176 (&ggtt
->vm
.mm
, &cache
->node
,
1177 PAGE_SIZE
, 0, I915_COLOR_UNEVICTABLE
,
1178 0, ggtt
->mappable_end
,
1180 mutex_unlock(&ggtt
->vm
.mutex
);
1181 if (err
) /* no inactive aperture space, use cpu reloc */
1184 cache
->node
.start
= vma
->node
.start
;
1185 cache
->node
.mm
= (void *)vma
;
1189 offset
= cache
->node
.start
;
1190 if (drm_mm_node_allocated(&cache
->node
)) {
1191 ggtt
->vm
.insert_page(&ggtt
->vm
,
1192 i915_gem_object_get_dma_address(obj
, page
),
1193 offset
, I915_CACHE_NONE
, 0);
1195 offset
+= page
<< PAGE_SHIFT
;
1198 vaddr
= (void __force
*)io_mapping_map_atomic_wc(&ggtt
->iomap
,
1201 cache
->vaddr
= (unsigned long)vaddr
;
1206 static void *reloc_vaddr(struct drm_i915_gem_object
*obj
,
1207 struct i915_execbuffer
*eb
,
1210 struct reloc_cache
*cache
= &eb
->reloc_cache
;
1213 if (cache
->page
== page
) {
1214 vaddr
= unmask_page(cache
->vaddr
);
1217 if ((cache
->vaddr
& KMAP
) == 0)
1218 vaddr
= reloc_iomap(obj
, eb
, page
);
1220 vaddr
= reloc_kmap(obj
, cache
, page
);
1226 static void clflush_write32(u32
*addr
, u32 value
, unsigned int flushes
)
1228 if (unlikely(flushes
& (CLFLUSH_BEFORE
| CLFLUSH_AFTER
))) {
1229 if (flushes
& CLFLUSH_BEFORE
) {
1237 * Writes to the same cacheline are serialised by the CPU
1238 * (including clflush). On the write path, we only require
1239 * that it hits memory in an orderly fashion and place
1240 * mb barriers at the start and end of the relocation phase
1241 * to ensure ordering of clflush wrt to the system.
1243 if (flushes
& CLFLUSH_AFTER
)
1249 static int reloc_move_to_gpu(struct i915_request
*rq
, struct i915_vma
*vma
)
1251 struct drm_i915_gem_object
*obj
= vma
->obj
;
1254 assert_vma_held(vma
);
1256 if (obj
->cache_dirty
& ~obj
->cache_coherent
)
1257 i915_gem_clflush_object(obj
, 0);
1258 obj
->write_domain
= 0;
1260 err
= i915_request_await_object(rq
, vma
->obj
, true);
1262 err
= i915_vma_move_to_active(vma
, rq
, EXEC_OBJECT_WRITE
);
1267 static int __reloc_gpu_alloc(struct i915_execbuffer
*eb
,
1268 struct intel_engine_cs
*engine
,
1269 struct i915_vma
*vma
,
1272 struct reloc_cache
*cache
= &eb
->reloc_cache
;
1273 struct intel_gt_buffer_pool_node
*pool
= eb
->reloc_pool
;
1274 struct i915_request
*rq
;
1275 struct i915_vma
*batch
;
1280 pool
= intel_gt_get_buffer_pool(engine
->gt
, PAGE_SIZE
);
1282 return PTR_ERR(pool
);
1284 eb
->reloc_pool
= NULL
;
1286 err
= i915_gem_object_lock(pool
->obj
, &eb
->ww
);
1290 cmd
= i915_gem_object_pin_map(pool
->obj
,
1299 memset32(cmd
, 0, pool
->obj
->base
.size
/ sizeof(u32
));
1301 batch
= i915_vma_instance(pool
->obj
, vma
->vm
, NULL
);
1302 if (IS_ERR(batch
)) {
1303 err
= PTR_ERR(batch
);
1307 err
= i915_vma_pin_ww(batch
, &eb
->ww
, 0, 0, PIN_USER
| PIN_NONBLOCK
);
1311 if (engine
== eb
->context
->engine
) {
1312 rq
= i915_request_create(eb
->context
);
1314 struct intel_context
*ce
= eb
->reloc_context
;
1317 ce
= intel_context_create(engine
);
1323 i915_vm_put(ce
->vm
);
1324 ce
->vm
= i915_vm_get(eb
->context
->vm
);
1325 eb
->reloc_context
= ce
;
1328 err
= intel_context_pin_ww(ce
, &eb
->ww
);
1332 rq
= i915_request_create(ce
);
1333 intel_context_unpin(ce
);
1340 err
= intel_gt_buffer_pool_mark_active(pool
, rq
);
1344 err
= reloc_move_to_gpu(rq
, vma
);
1348 err
= eb
->engine
->emit_bb_start(rq
,
1349 batch
->node
.start
, PAGE_SIZE
,
1350 cache
->gen
> 5 ? 0 : I915_DISPATCH_SECURE
);
1354 assert_vma_held(batch
);
1355 err
= i915_request_await_object(rq
, batch
->obj
, false);
1357 err
= i915_vma_move_to_active(batch
, rq
, 0);
1362 i915_vma_unpin(batch
);
1365 cache
->rq_cmd
= cmd
;
1369 /* Return with batch mapping (cmd) still pinned */
1373 i915_request_set_error_once(rq
, err
);
1375 i915_request_add(rq
);
1377 i915_vma_unpin(batch
);
1379 i915_gem_object_unpin_map(pool
->obj
);
1381 eb
->reloc_pool
= pool
;
1385 static bool reloc_can_use_engine(const struct intel_engine_cs
*engine
)
1387 return engine
->class != VIDEO_DECODE_CLASS
|| !IS_GEN(engine
->i915
, 6);
1390 static u32
*reloc_gpu(struct i915_execbuffer
*eb
,
1391 struct i915_vma
*vma
,
1394 struct reloc_cache
*cache
= &eb
->reloc_cache
;
1397 if (cache
->rq_size
> PAGE_SIZE
/sizeof(u32
) - (len
+ 1))
1398 reloc_gpu_flush(eb
, cache
);
1400 if (unlikely(!cache
->rq
)) {
1402 struct intel_engine_cs
*engine
= eb
->engine
;
1404 if (!reloc_can_use_engine(engine
)) {
1405 engine
= engine
->gt
->engine_class
[COPY_ENGINE_CLASS
][0];
1407 return ERR_PTR(-ENODEV
);
1410 err
= __reloc_gpu_alloc(eb
, engine
, vma
, len
);
1412 return ERR_PTR(err
);
1415 cmd
= cache
->rq_cmd
+ cache
->rq_size
;
1416 cache
->rq_size
+= len
;
1421 static inline bool use_reloc_gpu(struct i915_vma
*vma
)
1423 if (DBG_FORCE_RELOC
== FORCE_GPU_RELOC
)
1426 if (DBG_FORCE_RELOC
)
1429 return !dma_resv_test_signaled_rcu(vma
->resv
, true);
1432 static unsigned long vma_phys_addr(struct i915_vma
*vma
, u32 offset
)
1437 GEM_BUG_ON(vma
->pages
!= vma
->obj
->mm
.pages
);
1439 page
= i915_gem_object_get_page(vma
->obj
, offset
>> PAGE_SHIFT
);
1440 addr
= PFN_PHYS(page_to_pfn(page
));
1441 GEM_BUG_ON(overflows_type(addr
, u32
)); /* expected dma32 */
1443 return addr
+ offset_in_page(offset
);
1446 static int __reloc_entry_gpu(struct i915_execbuffer
*eb
,
1447 struct i915_vma
*vma
,
1451 const unsigned int gen
= eb
->reloc_cache
.gen
;
1457 len
= offset
& 7 ? 8 : 5;
1463 batch
= reloc_gpu(eb
, vma
, len
);
1464 if (batch
== ERR_PTR(-EDEADLK
))
1466 else if (IS_ERR(batch
))
1469 addr
= gen8_canonical_addr(vma
->node
.start
+ offset
);
1472 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1473 *batch
++ = lower_32_bits(addr
);
1474 *batch
++ = upper_32_bits(addr
);
1475 *batch
++ = lower_32_bits(target_addr
);
1477 addr
= gen8_canonical_addr(addr
+ 4);
1479 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1480 *batch
++ = lower_32_bits(addr
);
1481 *batch
++ = upper_32_bits(addr
);
1482 *batch
++ = upper_32_bits(target_addr
);
1484 *batch
++ = (MI_STORE_DWORD_IMM_GEN4
| (1 << 21)) + 1;
1485 *batch
++ = lower_32_bits(addr
);
1486 *batch
++ = upper_32_bits(addr
);
1487 *batch
++ = lower_32_bits(target_addr
);
1488 *batch
++ = upper_32_bits(target_addr
);
1490 } else if (gen
>= 6) {
1491 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1494 *batch
++ = target_addr
;
1495 } else if (IS_I965G(eb
->i915
)) {
1496 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1498 *batch
++ = vma_phys_addr(vma
, offset
);
1499 *batch
++ = target_addr
;
1500 } else if (gen
>= 4) {
1501 *batch
++ = MI_STORE_DWORD_IMM_GEN4
| MI_USE_GGTT
;
1504 *batch
++ = target_addr
;
1505 } else if (gen
>= 3 &&
1506 !(IS_I915G(eb
->i915
) || IS_I915GM(eb
->i915
))) {
1507 *batch
++ = MI_STORE_DWORD_IMM
| MI_MEM_VIRTUAL
;
1509 *batch
++ = target_addr
;
1511 *batch
++ = MI_STORE_DWORD_IMM
;
1512 *batch
++ = vma_phys_addr(vma
, offset
);
1513 *batch
++ = target_addr
;
1519 static int reloc_entry_gpu(struct i915_execbuffer
*eb
,
1520 struct i915_vma
*vma
,
1524 if (eb
->reloc_cache
.vaddr
)
1527 if (!use_reloc_gpu(vma
))
1530 return __reloc_entry_gpu(eb
, vma
, offset
, target_addr
);
1534 relocate_entry(struct i915_vma
*vma
,
1535 const struct drm_i915_gem_relocation_entry
*reloc
,
1536 struct i915_execbuffer
*eb
,
1537 const struct i915_vma
*target
)
1539 u64 target_addr
= relocation_target(reloc
, target
);
1540 u64 offset
= reloc
->offset
;
1541 int reloc_gpu
= reloc_entry_gpu(eb
, vma
, offset
, target_addr
);
1547 bool wide
= eb
->reloc_cache
.use_64bit_reloc
;
1551 vaddr
= reloc_vaddr(vma
->obj
, eb
,
1552 offset
>> PAGE_SHIFT
);
1554 return PTR_ERR(vaddr
);
1556 GEM_BUG_ON(!IS_ALIGNED(offset
, sizeof(u32
)));
1557 clflush_write32(vaddr
+ offset_in_page(offset
),
1558 lower_32_bits(target_addr
),
1559 eb
->reloc_cache
.vaddr
);
1562 offset
+= sizeof(u32
);
1569 return target
->node
.start
| UPDATE
;
1573 eb_relocate_entry(struct i915_execbuffer
*eb
,
1575 const struct drm_i915_gem_relocation_entry
*reloc
)
1577 struct drm_i915_private
*i915
= eb
->i915
;
1578 struct eb_vma
*target
;
1581 /* we've already hold a reference to all valid objects */
1582 target
= eb_get_vma(eb
, reloc
->target_handle
);
1583 if (unlikely(!target
))
1586 /* Validate that the target is in a valid r/w GPU domain */
1587 if (unlikely(reloc
->write_domain
& (reloc
->write_domain
- 1))) {
1588 drm_dbg(&i915
->drm
, "reloc with multiple write domains: "
1589 "target %d offset %d "
1590 "read %08x write %08x",
1591 reloc
->target_handle
,
1592 (int) reloc
->offset
,
1593 reloc
->read_domains
,
1594 reloc
->write_domain
);
1597 if (unlikely((reloc
->write_domain
| reloc
->read_domains
)
1598 & ~I915_GEM_GPU_DOMAINS
)) {
1599 drm_dbg(&i915
->drm
, "reloc with read/write non-GPU domains: "
1600 "target %d offset %d "
1601 "read %08x write %08x",
1602 reloc
->target_handle
,
1603 (int) reloc
->offset
,
1604 reloc
->read_domains
,
1605 reloc
->write_domain
);
1609 if (reloc
->write_domain
) {
1610 target
->flags
|= EXEC_OBJECT_WRITE
;
1613 * Sandybridge PPGTT errata: We need a global gtt mapping
1614 * for MI and pipe_control writes because the gpu doesn't
1615 * properly redirect them through the ppgtt for non_secure
1618 if (reloc
->write_domain
== I915_GEM_DOMAIN_INSTRUCTION
&&
1619 IS_GEN(eb
->i915
, 6)) {
1620 err
= i915_vma_bind(target
->vma
,
1621 target
->vma
->obj
->cache_level
,
1629 * If the relocation already has the right value in it, no
1630 * more work needs to be done.
1632 if (!DBG_FORCE_RELOC
&&
1633 gen8_canonical_addr(target
->vma
->node
.start
) == reloc
->presumed_offset
)
1636 /* Check that the relocation address is valid... */
1637 if (unlikely(reloc
->offset
>
1638 ev
->vma
->size
- (eb
->reloc_cache
.use_64bit_reloc
? 8 : 4))) {
1639 drm_dbg(&i915
->drm
, "Relocation beyond object bounds: "
1640 "target %d offset %d size %d.\n",
1641 reloc
->target_handle
,
1643 (int)ev
->vma
->size
);
1646 if (unlikely(reloc
->offset
& 3)) {
1647 drm_dbg(&i915
->drm
, "Relocation not 4-byte aligned: "
1648 "target %d offset %d.\n",
1649 reloc
->target_handle
,
1650 (int)reloc
->offset
);
1655 * If we write into the object, we need to force the synchronisation
1656 * barrier, either with an asynchronous clflush or if we executed the
1657 * patching using the GPU (though that should be serialised by the
1658 * timeline). To be completely sure, and since we are required to
1659 * do relocations we are already stalling, disable the user's opt
1660 * out of our synchronisation.
1662 ev
->flags
&= ~EXEC_OBJECT_ASYNC
;
1664 /* and update the user's relocation entry */
1665 return relocate_entry(ev
->vma
, reloc
, eb
, target
->vma
);
1668 static int eb_relocate_vma(struct i915_execbuffer
*eb
, struct eb_vma
*ev
)
1670 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1671 struct drm_i915_gem_relocation_entry stack
[N_RELOC(512)];
1672 const struct drm_i915_gem_exec_object2
*entry
= ev
->exec
;
1673 struct drm_i915_gem_relocation_entry __user
*urelocs
=
1674 u64_to_user_ptr(entry
->relocs_ptr
);
1675 unsigned long remain
= entry
->relocation_count
;
1677 if (unlikely(remain
> N_RELOC(ULONG_MAX
)))
1681 * We must check that the entire relocation array is safe
1682 * to read. However, if the array is not writable the user loses
1683 * the updated relocation values.
1685 if (unlikely(!access_ok(urelocs
, remain
* sizeof(*urelocs
))))
1689 struct drm_i915_gem_relocation_entry
*r
= stack
;
1690 unsigned int count
=
1691 min_t(unsigned long, remain
, ARRAY_SIZE(stack
));
1692 unsigned int copied
;
1695 * This is the fast path and we cannot handle a pagefault
1696 * whilst holding the struct mutex lest the user pass in the
1697 * relocations contained within a mmaped bo. For in such a case
1698 * we, the page fault handler would call i915_gem_fault() and
1699 * we would try to acquire the struct mutex again. Obviously
1700 * this is bad and so lockdep complains vehemently.
1702 pagefault_disable();
1703 copied
= __copy_from_user_inatomic(r
, urelocs
, count
* sizeof(r
[0]));
1705 if (unlikely(copied
)) {
1712 u64 offset
= eb_relocate_entry(eb
, ev
, r
);
1714 if (likely(offset
== 0)) {
1715 } else if ((s64
)offset
< 0) {
1716 remain
= (int)offset
;
1720 * Note that reporting an error now
1721 * leaves everything in an inconsistent
1722 * state as we have *already* changed
1723 * the relocation value inside the
1724 * object. As we have not changed the
1725 * reloc.presumed_offset or will not
1726 * change the execobject.offset, on the
1727 * call we may not rewrite the value
1728 * inside the object, leaving it
1729 * dangling and causing a GPU hang. Unless
1730 * userspace dynamically rebuilds the
1731 * relocations on each execbuf rather than
1732 * presume a static tree.
1734 * We did previously check if the relocations
1735 * were writable (access_ok), an error now
1736 * would be a strange race with mprotect,
1737 * having already demonstrated that we
1738 * can read from this userspace address.
1740 offset
= gen8_canonical_addr(offset
& ~UPDATE
);
1742 &urelocs
[r
- stack
].presumed_offset
);
1744 } while (r
++, --count
);
1745 urelocs
+= ARRAY_SIZE(stack
);
1748 reloc_cache_reset(&eb
->reloc_cache
, eb
);
1753 eb_relocate_vma_slow(struct i915_execbuffer
*eb
, struct eb_vma
*ev
)
1755 const struct drm_i915_gem_exec_object2
*entry
= ev
->exec
;
1756 struct drm_i915_gem_relocation_entry
*relocs
=
1757 u64_to_ptr(typeof(*relocs
), entry
->relocs_ptr
);
1761 for (i
= 0; i
< entry
->relocation_count
; i
++) {
1762 u64 offset
= eb_relocate_entry(eb
, ev
, &relocs
[i
]);
1764 if ((s64
)offset
< 0) {
1771 reloc_cache_reset(&eb
->reloc_cache
, eb
);
1775 static int check_relocations(const struct drm_i915_gem_exec_object2
*entry
)
1777 const char __user
*addr
, *end
;
1779 char __maybe_unused c
;
1781 size
= entry
->relocation_count
;
1785 if (size
> N_RELOC(ULONG_MAX
))
1788 addr
= u64_to_user_ptr(entry
->relocs_ptr
);
1789 size
*= sizeof(struct drm_i915_gem_relocation_entry
);
1790 if (!access_ok(addr
, size
))
1794 for (; addr
< end
; addr
+= PAGE_SIZE
) {
1795 int err
= __get_user(c
, addr
);
1799 return __get_user(c
, end
- 1);
1802 static int eb_copy_relocations(const struct i915_execbuffer
*eb
)
1804 struct drm_i915_gem_relocation_entry
*relocs
;
1805 const unsigned int count
= eb
->buffer_count
;
1809 for (i
= 0; i
< count
; i
++) {
1810 const unsigned int nreloc
= eb
->exec
[i
].relocation_count
;
1811 struct drm_i915_gem_relocation_entry __user
*urelocs
;
1813 unsigned long copied
;
1818 err
= check_relocations(&eb
->exec
[i
]);
1822 urelocs
= u64_to_user_ptr(eb
->exec
[i
].relocs_ptr
);
1823 size
= nreloc
* sizeof(*relocs
);
1825 relocs
= kvmalloc_array(size
, 1, GFP_KERNEL
);
1831 /* copy_from_user is limited to < 4GiB */
1835 min_t(u64
, BIT_ULL(31), size
- copied
);
1837 if (__copy_from_user((char *)relocs
+ copied
,
1838 (char __user
*)urelocs
+ copied
,
1843 } while (copied
< size
);
1846 * As we do not update the known relocation offsets after
1847 * relocating (due to the complexities in lock handling),
1848 * we need to mark them as invalid now so that we force the
1849 * relocation processing next time. Just in case the target
1850 * object is evicted and then rebound into its old
1851 * presumed_offset before the next execbuffer - if that
1852 * happened we would make the mistake of assuming that the
1853 * relocations were valid.
1855 if (!user_access_begin(urelocs
, size
))
1858 for (copied
= 0; copied
< nreloc
; copied
++)
1860 &urelocs
[copied
].presumed_offset
,
1864 eb
->exec
[i
].relocs_ptr
= (uintptr_t)relocs
;
1876 relocs
= u64_to_ptr(typeof(*relocs
), eb
->exec
[i
].relocs_ptr
);
1877 if (eb
->exec
[i
].relocation_count
)
1883 static int eb_prefault_relocations(const struct i915_execbuffer
*eb
)
1885 const unsigned int count
= eb
->buffer_count
;
1888 for (i
= 0; i
< count
; i
++) {
1891 err
= check_relocations(&eb
->exec
[i
]);
1899 static noinline
int eb_relocate_parse_slow(struct i915_execbuffer
*eb
,
1900 struct i915_request
*rq
)
1902 bool have_copy
= false;
1907 if (signal_pending(current
)) {
1912 /* We may process another execbuffer during the unlock... */
1913 eb_release_vmas(eb
, false);
1914 i915_gem_ww_ctx_fini(&eb
->ww
);
1917 /* nonblocking is always false */
1918 if (i915_request_wait(rq
, I915_WAIT_INTERRUPTIBLE
,
1919 MAX_SCHEDULE_TIMEOUT
) < 0) {
1920 i915_request_put(rq
);
1927 i915_request_put(rq
);
1932 * We take 3 passes through the slowpatch.
1934 * 1 - we try to just prefault all the user relocation entries and
1935 * then attempt to reuse the atomic pagefault disabled fast path again.
1937 * 2 - we copy the user entries to a local buffer here outside of the
1938 * local and allow ourselves to wait upon any rendering before
1941 * 3 - we already have a local copy of the relocation entries, but
1942 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1945 err
= eb_prefault_relocations(eb
);
1946 } else if (!have_copy
) {
1947 err
= eb_copy_relocations(eb
);
1948 have_copy
= err
== 0;
1955 flush_workqueue(eb
->i915
->mm
.userptr_wq
);
1958 i915_gem_ww_ctx_init(&eb
->ww
, true);
1962 /* reacquire the objects */
1964 rq
= eb_pin_engine(eb
, false);
1971 /* We didn't throttle, should be NULL */
1974 err
= eb_validate_vmas(eb
);
1978 GEM_BUG_ON(!eb
->batch
);
1980 list_for_each_entry(ev
, &eb
->relocs
, reloc_link
) {
1982 pagefault_disable();
1983 err
= eb_relocate_vma(eb
, ev
);
1988 err
= eb_relocate_vma_slow(eb
, ev
);
1994 if (err
== -EDEADLK
)
1997 if (err
&& !have_copy
)
2003 /* as last step, parse the command buffer */
2009 * Leave the user relocations as are, this is the painfully slow path,
2010 * and we want to avoid the complication of dropping the lock whilst
2011 * having buffers reserved in the aperture and so causing spurious
2012 * ENOSPC for random operations.
2016 if (err
== -EDEADLK
) {
2017 eb_release_vmas(eb
, false);
2018 err
= i915_gem_ww_ctx_backoff(&eb
->ww
);
2020 goto repeat_validate
;
2028 const unsigned int count
= eb
->buffer_count
;
2031 for (i
= 0; i
< count
; i
++) {
2032 const struct drm_i915_gem_exec_object2
*entry
=
2034 struct drm_i915_gem_relocation_entry
*relocs
;
2036 if (!entry
->relocation_count
)
2039 relocs
= u64_to_ptr(typeof(*relocs
), entry
->relocs_ptr
);
2045 i915_request_put(rq
);
2050 static int eb_relocate_parse(struct i915_execbuffer
*eb
)
2053 struct i915_request
*rq
= NULL
;
2054 bool throttle
= true;
2057 rq
= eb_pin_engine(eb
, throttle
);
2061 if (err
!= -EDEADLK
)
2068 bool nonblock
= eb
->file
->filp
->f_flags
& O_NONBLOCK
;
2070 /* Need to drop all locks now for throttling, take slowpath */
2071 err
= i915_request_wait(rq
, I915_WAIT_INTERRUPTIBLE
, 0);
2072 if (err
== -ETIME
) {
2075 i915_request_put(rq
);
2080 i915_request_put(rq
);
2084 /* only throttle once, even if we didn't need to throttle */
2087 err
= eb_validate_vmas(eb
);
2093 /* The objects are in their final locations, apply the relocations. */
2094 if (eb
->args
->flags
& __EXEC_HAS_RELOC
) {
2097 list_for_each_entry(ev
, &eb
->relocs
, reloc_link
) {
2098 err
= eb_relocate_vma(eb
, ev
);
2103 if (err
== -EDEADLK
)
2113 if (err
== -EDEADLK
) {
2114 eb_release_vmas(eb
, false);
2115 err
= i915_gem_ww_ctx_backoff(&eb
->ww
);
2123 err
= eb_relocate_parse_slow(eb
, rq
);
2126 * If the user expects the execobject.offset and
2127 * reloc.presumed_offset to be an exact match,
2128 * as for using NO_RELOC, then we cannot update
2129 * the execobject.offset until we have completed
2132 eb
->args
->flags
&= ~__EXEC_HAS_RELOC
;
2137 static int eb_move_to_gpu(struct i915_execbuffer
*eb
)
2139 const unsigned int count
= eb
->buffer_count
;
2140 unsigned int i
= count
;
2144 struct eb_vma
*ev
= &eb
->vma
[i
];
2145 struct i915_vma
*vma
= ev
->vma
;
2146 unsigned int flags
= ev
->flags
;
2147 struct drm_i915_gem_object
*obj
= vma
->obj
;
2149 assert_vma_held(vma
);
2151 if (flags
& EXEC_OBJECT_CAPTURE
) {
2152 struct i915_capture_list
*capture
;
2154 capture
= kmalloc(sizeof(*capture
), GFP_KERNEL
);
2156 capture
->next
= eb
->request
->capture_list
;
2158 eb
->request
->capture_list
= capture
;
2163 * If the GPU is not _reading_ through the CPU cache, we need
2164 * to make sure that any writes (both previous GPU writes from
2165 * before a change in snooping levels and normal CPU writes)
2166 * caught in that cache are flushed to main memory.
2169 * obj->cache_dirty &&
2170 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2171 * but gcc's optimiser doesn't handle that as well and emits
2172 * two jumps instead of one. Maybe one day...
2174 if (unlikely(obj
->cache_dirty
& ~obj
->cache_coherent
)) {
2175 if (i915_gem_clflush_object(obj
, 0))
2176 flags
&= ~EXEC_OBJECT_ASYNC
;
2179 if (err
== 0 && !(flags
& EXEC_OBJECT_ASYNC
)) {
2180 err
= i915_request_await_object
2181 (eb
->request
, obj
, flags
& EXEC_OBJECT_WRITE
);
2185 err
= i915_vma_move_to_active(vma
, eb
->request
, flags
);
2191 /* Unconditionally flush any chipset caches (for streaming writes). */
2192 intel_gt_chipset_flush(eb
->engine
->gt
);
2196 i915_request_set_error_once(eb
->request
, err
);
2200 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2
*exec
)
2202 if (exec
->flags
& __I915_EXEC_ILLEGAL_FLAGS
)
2205 /* Kernel clipping was a DRI1 misfeature */
2206 if (!(exec
->flags
& (I915_EXEC_FENCE_ARRAY
|
2207 I915_EXEC_USE_EXTENSIONS
))) {
2208 if (exec
->num_cliprects
|| exec
->cliprects_ptr
)
2212 if (exec
->DR4
== 0xffffffff) {
2213 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2216 if (exec
->DR1
|| exec
->DR4
)
2219 if ((exec
->batch_start_offset
| exec
->batch_len
) & 0x7)
2225 static int i915_reset_gen7_sol_offsets(struct i915_request
*rq
)
2230 if (!IS_GEN(rq
->engine
->i915
, 7) || rq
->engine
->id
!= RCS0
) {
2231 drm_dbg(&rq
->engine
->i915
->drm
, "sol reset is gen7/rcs only\n");
2235 cs
= intel_ring_begin(rq
, 4 * 2 + 2);
2239 *cs
++ = MI_LOAD_REGISTER_IMM(4);
2240 for (i
= 0; i
< 4; i
++) {
2241 *cs
++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i
));
2245 intel_ring_advance(rq
, cs
);
2250 static struct i915_vma
*
2251 shadow_batch_pin(struct i915_execbuffer
*eb
,
2252 struct drm_i915_gem_object
*obj
,
2253 struct i915_address_space
*vm
,
2256 struct i915_vma
*vma
;
2259 vma
= i915_vma_instance(obj
, vm
, NULL
);
2263 err
= i915_vma_pin_ww(vma
, &eb
->ww
, 0, 0, flags
);
2265 return ERR_PTR(err
);
2270 struct eb_parse_work
{
2271 struct dma_fence_work base
;
2272 struct intel_engine_cs
*engine
;
2273 struct i915_vma
*batch
;
2274 struct i915_vma
*shadow
;
2275 struct i915_vma
*trampoline
;
2276 unsigned long batch_offset
;
2277 unsigned long batch_length
;
2280 static int __eb_parse(struct dma_fence_work
*work
)
2282 struct eb_parse_work
*pw
= container_of(work
, typeof(*pw
), base
);
2284 return intel_engine_cmd_parser(pw
->engine
,
2292 static void __eb_parse_release(struct dma_fence_work
*work
)
2294 struct eb_parse_work
*pw
= container_of(work
, typeof(*pw
), base
);
2297 i915_active_release(&pw
->trampoline
->active
);
2298 i915_active_release(&pw
->shadow
->active
);
2299 i915_active_release(&pw
->batch
->active
);
2302 static const struct dma_fence_work_ops eb_parse_ops
= {
2305 .release
= __eb_parse_release
,
2309 __parser_mark_active(struct i915_vma
*vma
,
2310 struct intel_timeline
*tl
,
2311 struct dma_fence
*fence
)
2313 struct intel_gt_buffer_pool_node
*node
= vma
->private;
2315 return i915_active_ref(&node
->active
, tl
->fence_context
, fence
);
2319 parser_mark_active(struct eb_parse_work
*pw
, struct intel_timeline
*tl
)
2323 mutex_lock(&tl
->mutex
);
2325 err
= __parser_mark_active(pw
->shadow
, tl
, &pw
->base
.dma
);
2329 if (pw
->trampoline
) {
2330 err
= __parser_mark_active(pw
->trampoline
, tl
, &pw
->base
.dma
);
2336 mutex_unlock(&tl
->mutex
);
2340 static int eb_parse_pipeline(struct i915_execbuffer
*eb
,
2341 struct i915_vma
*shadow
,
2342 struct i915_vma
*trampoline
)
2344 struct eb_parse_work
*pw
;
2347 GEM_BUG_ON(overflows_type(eb
->batch_start_offset
, pw
->batch_offset
));
2348 GEM_BUG_ON(overflows_type(eb
->batch_len
, pw
->batch_length
));
2350 pw
= kzalloc(sizeof(*pw
), GFP_KERNEL
);
2354 err
= i915_active_acquire(&eb
->batch
->vma
->active
);
2358 err
= i915_active_acquire(&shadow
->active
);
2363 err
= i915_active_acquire(&trampoline
->active
);
2368 dma_fence_work_init(&pw
->base
, &eb_parse_ops
);
2370 pw
->engine
= eb
->engine
;
2371 pw
->batch
= eb
->batch
->vma
;
2372 pw
->batch_offset
= eb
->batch_start_offset
;
2373 pw
->batch_length
= eb
->batch_len
;
2374 pw
->shadow
= shadow
;
2375 pw
->trampoline
= trampoline
;
2377 /* Mark active refs early for this worker, in case we get interrupted */
2378 err
= parser_mark_active(pw
, eb
->context
->timeline
);
2382 err
= dma_resv_reserve_shared(pw
->batch
->resv
, 1);
2386 /* Wait for all writes (and relocs) into the batch to complete */
2387 err
= i915_sw_fence_await_reservation(&pw
->base
.chain
,
2388 pw
->batch
->resv
, NULL
, false,
2393 /* Keep the batch alive and unwritten as we parse */
2394 dma_resv_add_shared_fence(pw
->batch
->resv
, &pw
->base
.dma
);
2396 /* Force execution to wait for completion of the parser */
2397 dma_resv_add_excl_fence(shadow
->resv
, &pw
->base
.dma
);
2399 dma_fence_work_commit_imm(&pw
->base
);
2403 i915_sw_fence_set_error_once(&pw
->base
.chain
, err
);
2404 dma_fence_work_commit_imm(&pw
->base
);
2408 i915_active_release(&shadow
->active
);
2410 i915_active_release(&eb
->batch
->vma
->active
);
2416 static struct i915_vma
*eb_dispatch_secure(struct i915_execbuffer
*eb
, struct i915_vma
*vma
)
2419 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2420 * batch" bit. Hence we need to pin secure batches into the global gtt.
2421 * hsw should have this fixed, but bdw mucks it up again. */
2422 if (eb
->batch_flags
& I915_DISPATCH_SECURE
)
2423 return i915_gem_object_ggtt_pin_ww(vma
->obj
, &eb
->ww
, NULL
, 0, 0, 0);
2428 static int eb_parse(struct i915_execbuffer
*eb
)
2430 struct drm_i915_private
*i915
= eb
->i915
;
2431 struct intel_gt_buffer_pool_node
*pool
= eb
->batch_pool
;
2432 struct i915_vma
*shadow
, *trampoline
, *batch
;
2436 if (!eb_use_cmdparser(eb
)) {
2437 batch
= eb_dispatch_secure(eb
, eb
->batch
->vma
);
2439 return PTR_ERR(batch
);
2444 len
= eb
->batch_len
;
2445 if (!CMDPARSER_USES_GGTT(eb
->i915
)) {
2447 * ppGTT backed shadow buffers must be mapped RO, to prevent
2448 * post-scan tampering
2450 if (!eb
->context
->vm
->has_read_only
) {
2452 "Cannot prevent post-scan tampering without RO capable vm\n");
2456 len
+= I915_CMD_PARSER_TRAMPOLINE_SIZE
;
2458 if (unlikely(len
< eb
->batch_len
)) /* last paranoid check of overflow */
2462 pool
= intel_gt_get_buffer_pool(eb
->engine
->gt
, len
);
2464 return PTR_ERR(pool
);
2465 eb
->batch_pool
= pool
;
2468 err
= i915_gem_object_lock(pool
->obj
, &eb
->ww
);
2472 shadow
= shadow_batch_pin(eb
, pool
->obj
, eb
->context
->vm
, PIN_USER
);
2473 if (IS_ERR(shadow
)) {
2474 err
= PTR_ERR(shadow
);
2477 i915_gem_object_set_readonly(shadow
->obj
);
2478 shadow
->private = pool
;
2481 if (CMDPARSER_USES_GGTT(eb
->i915
)) {
2482 trampoline
= shadow
;
2484 shadow
= shadow_batch_pin(eb
, pool
->obj
,
2485 &eb
->engine
->gt
->ggtt
->vm
,
2487 if (IS_ERR(shadow
)) {
2488 err
= PTR_ERR(shadow
);
2489 shadow
= trampoline
;
2492 shadow
->private = pool
;
2494 eb
->batch_flags
|= I915_DISPATCH_SECURE
;
2497 batch
= eb_dispatch_secure(eb
, shadow
);
2498 if (IS_ERR(batch
)) {
2499 err
= PTR_ERR(batch
);
2500 goto err_trampoline
;
2503 err
= eb_parse_pipeline(eb
, shadow
, trampoline
);
2505 goto err_unpin_batch
;
2507 eb
->batch
= &eb
->vma
[eb
->buffer_count
++];
2508 eb
->batch
->vma
= i915_vma_get(shadow
);
2509 eb
->batch
->flags
= __EXEC_OBJECT_HAS_PIN
;
2511 eb
->trampoline
= trampoline
;
2512 eb
->batch_start_offset
= 0;
2516 eb
->batch
= &eb
->vma
[eb
->buffer_count
++];
2517 eb
->batch
->flags
= __EXEC_OBJECT_HAS_PIN
;
2518 eb
->batch
->vma
= i915_vma_get(batch
);
2524 i915_vma_unpin(batch
);
2527 i915_vma_unpin(trampoline
);
2529 i915_vma_unpin(shadow
);
2534 static int eb_submit(struct i915_execbuffer
*eb
, struct i915_vma
*batch
)
2538 err
= eb_move_to_gpu(eb
);
2542 if (eb
->args
->flags
& I915_EXEC_GEN7_SOL_RESET
) {
2543 err
= i915_reset_gen7_sol_offsets(eb
->request
);
2549 * After we completed waiting for other engines (using HW semaphores)
2550 * then we can signal that this request/batch is ready to run. This
2551 * allows us to determine if the batch is still waiting on the GPU
2552 * or actually running by checking the breadcrumb.
2554 if (eb
->engine
->emit_init_breadcrumb
) {
2555 err
= eb
->engine
->emit_init_breadcrumb(eb
->request
);
2560 err
= eb
->engine
->emit_bb_start(eb
->request
,
2562 eb
->batch_start_offset
,
2568 if (eb
->trampoline
) {
2569 GEM_BUG_ON(eb
->batch_start_offset
);
2570 err
= eb
->engine
->emit_bb_start(eb
->request
,
2571 eb
->trampoline
->node
.start
+
2578 if (intel_context_nopreempt(eb
->context
))
2579 __set_bit(I915_FENCE_FLAG_NOPREEMPT
, &eb
->request
->fence
.flags
);
2584 static int num_vcs_engines(const struct drm_i915_private
*i915
)
2586 return hweight64(VDBOX_MASK(&i915
->gt
));
2590 * Find one BSD ring to dispatch the corresponding BSD command.
2591 * The engine index is returned.
2594 gen8_dispatch_bsd_engine(struct drm_i915_private
*dev_priv
,
2595 struct drm_file
*file
)
2597 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
2599 /* Check whether the file_priv has already selected one ring. */
2600 if ((int)file_priv
->bsd_engine
< 0)
2601 file_priv
->bsd_engine
=
2602 get_random_int() % num_vcs_engines(dev_priv
);
2604 return file_priv
->bsd_engine
;
2607 static const enum intel_engine_id user_ring_map
[] = {
2608 [I915_EXEC_DEFAULT
] = RCS0
,
2609 [I915_EXEC_RENDER
] = RCS0
,
2610 [I915_EXEC_BLT
] = BCS0
,
2611 [I915_EXEC_BSD
] = VCS0
,
2612 [I915_EXEC_VEBOX
] = VECS0
2615 static struct i915_request
*eb_throttle(struct i915_execbuffer
*eb
, struct intel_context
*ce
)
2617 struct intel_ring
*ring
= ce
->ring
;
2618 struct intel_timeline
*tl
= ce
->timeline
;
2619 struct i915_request
*rq
;
2622 * Completely unscientific finger-in-the-air estimates for suitable
2623 * maximum user request size (to avoid blocking) and then backoff.
2625 if (intel_ring_update_space(ring
) >= PAGE_SIZE
)
2629 * Find a request that after waiting upon, there will be at least half
2630 * the ring available. The hysteresis allows us to compete for the
2631 * shared ring and should mean that we sleep less often prior to
2632 * claiming our resources, but not so long that the ring completely
2633 * drains before we can submit our next request.
2635 list_for_each_entry(rq
, &tl
->requests
, link
) {
2636 if (rq
->ring
!= ring
)
2639 if (__intel_ring_space(rq
->postfix
,
2640 ring
->emit
, ring
->size
) > ring
->size
/ 2)
2643 if (&rq
->link
== &tl
->requests
)
2644 return NULL
; /* weird, we will check again later for real */
2646 return i915_request_get(rq
);
2649 static struct i915_request
*eb_pin_engine(struct i915_execbuffer
*eb
, bool throttle
)
2651 struct intel_context
*ce
= eb
->context
;
2652 struct intel_timeline
*tl
;
2653 struct i915_request
*rq
= NULL
;
2656 GEM_BUG_ON(eb
->args
->flags
& __EXEC_ENGINE_PINNED
);
2658 if (unlikely(intel_context_is_banned(ce
)))
2659 return ERR_PTR(-EIO
);
2662 * Pinning the contexts may generate requests in order to acquire
2663 * GGTT space, so do this first before we reserve a seqno for
2666 err
= intel_context_pin_ww(ce
, &eb
->ww
);
2668 return ERR_PTR(err
);
2671 * Take a local wakeref for preparing to dispatch the execbuf as
2672 * we expect to access the hardware fairly frequently in the
2673 * process, and require the engine to be kept awake between accesses.
2674 * Upon dispatch, we acquire another prolonged wakeref that we hold
2675 * until the timeline is idle, which in turn releases the wakeref
2676 * taken on the engine, and the parent device.
2678 tl
= intel_context_timeline_lock(ce
);
2680 intel_context_unpin(ce
);
2681 return ERR_CAST(tl
);
2684 intel_context_enter(ce
);
2686 rq
= eb_throttle(eb
, ce
);
2687 intel_context_timeline_unlock(tl
);
2689 eb
->args
->flags
|= __EXEC_ENGINE_PINNED
;
2693 static void eb_unpin_engine(struct i915_execbuffer
*eb
)
2695 struct intel_context
*ce
= eb
->context
;
2696 struct intel_timeline
*tl
= ce
->timeline
;
2698 if (!(eb
->args
->flags
& __EXEC_ENGINE_PINNED
))
2701 eb
->args
->flags
&= ~__EXEC_ENGINE_PINNED
;
2703 mutex_lock(&tl
->mutex
);
2704 intel_context_exit(ce
);
2705 mutex_unlock(&tl
->mutex
);
2707 intel_context_unpin(ce
);
2711 eb_select_legacy_ring(struct i915_execbuffer
*eb
)
2713 struct drm_i915_private
*i915
= eb
->i915
;
2714 struct drm_i915_gem_execbuffer2
*args
= eb
->args
;
2715 unsigned int user_ring_id
= args
->flags
& I915_EXEC_RING_MASK
;
2717 if (user_ring_id
!= I915_EXEC_BSD
&&
2718 (args
->flags
& I915_EXEC_BSD_MASK
)) {
2720 "execbuf with non bsd ring but with invalid "
2721 "bsd dispatch flags: %d\n", (int)(args
->flags
));
2725 if (user_ring_id
== I915_EXEC_BSD
&& num_vcs_engines(i915
) > 1) {
2726 unsigned int bsd_idx
= args
->flags
& I915_EXEC_BSD_MASK
;
2728 if (bsd_idx
== I915_EXEC_BSD_DEFAULT
) {
2729 bsd_idx
= gen8_dispatch_bsd_engine(i915
, eb
->file
);
2730 } else if (bsd_idx
>= I915_EXEC_BSD_RING1
&&
2731 bsd_idx
<= I915_EXEC_BSD_RING2
) {
2732 bsd_idx
>>= I915_EXEC_BSD_SHIFT
;
2736 "execbuf with unknown bsd ring: %u\n",
2741 return _VCS(bsd_idx
);
2744 if (user_ring_id
>= ARRAY_SIZE(user_ring_map
)) {
2745 drm_dbg(&i915
->drm
, "execbuf with unknown ring: %u\n",
2750 return user_ring_map
[user_ring_id
];
2754 eb_select_engine(struct i915_execbuffer
*eb
)
2756 struct intel_context
*ce
;
2760 if (i915_gem_context_user_engines(eb
->gem_context
))
2761 idx
= eb
->args
->flags
& I915_EXEC_RING_MASK
;
2763 idx
= eb_select_legacy_ring(eb
);
2765 ce
= i915_gem_context_get_engine(eb
->gem_context
, idx
);
2769 intel_gt_pm_get(ce
->engine
->gt
);
2771 if (!test_bit(CONTEXT_ALLOC_BIT
, &ce
->flags
)) {
2772 err
= intel_context_alloc_state(ce
);
2778 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2779 * EIO if the GPU is already wedged.
2781 err
= intel_gt_terminally_wedged(ce
->engine
->gt
);
2786 eb
->engine
= ce
->engine
;
2789 * Make sure engine pool stays alive even if we call intel_context_put
2790 * during ww handling. The pool is destroyed when last pm reference
2791 * is dropped, which breaks our -EDEADLK handling.
2796 intel_gt_pm_put(ce
->engine
->gt
);
2797 intel_context_put(ce
);
2802 eb_put_engine(struct i915_execbuffer
*eb
)
2804 intel_gt_pm_put(eb
->engine
->gt
);
2805 intel_context_put(eb
->context
);
2809 __free_fence_array(struct eb_fence
*fences
, unsigned int n
)
2812 drm_syncobj_put(ptr_mask_bits(fences
[n
].syncobj
, 2));
2813 dma_fence_put(fences
[n
].dma_fence
);
2814 kfree(fences
[n
].chain_fence
);
2820 add_timeline_fence_array(struct i915_execbuffer
*eb
,
2821 const struct drm_i915_gem_execbuffer_ext_timeline_fences
*timeline_fences
)
2823 struct drm_i915_gem_exec_fence __user
*user_fences
;
2824 u64 __user
*user_values
;
2829 nfences
= timeline_fences
->fence_count
;
2833 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2834 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2835 if (nfences
> min_t(unsigned long,
2836 ULONG_MAX
/ sizeof(*user_fences
),
2837 SIZE_MAX
/ sizeof(*f
)) - eb
->num_fences
)
2840 user_fences
= u64_to_user_ptr(timeline_fences
->handles_ptr
);
2841 if (!access_ok(user_fences
, nfences
* sizeof(*user_fences
)))
2844 user_values
= u64_to_user_ptr(timeline_fences
->values_ptr
);
2845 if (!access_ok(user_values
, nfences
* sizeof(*user_values
)))
2848 f
= krealloc(eb
->fences
,
2849 (eb
->num_fences
+ nfences
) * sizeof(*f
),
2850 __GFP_NOWARN
| GFP_KERNEL
);
2855 f
+= eb
->num_fences
;
2857 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN
- 1) &
2858 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS
);
2861 struct drm_i915_gem_exec_fence user_fence
;
2862 struct drm_syncobj
*syncobj
;
2863 struct dma_fence
*fence
= NULL
;
2866 if (__copy_from_user(&user_fence
,
2868 sizeof(user_fence
)))
2871 if (user_fence
.flags
& __I915_EXEC_FENCE_UNKNOWN_FLAGS
)
2874 if (__get_user(point
, user_values
++))
2877 syncobj
= drm_syncobj_find(eb
->file
, user_fence
.handle
);
2879 DRM_DEBUG("Invalid syncobj handle provided\n");
2883 fence
= drm_syncobj_fence_get(syncobj
);
2885 if (!fence
&& user_fence
.flags
&&
2886 !(user_fence
.flags
& I915_EXEC_FENCE_SIGNAL
)) {
2887 DRM_DEBUG("Syncobj handle has no fence\n");
2888 drm_syncobj_put(syncobj
);
2893 err
= dma_fence_chain_find_seqno(&fence
, point
);
2895 if (err
&& !(user_fence
.flags
& I915_EXEC_FENCE_SIGNAL
)) {
2896 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point
);
2897 dma_fence_put(fence
);
2898 drm_syncobj_put(syncobj
);
2903 * A point might have been signaled already and
2904 * garbage collected from the timeline. In this case
2905 * just ignore the point and carry on.
2907 if (!fence
&& !(user_fence
.flags
& I915_EXEC_FENCE_SIGNAL
)) {
2908 drm_syncobj_put(syncobj
);
2913 * For timeline syncobjs we need to preallocate chains for
2916 if (point
!= 0 && user_fence
.flags
& I915_EXEC_FENCE_SIGNAL
) {
2918 * Waiting and signaling the same point (when point !=
2919 * 0) would break the timeline.
2921 if (user_fence
.flags
& I915_EXEC_FENCE_WAIT
) {
2922 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2923 dma_fence_put(fence
);
2924 drm_syncobj_put(syncobj
);
2929 kmalloc(sizeof(*f
->chain_fence
),
2931 if (!f
->chain_fence
) {
2932 drm_syncobj_put(syncobj
);
2933 dma_fence_put(fence
);
2937 f
->chain_fence
= NULL
;
2940 f
->syncobj
= ptr_pack_bits(syncobj
, user_fence
.flags
, 2);
2941 f
->dma_fence
= fence
;
2950 static int add_fence_array(struct i915_execbuffer
*eb
)
2952 struct drm_i915_gem_execbuffer2
*args
= eb
->args
;
2953 struct drm_i915_gem_exec_fence __user
*user
;
2954 unsigned long num_fences
= args
->num_cliprects
;
2957 if (!(args
->flags
& I915_EXEC_FENCE_ARRAY
))
2963 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2964 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2965 if (num_fences
> min_t(unsigned long,
2966 ULONG_MAX
/ sizeof(*user
),
2967 SIZE_MAX
/ sizeof(*f
) - eb
->num_fences
))
2970 user
= u64_to_user_ptr(args
->cliprects_ptr
);
2971 if (!access_ok(user
, num_fences
* sizeof(*user
)))
2974 f
= krealloc(eb
->fences
,
2975 (eb
->num_fences
+ num_fences
) * sizeof(*f
),
2976 __GFP_NOWARN
| GFP_KERNEL
);
2981 f
+= eb
->num_fences
;
2982 while (num_fences
--) {
2983 struct drm_i915_gem_exec_fence user_fence
;
2984 struct drm_syncobj
*syncobj
;
2985 struct dma_fence
*fence
= NULL
;
2987 if (__copy_from_user(&user_fence
, user
++, sizeof(user_fence
)))
2990 if (user_fence
.flags
& __I915_EXEC_FENCE_UNKNOWN_FLAGS
)
2993 syncobj
= drm_syncobj_find(eb
->file
, user_fence
.handle
);
2995 DRM_DEBUG("Invalid syncobj handle provided\n");
2999 if (user_fence
.flags
& I915_EXEC_FENCE_WAIT
) {
3000 fence
= drm_syncobj_fence_get(syncobj
);
3002 DRM_DEBUG("Syncobj handle has no fence\n");
3003 drm_syncobj_put(syncobj
);
3008 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN
- 1) &
3009 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS
);
3011 f
->syncobj
= ptr_pack_bits(syncobj
, user_fence
.flags
, 2);
3012 f
->dma_fence
= fence
;
3014 f
->chain_fence
= NULL
;
3022 static void put_fence_array(struct eb_fence
*fences
, int num_fences
)
3025 __free_fence_array(fences
, num_fences
);
3029 await_fence_array(struct i915_execbuffer
*eb
)
3034 for (n
= 0; n
< eb
->num_fences
; n
++) {
3035 struct drm_syncobj
*syncobj
;
3038 syncobj
= ptr_unpack_bits(eb
->fences
[n
].syncobj
, &flags
, 2);
3040 if (!eb
->fences
[n
].dma_fence
)
3043 err
= i915_request_await_dma_fence(eb
->request
,
3044 eb
->fences
[n
].dma_fence
);
3052 static void signal_fence_array(const struct i915_execbuffer
*eb
)
3054 struct dma_fence
* const fence
= &eb
->request
->fence
;
3057 for (n
= 0; n
< eb
->num_fences
; n
++) {
3058 struct drm_syncobj
*syncobj
;
3061 syncobj
= ptr_unpack_bits(eb
->fences
[n
].syncobj
, &flags
, 2);
3062 if (!(flags
& I915_EXEC_FENCE_SIGNAL
))
3065 if (eb
->fences
[n
].chain_fence
) {
3066 drm_syncobj_add_point(syncobj
,
3067 eb
->fences
[n
].chain_fence
,
3069 eb
->fences
[n
].value
);
3071 * The chain's ownership is transferred to the
3074 eb
->fences
[n
].chain_fence
= NULL
;
3076 drm_syncobj_replace_fence(syncobj
, fence
);
3082 parse_timeline_fences(struct i915_user_extension __user
*ext
, void *data
)
3084 struct i915_execbuffer
*eb
= data
;
3085 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences
;
3087 if (copy_from_user(&timeline_fences
, ext
, sizeof(timeline_fences
)))
3090 return add_timeline_fence_array(eb
, &timeline_fences
);
3093 static void retire_requests(struct intel_timeline
*tl
, struct i915_request
*end
)
3095 struct i915_request
*rq
, *rn
;
3097 list_for_each_entry_safe(rq
, rn
, &tl
->requests
, link
)
3098 if (rq
== end
|| !i915_request_retire(rq
))
3102 static int eb_request_add(struct i915_execbuffer
*eb
, int err
)
3104 struct i915_request
*rq
= eb
->request
;
3105 struct intel_timeline
* const tl
= i915_request_timeline(rq
);
3106 struct i915_sched_attr attr
= {};
3107 struct i915_request
*prev
;
3109 lockdep_assert_held(&tl
->mutex
);
3110 lockdep_unpin_lock(&tl
->mutex
, rq
->cookie
);
3112 trace_i915_request_add(rq
);
3114 prev
= __i915_request_commit(rq
);
3116 /* Check that the context wasn't destroyed before submission */
3117 if (likely(!intel_context_is_closed(eb
->context
))) {
3118 attr
= eb
->gem_context
->sched
;
3120 /* Serialise with context_close via the add_to_timeline */
3121 i915_request_set_error_once(rq
, -ENOENT
);
3122 __i915_request_skip(rq
);
3123 err
= -ENOENT
; /* override any transient errors */
3126 __i915_request_queue(rq
, &attr
);
3128 /* Try to clean up the client's timeline after submitting the request */
3130 retire_requests(tl
, prev
);
3132 mutex_unlock(&tl
->mutex
);
3137 static const i915_user_extension_fn execbuf_extensions
[] = {
3138 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES
] = parse_timeline_fences
,
3142 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2
*args
,
3143 struct i915_execbuffer
*eb
)
3145 if (!(args
->flags
& I915_EXEC_USE_EXTENSIONS
))
3148 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3149 * have another flag also using it at the same time.
3151 if (eb
->args
->flags
& I915_EXEC_FENCE_ARRAY
)
3154 if (args
->num_cliprects
!= 0)
3157 return i915_user_extensions(u64_to_user_ptr(args
->cliprects_ptr
),
3159 ARRAY_SIZE(execbuf_extensions
),
3164 i915_gem_do_execbuffer(struct drm_device
*dev
,
3165 struct drm_file
*file
,
3166 struct drm_i915_gem_execbuffer2
*args
,
3167 struct drm_i915_gem_exec_object2
*exec
)
3169 struct drm_i915_private
*i915
= to_i915(dev
);
3170 struct i915_execbuffer eb
;
3171 struct dma_fence
*in_fence
= NULL
;
3172 struct sync_file
*out_fence
= NULL
;
3173 struct i915_vma
*batch
;
3174 int out_fence_fd
= -1;
3177 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS
& ~__I915_EXEC_ILLEGAL_FLAGS
);
3178 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS
&
3179 ~__EXEC_OBJECT_UNKNOWN_FLAGS
);
3184 if (DBG_FORCE_RELOC
|| !(args
->flags
& I915_EXEC_NO_RELOC
))
3185 args
->flags
|= __EXEC_HAS_RELOC
;
3188 eb
.vma
= (struct eb_vma
*)(exec
+ args
->buffer_count
+ 1);
3189 eb
.vma
[0].vma
= NULL
;
3190 eb
.reloc_pool
= eb
.batch_pool
= NULL
;
3191 eb
.reloc_context
= NULL
;
3193 eb
.invalid_flags
= __EXEC_OBJECT_UNKNOWN_FLAGS
;
3194 reloc_cache_init(&eb
.reloc_cache
, eb
.i915
);
3196 eb
.buffer_count
= args
->buffer_count
;
3197 eb
.batch_start_offset
= args
->batch_start_offset
;
3198 eb
.batch_len
= args
->batch_len
;
3199 eb
.trampoline
= NULL
;
3205 if (args
->flags
& I915_EXEC_SECURE
) {
3206 if (INTEL_GEN(i915
) >= 11)
3209 /* Return -EPERM to trigger fallback code on old binaries. */
3210 if (!HAS_SECURE_BATCHES(i915
))
3213 if (!drm_is_current_master(file
) || !capable(CAP_SYS_ADMIN
))
3216 eb
.batch_flags
|= I915_DISPATCH_SECURE
;
3218 if (args
->flags
& I915_EXEC_IS_PINNED
)
3219 eb
.batch_flags
|= I915_DISPATCH_PINNED
;
3221 err
= parse_execbuf2_extensions(args
, &eb
);
3225 err
= add_fence_array(&eb
);
3229 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3230 if (args
->flags
& IN_FENCES
) {
3231 if ((args
->flags
& IN_FENCES
) == IN_FENCES
)
3234 in_fence
= sync_file_get_fence(lower_32_bits(args
->rsvd2
));
3242 if (args
->flags
& I915_EXEC_FENCE_OUT
) {
3243 out_fence_fd
= get_unused_fd_flags(O_CLOEXEC
);
3244 if (out_fence_fd
< 0) {
3250 err
= eb_create(&eb
);
3254 GEM_BUG_ON(!eb
.lut_size
);
3256 err
= eb_select_context(&eb
);
3260 err
= eb_select_engine(&eb
);
3264 err
= eb_lookup_vmas(&eb
);
3266 eb_release_vmas(&eb
, true);
3270 i915_gem_ww_ctx_init(&eb
.ww
, true);
3272 err
= eb_relocate_parse(&eb
);
3275 * If the user expects the execobject.offset and
3276 * reloc.presumed_offset to be an exact match,
3277 * as for using NO_RELOC, then we cannot update
3278 * the execobject.offset until we have completed
3281 args
->flags
&= ~__EXEC_HAS_RELOC
;
3285 ww_acquire_done(&eb
.ww
.ctx
);
3287 batch
= eb
.batch
->vma
;
3289 /* All GPU relocation batches must be submitted prior to the user rq */
3290 GEM_BUG_ON(eb
.reloc_cache
.rq
);
3292 /* Allocate a request for this batch buffer nice and early. */
3293 eb
.request
= i915_request_create(eb
.context
);
3294 if (IS_ERR(eb
.request
)) {
3295 err
= PTR_ERR(eb
.request
);
3300 if (args
->flags
& I915_EXEC_FENCE_SUBMIT
)
3301 err
= i915_request_await_execution(eb
.request
,
3303 eb
.engine
->bond_execute
);
3305 err
= i915_request_await_dma_fence(eb
.request
,
3312 err
= await_fence_array(&eb
);
3317 if (out_fence_fd
!= -1) {
3318 out_fence
= sync_file_create(&eb
.request
->fence
);
3326 * Whilst this request exists, batch_obj will be on the
3327 * active_list, and so will hold the active reference. Only when this
3328 * request is retired will the the batch_obj be moved onto the
3329 * inactive_list and lose its active reference. Hence we do not need
3330 * to explicitly hold another reference here.
3332 eb
.request
->batch
= batch
;
3334 intel_gt_buffer_pool_mark_active(eb
.batch_pool
, eb
.request
);
3336 trace_i915_request_queue(eb
.request
, eb
.batch_flags
);
3337 err
= eb_submit(&eb
, batch
);
3339 i915_request_get(eb
.request
);
3340 err
= eb_request_add(&eb
, err
);
3343 signal_fence_array(&eb
);
3347 fd_install(out_fence_fd
, out_fence
->file
);
3348 args
->rsvd2
&= GENMASK_ULL(31, 0); /* keep in-fence */
3349 args
->rsvd2
|= (u64
)out_fence_fd
<< 32;
3352 fput(out_fence
->file
);
3355 i915_request_put(eb
.request
);
3358 eb_release_vmas(&eb
, true);
3360 i915_vma_unpin(eb
.trampoline
);
3361 WARN_ON(err
== -EDEADLK
);
3362 i915_gem_ww_ctx_fini(&eb
.ww
);
3365 intel_gt_buffer_pool_put(eb
.batch_pool
);
3367 intel_gt_buffer_pool_put(eb
.reloc_pool
);
3368 if (eb
.reloc_context
)
3369 intel_context_put(eb
.reloc_context
);
3373 i915_gem_context_put(eb
.gem_context
);
3377 if (out_fence_fd
!= -1)
3378 put_unused_fd(out_fence_fd
);
3380 dma_fence_put(in_fence
);
3382 put_fence_array(eb
.fences
, eb
.num_fences
);
3386 static size_t eb_element_size(void)
3388 return sizeof(struct drm_i915_gem_exec_object2
) + sizeof(struct eb_vma
);
3391 static bool check_buffer_count(size_t count
)
3393 const size_t sz
= eb_element_size();
3396 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3397 * array size (see eb_create()). Otherwise, we can accept an array as
3398 * large as can be addressed (though use large arrays at your peril)!
3401 return !(count
< 1 || count
> INT_MAX
|| count
> SIZE_MAX
/ sz
- 1);
3405 * Legacy execbuffer just creates an exec2 list from the original exec object
3406 * list array and passes it to the real function.
3409 i915_gem_execbuffer_ioctl(struct drm_device
*dev
, void *data
,
3410 struct drm_file
*file
)
3412 struct drm_i915_private
*i915
= to_i915(dev
);
3413 struct drm_i915_gem_execbuffer
*args
= data
;
3414 struct drm_i915_gem_execbuffer2 exec2
;
3415 struct drm_i915_gem_exec_object
*exec_list
= NULL
;
3416 struct drm_i915_gem_exec_object2
*exec2_list
= NULL
;
3417 const size_t count
= args
->buffer_count
;
3421 if (!check_buffer_count(count
)) {
3422 drm_dbg(&i915
->drm
, "execbuf2 with %zd buffers\n", count
);
3426 exec2
.buffers_ptr
= args
->buffers_ptr
;
3427 exec2
.buffer_count
= args
->buffer_count
;
3428 exec2
.batch_start_offset
= args
->batch_start_offset
;
3429 exec2
.batch_len
= args
->batch_len
;
3430 exec2
.DR1
= args
->DR1
;
3431 exec2
.DR4
= args
->DR4
;
3432 exec2
.num_cliprects
= args
->num_cliprects
;
3433 exec2
.cliprects_ptr
= args
->cliprects_ptr
;
3434 exec2
.flags
= I915_EXEC_RENDER
;
3435 i915_execbuffer2_set_context_id(exec2
, 0);
3437 err
= i915_gem_check_execbuffer(&exec2
);
3441 /* Copy in the exec list from userland */
3442 exec_list
= kvmalloc_array(count
, sizeof(*exec_list
),
3443 __GFP_NOWARN
| GFP_KERNEL
);
3445 /* Allocate extra slots for use by the command parser */
3446 exec2_list
= kvmalloc_array(count
+ 2, eb_element_size(),
3447 __GFP_NOWARN
| GFP_KERNEL
);
3448 if (exec_list
== NULL
|| exec2_list
== NULL
) {
3450 "Failed to allocate exec list for %d buffers\n",
3451 args
->buffer_count
);
3456 err
= copy_from_user(exec_list
,
3457 u64_to_user_ptr(args
->buffers_ptr
),
3458 sizeof(*exec_list
) * count
);
3460 drm_dbg(&i915
->drm
, "copy %d exec entries failed %d\n",
3461 args
->buffer_count
, err
);
3467 for (i
= 0; i
< args
->buffer_count
; i
++) {
3468 exec2_list
[i
].handle
= exec_list
[i
].handle
;
3469 exec2_list
[i
].relocation_count
= exec_list
[i
].relocation_count
;
3470 exec2_list
[i
].relocs_ptr
= exec_list
[i
].relocs_ptr
;
3471 exec2_list
[i
].alignment
= exec_list
[i
].alignment
;
3472 exec2_list
[i
].offset
= exec_list
[i
].offset
;
3473 if (INTEL_GEN(to_i915(dev
)) < 4)
3474 exec2_list
[i
].flags
= EXEC_OBJECT_NEEDS_FENCE
;
3476 exec2_list
[i
].flags
= 0;
3479 err
= i915_gem_do_execbuffer(dev
, file
, &exec2
, exec2_list
);
3480 if (exec2
.flags
& __EXEC_HAS_RELOC
) {
3481 struct drm_i915_gem_exec_object __user
*user_exec_list
=
3482 u64_to_user_ptr(args
->buffers_ptr
);
3484 /* Copy the new buffer offsets back to the user's exec list. */
3485 for (i
= 0; i
< args
->buffer_count
; i
++) {
3486 if (!(exec2_list
[i
].offset
& UPDATE
))
3489 exec2_list
[i
].offset
=
3490 gen8_canonical_addr(exec2_list
[i
].offset
& PIN_OFFSET_MASK
);
3491 exec2_list
[i
].offset
&= PIN_OFFSET_MASK
;
3492 if (__copy_to_user(&user_exec_list
[i
].offset
,
3493 &exec2_list
[i
].offset
,
3494 sizeof(user_exec_list
[i
].offset
)))
3505 i915_gem_execbuffer2_ioctl(struct drm_device
*dev
, void *data
,
3506 struct drm_file
*file
)
3508 struct drm_i915_private
*i915
= to_i915(dev
);
3509 struct drm_i915_gem_execbuffer2
*args
= data
;
3510 struct drm_i915_gem_exec_object2
*exec2_list
;
3511 const size_t count
= args
->buffer_count
;
3514 if (!check_buffer_count(count
)) {
3515 drm_dbg(&i915
->drm
, "execbuf2 with %zd buffers\n", count
);
3519 err
= i915_gem_check_execbuffer(args
);
3523 /* Allocate extra slots for use by the command parser */
3524 exec2_list
= kvmalloc_array(count
+ 2, eb_element_size(),
3525 __GFP_NOWARN
| GFP_KERNEL
);
3526 if (exec2_list
== NULL
) {
3527 drm_dbg(&i915
->drm
, "Failed to allocate exec list for %zd buffers\n",
3531 if (copy_from_user(exec2_list
,
3532 u64_to_user_ptr(args
->buffers_ptr
),
3533 sizeof(*exec2_list
) * count
)) {
3534 drm_dbg(&i915
->drm
, "copy %zd exec entries failed\n", count
);
3539 err
= i915_gem_do_execbuffer(dev
, file
, args
, exec2_list
);
3542 * Now that we have begun execution of the batchbuffer, we ignore
3543 * any new error after this point. Also given that we have already
3544 * updated the associated relocations, we try to write out the current
3545 * object locations irrespective of any error.
3547 if (args
->flags
& __EXEC_HAS_RELOC
) {
3548 struct drm_i915_gem_exec_object2 __user
*user_exec_list
=
3549 u64_to_user_ptr(args
->buffers_ptr
);
3552 /* Copy the new buffer offsets back to the user's exec list. */
3554 * Note: count * sizeof(*user_exec_list) does not overflow,
3555 * because we checked 'count' in check_buffer_count().
3557 * And this range already got effectively checked earlier
3558 * when we did the "copy_from_user()" above.
3560 if (!user_write_access_begin(user_exec_list
,
3561 count
* sizeof(*user_exec_list
)))
3564 for (i
= 0; i
< args
->buffer_count
; i
++) {
3565 if (!(exec2_list
[i
].offset
& UPDATE
))
3568 exec2_list
[i
].offset
=
3569 gen8_canonical_addr(exec2_list
[i
].offset
& PIN_OFFSET_MASK
);
3570 unsafe_put_user(exec2_list
[i
].offset
,
3571 &user_exec_list
[i
].offset
,
3575 user_write_access_end();
3579 args
->flags
&= ~__I915_EXEC_UNKNOWN_FLAGS
;
3584 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3585 #include "selftests/i915_gem_execbuffer.c"