WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
blobaed2ef6466a2db765db71bfa52696d698aa134ee
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
23 * Authors:
24 * Zhi Wang <zhi.a.wang@intel.com>
26 * Contributors:
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
36 #include <linux/kthread.h>
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
46 #define RING_CTX_OFF(x) \
47 offsetof(struct execlist_ring_context, x)
49 static void set_context_pdp_root_pointer(
50 struct execlist_ring_context *ring_context,
51 u32 pdp[8])
53 int i;
55 for (i = 0; i < 8; i++)
56 ring_context->pdps[i].val = pdp[7 - i];
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
61 struct execlist_ring_context *shadow_ring_context;
62 struct intel_context *ctx = workload->req->context;
64 if (WARN_ON(!workload->shadow_mm))
65 return;
67 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
68 return;
70 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
71 set_context_pdp_root_pointer(shadow_ring_context,
72 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76 * when populating shadow ctx from guest, we should not overrride oa related
77 * registers, so that they will not be overlapped by guest oa configs. Thus
78 * made it possible to capture oa data from host for both host and guests.
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81 u32 *reg_state, bool save)
83 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
84 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
85 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
86 int i = 0;
87 u32 flex_mmio[] = {
88 i915_mmio_reg_offset(EU_PERF_CNTL0),
89 i915_mmio_reg_offset(EU_PERF_CNTL1),
90 i915_mmio_reg_offset(EU_PERF_CNTL2),
91 i915_mmio_reg_offset(EU_PERF_CNTL3),
92 i915_mmio_reg_offset(EU_PERF_CNTL4),
93 i915_mmio_reg_offset(EU_PERF_CNTL5),
94 i915_mmio_reg_offset(EU_PERF_CNTL6),
97 if (workload->engine->id != RCS0)
98 return;
100 if (save) {
101 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
103 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104 u32 state_offset = ctx_flexeu0 + i * 2;
106 workload->flex_mmio[i] = reg_state[state_offset + 1];
108 } else {
109 reg_state[ctx_oactxctrl] =
110 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
113 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114 u32 state_offset = ctx_flexeu0 + i * 2;
115 u32 mmio = flex_mmio[i];
117 reg_state[state_offset] = mmio;
118 reg_state[state_offset + 1] = workload->flex_mmio[i];
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
125 struct intel_vgpu *vgpu = workload->vgpu;
126 struct intel_gvt *gvt = vgpu->gvt;
127 struct intel_context *ctx = workload->req->context;
128 struct execlist_ring_context *shadow_ring_context;
129 void *dst;
130 void *context_base;
131 unsigned long context_gpa, context_page_num;
132 unsigned long gpa_base; /* first gpa of consecutive GPAs */
133 unsigned long gpa_size; /* size of consecutive GPAs */
134 struct intel_vgpu_submission *s = &vgpu->submission;
135 int i;
136 bool skip = false;
137 int ring_id = workload->engine->id;
139 GEM_BUG_ON(!intel_context_is_pinned(ctx));
141 context_base = (void *) ctx->lrc_reg_state -
142 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
144 shadow_ring_context = (void *) ctx->lrc_reg_state;
146 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
147 #define COPY_REG(name) \
148 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
150 #define COPY_REG_MASKED(name) {\
151 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152 + RING_CTX_OFF(name.val),\
153 &shadow_ring_context->name.val, 4);\
154 shadow_ring_context->name.val |= 0xffff << 16;\
157 COPY_REG_MASKED(ctx_ctrl);
158 COPY_REG(ctx_timestamp);
160 if (workload->engine->id == RCS0) {
161 COPY_REG(bb_per_ctx_ptr);
162 COPY_REG(rcs_indirect_ctx);
163 COPY_REG(rcs_indirect_ctx_offset);
165 #undef COPY_REG
166 #undef COPY_REG_MASKED
168 intel_gvt_hypervisor_read_gpa(vgpu,
169 workload->ring_context_gpa +
170 sizeof(*shadow_ring_context),
171 (void *)shadow_ring_context +
172 sizeof(*shadow_ring_context),
173 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
175 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
177 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
178 workload->engine->name, workload->ctx_desc.lrca,
179 workload->ctx_desc.context_id,
180 workload->ring_context_gpa);
182 /* only need to ensure this context is not pinned/unpinned during the
183 * period from last submission to this this submission.
184 * Upon reaching this function, the currently submitted context is not
185 * supposed to get unpinned. If a misbehaving guest driver ever does
186 * this, it would corrupt itself.
188 if (s->last_ctx[ring_id].valid &&
189 (s->last_ctx[ring_id].lrca ==
190 workload->ctx_desc.lrca) &&
191 (s->last_ctx[ring_id].ring_context_gpa ==
192 workload->ring_context_gpa))
193 skip = true;
195 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
196 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
198 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
199 return 0;
201 s->last_ctx[ring_id].valid = false;
202 context_page_num = workload->engine->context_size;
203 context_page_num = context_page_num >> PAGE_SHIFT;
205 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
206 context_page_num = 19;
208 /* find consecutive GPAs from gma until the first inconsecutive GPA.
209 * read from the continuous GPAs into dst virtual address
211 gpa_size = 0;
212 for (i = 2; i < context_page_num; i++) {
213 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
214 (u32)((workload->ctx_desc.lrca + i) <<
215 I915_GTT_PAGE_SHIFT));
216 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
217 gvt_vgpu_err("Invalid guest context descriptor\n");
218 return -EFAULT;
221 if (gpa_size == 0) {
222 gpa_base = context_gpa;
223 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
224 } else if (context_gpa != gpa_base + gpa_size)
225 goto read;
227 gpa_size += I915_GTT_PAGE_SIZE;
229 if (i == context_page_num - 1)
230 goto read;
232 continue;
234 read:
235 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
236 gpa_base = context_gpa;
237 gpa_size = I915_GTT_PAGE_SIZE;
238 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
240 s->last_ctx[ring_id].valid = true;
241 return 0;
244 static inline bool is_gvt_request(struct i915_request *rq)
246 return intel_context_force_single_submission(rq->context);
249 static void save_ring_hw_state(struct intel_vgpu *vgpu,
250 const struct intel_engine_cs *engine)
252 struct intel_uncore *uncore = engine->uncore;
253 i915_reg_t reg;
255 reg = RING_INSTDONE(engine->mmio_base);
256 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
257 intel_uncore_read(uncore, reg);
259 reg = RING_ACTHD(engine->mmio_base);
260 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
261 intel_uncore_read(uncore, reg);
263 reg = RING_ACTHD_UDW(engine->mmio_base);
264 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
265 intel_uncore_read(uncore, reg);
268 static int shadow_context_status_change(struct notifier_block *nb,
269 unsigned long action, void *data)
271 struct i915_request *rq = data;
272 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
273 shadow_ctx_notifier_block[rq->engine->id]);
274 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
275 enum intel_engine_id ring_id = rq->engine->id;
276 struct intel_vgpu_workload *workload;
277 unsigned long flags;
279 if (!is_gvt_request(rq)) {
280 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
281 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
282 scheduler->engine_owner[ring_id]) {
283 /* Switch ring from vGPU to host. */
284 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
285 NULL, rq->engine);
286 scheduler->engine_owner[ring_id] = NULL;
288 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
290 return NOTIFY_OK;
293 workload = scheduler->current_workload[ring_id];
294 if (unlikely(!workload))
295 return NOTIFY_OK;
297 switch (action) {
298 case INTEL_CONTEXT_SCHEDULE_IN:
299 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
300 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
301 /* Switch ring from host to vGPU or vGPU to vGPU. */
302 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303 workload->vgpu, rq->engine);
304 scheduler->engine_owner[ring_id] = workload->vgpu;
305 } else
306 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
307 ring_id, workload->vgpu->id);
308 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
309 atomic_set(&workload->shadow_ctx_active, 1);
310 break;
311 case INTEL_CONTEXT_SCHEDULE_OUT:
312 save_ring_hw_state(workload->vgpu, rq->engine);
313 atomic_set(&workload->shadow_ctx_active, 0);
314 break;
315 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
316 save_ring_hw_state(workload->vgpu, rq->engine);
317 break;
318 default:
319 WARN_ON(1);
320 return NOTIFY_OK;
322 wake_up(&workload->shadow_ctx_status_wq);
323 return NOTIFY_OK;
326 static void
327 shadow_context_descriptor_update(struct intel_context *ce,
328 struct intel_vgpu_workload *workload)
330 u64 desc = ce->lrc.desc;
333 * Update bits 0-11 of the context descriptor which includes flags
334 * like GEN8_CTX_* cached in desc_template
336 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
337 desc |= (u64)workload->ctx_desc.addressing_mode <<
338 GEN8_CTX_ADDRESSING_MODE_SHIFT;
340 ce->lrc.desc = desc;
343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
345 struct intel_vgpu *vgpu = workload->vgpu;
346 struct i915_request *req = workload->req;
347 void *shadow_ring_buffer_va;
348 u32 *cs;
349 int err;
351 if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context))
352 intel_vgpu_restore_inhibit_context(vgpu, req);
355 * To track whether a request has started on HW, we can emit a
356 * breadcrumb at the beginning of the request and check its
357 * timeline's HWSP to see if the breadcrumb has advanced past the
358 * start of this request. Actually, the request must have the
359 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
360 * scheduler might get a wrong state of it during reset. Since the
361 * requests from gvt always set the has_init_breadcrumb flag, here
362 * need to do the emit_init_breadcrumb for all the requests.
364 if (req->engine->emit_init_breadcrumb) {
365 err = req->engine->emit_init_breadcrumb(req);
366 if (err) {
367 gvt_vgpu_err("fail to emit init breadcrumb\n");
368 return err;
372 /* allocate shadow ring buffer */
373 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
374 if (IS_ERR(cs)) {
375 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
376 workload->rb_len);
377 return PTR_ERR(cs);
380 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
382 /* get shadow ring buffer va */
383 workload->shadow_ring_buffer_va = cs;
385 memcpy(cs, shadow_ring_buffer_va,
386 workload->rb_len);
388 cs += workload->rb_len / sizeof(u32);
389 intel_ring_advance(workload->req, cs);
391 return 0;
394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
396 if (!wa_ctx->indirect_ctx.obj)
397 return;
399 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
400 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
402 wa_ctx->indirect_ctx.obj = NULL;
403 wa_ctx->indirect_ctx.shadow_va = NULL;
406 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
408 struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
410 /* This is not a good idea */
411 sg->dma_address = addr;
414 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
415 struct intel_context *ce)
417 struct intel_vgpu_mm *mm = workload->shadow_mm;
418 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
419 int i = 0;
421 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
422 set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
423 } else {
424 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
425 struct i915_page_directory * const pd =
426 i915_pd_entry(ppgtt->pd, i);
427 /* skip now as current i915 ppgtt alloc won't allocate
428 top level pdp for non 4-level table, won't impact
429 shadow ppgtt. */
430 if (!pd)
431 break;
433 set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
438 static int
439 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
441 struct intel_vgpu *vgpu = workload->vgpu;
442 struct intel_vgpu_submission *s = &vgpu->submission;
443 struct i915_request *rq;
445 if (workload->req)
446 return 0;
448 rq = i915_request_create(s->shadow[workload->engine->id]);
449 if (IS_ERR(rq)) {
450 gvt_vgpu_err("fail to allocate gem request\n");
451 return PTR_ERR(rq);
454 workload->req = i915_request_get(rq);
455 return 0;
459 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
460 * shadow it as well, include ringbuffer,wa_ctx and ctx.
461 * @workload: an abstract entity for each execlist submission.
463 * This function is called before the workload submitting to i915, to make
464 * sure the content of the workload is valid.
466 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
468 struct intel_vgpu *vgpu = workload->vgpu;
469 struct intel_vgpu_submission *s = &vgpu->submission;
470 int ret;
472 lockdep_assert_held(&vgpu->vgpu_lock);
474 if (workload->shadow)
475 return 0;
477 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
478 shadow_context_descriptor_update(s->shadow[workload->engine->id],
479 workload);
481 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
482 if (ret)
483 return ret;
485 if (workload->engine->id == RCS0 &&
486 workload->wa_ctx.indirect_ctx.size) {
487 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
488 if (ret)
489 goto err_shadow;
492 workload->shadow = true;
493 return 0;
495 err_shadow:
496 release_shadow_wa_ctx(&workload->wa_ctx);
497 return ret;
500 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
502 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
504 struct intel_gvt *gvt = workload->vgpu->gvt;
505 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
506 struct intel_vgpu_shadow_bb *bb;
507 int ret;
509 list_for_each_entry(bb, &workload->shadow_bb, list) {
510 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
511 * is only updated into ring_scan_buffer, not real ring address
512 * allocated in later copy_workload_to_ring_buffer. pls be noted
513 * shadow_ring_buffer_va is now pointed to real ring buffer va
514 * in copy_workload_to_ring_buffer.
517 if (bb->bb_offset)
518 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
519 + bb->bb_offset;
522 * For non-priv bb, scan&shadow is only for
523 * debugging purpose, so the content of shadow bb
524 * is the same as original bb. Therefore,
525 * here, rather than switch to shadow bb's gma
526 * address, we directly use original batch buffer's
527 * gma address, and send original bb to hardware
528 * directly
530 if (!bb->ppgtt) {
531 bb->vma = i915_gem_object_ggtt_pin(bb->obj,
532 NULL, 0, 0, 0);
533 if (IS_ERR(bb->vma)) {
534 ret = PTR_ERR(bb->vma);
535 goto err;
538 /* relocate shadow batch buffer */
539 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
540 if (gmadr_bytes == 8)
541 bb->bb_start_cmd_va[2] = 0;
543 ret = i915_vma_move_to_active(bb->vma,
544 workload->req,
546 if (ret)
547 goto err;
550 /* No one is going to touch shadow bb from now on. */
551 i915_gem_object_flush_map(bb->obj);
553 return 0;
554 err:
555 release_shadow_batch_buffer(workload);
556 return ret;
559 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
561 struct intel_vgpu_workload *workload =
562 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
563 struct i915_request *rq = workload->req;
564 struct execlist_ring_context *shadow_ring_context =
565 (struct execlist_ring_context *)rq->context->lrc_reg_state;
567 shadow_ring_context->bb_per_ctx_ptr.val =
568 (shadow_ring_context->bb_per_ctx_ptr.val &
569 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
570 shadow_ring_context->rcs_indirect_ctx.val =
571 (shadow_ring_context->rcs_indirect_ctx.val &
572 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
575 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
577 struct i915_vma *vma;
578 unsigned char *per_ctx_va =
579 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
580 wa_ctx->indirect_ctx.size;
582 if (wa_ctx->indirect_ctx.size == 0)
583 return 0;
585 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
586 0, CACHELINE_BYTES, 0);
587 if (IS_ERR(vma))
588 return PTR_ERR(vma);
590 /* FIXME: we are not tracking our pinned VMA leaving it
591 * up to the core to fix up the stray pin_count upon
592 * free.
595 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
597 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
598 memset(per_ctx_va, 0, CACHELINE_BYTES);
600 update_wa_ctx_2_shadow_ctx(wa_ctx);
601 return 0;
604 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
606 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
607 workload->rb_start;
610 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
612 struct intel_vgpu_shadow_bb *bb, *pos;
614 if (list_empty(&workload->shadow_bb))
615 return;
617 bb = list_first_entry(&workload->shadow_bb,
618 struct intel_vgpu_shadow_bb, list);
620 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
621 if (bb->obj) {
622 if (bb->va && !IS_ERR(bb->va))
623 i915_gem_object_unpin_map(bb->obj);
625 if (bb->vma && !IS_ERR(bb->vma))
626 i915_vma_unpin(bb->vma);
628 i915_gem_object_put(bb->obj);
630 list_del(&bb->list);
631 kfree(bb);
635 static int
636 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
638 struct intel_vgpu *vgpu = workload->vgpu;
639 struct intel_vgpu_mm *m;
640 int ret = 0;
642 ret = intel_vgpu_pin_mm(workload->shadow_mm);
643 if (ret) {
644 gvt_vgpu_err("fail to vgpu pin mm\n");
645 return ret;
648 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
649 !workload->shadow_mm->ppgtt_mm.shadowed) {
650 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
651 return -EINVAL;
654 if (!list_empty(&workload->lri_shadow_mm)) {
655 list_for_each_entry(m, &workload->lri_shadow_mm,
656 ppgtt_mm.link) {
657 ret = intel_vgpu_pin_mm(m);
658 if (ret) {
659 list_for_each_entry_from_reverse(m,
660 &workload->lri_shadow_mm,
661 ppgtt_mm.link)
662 intel_vgpu_unpin_mm(m);
663 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
664 break;
669 if (ret)
670 intel_vgpu_unpin_mm(workload->shadow_mm);
672 return ret;
675 static void
676 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
678 struct intel_vgpu_mm *m;
680 if (!list_empty(&workload->lri_shadow_mm)) {
681 list_for_each_entry(m, &workload->lri_shadow_mm,
682 ppgtt_mm.link)
683 intel_vgpu_unpin_mm(m);
685 intel_vgpu_unpin_mm(workload->shadow_mm);
688 static int prepare_workload(struct intel_vgpu_workload *workload)
690 struct intel_vgpu *vgpu = workload->vgpu;
691 struct intel_vgpu_submission *s = &vgpu->submission;
692 int ret = 0;
694 ret = intel_vgpu_shadow_mm_pin(workload);
695 if (ret) {
696 gvt_vgpu_err("fail to pin shadow mm\n");
697 return ret;
700 update_shadow_pdps(workload);
702 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
704 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
705 if (ret) {
706 gvt_vgpu_err("fail to vgpu sync oos pages\n");
707 goto err_unpin_mm;
710 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
711 if (ret) {
712 gvt_vgpu_err("fail to flush post shadow\n");
713 goto err_unpin_mm;
716 ret = copy_workload_to_ring_buffer(workload);
717 if (ret) {
718 gvt_vgpu_err("fail to generate request\n");
719 goto err_unpin_mm;
722 ret = prepare_shadow_batch_buffer(workload);
723 if (ret) {
724 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
725 goto err_unpin_mm;
728 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
729 if (ret) {
730 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
731 goto err_shadow_batch;
734 if (workload->prepare) {
735 ret = workload->prepare(workload);
736 if (ret)
737 goto err_shadow_wa_ctx;
740 return 0;
741 err_shadow_wa_ctx:
742 release_shadow_wa_ctx(&workload->wa_ctx);
743 err_shadow_batch:
744 release_shadow_batch_buffer(workload);
745 err_unpin_mm:
746 intel_vgpu_shadow_mm_unpin(workload);
747 return ret;
750 static int dispatch_workload(struct intel_vgpu_workload *workload)
752 struct intel_vgpu *vgpu = workload->vgpu;
753 struct i915_request *rq;
754 int ret;
756 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
757 workload->engine->name, workload);
759 mutex_lock(&vgpu->vgpu_lock);
761 ret = intel_gvt_workload_req_alloc(workload);
762 if (ret)
763 goto err_req;
765 ret = intel_gvt_scan_and_shadow_workload(workload);
766 if (ret)
767 goto out;
769 ret = populate_shadow_context(workload);
770 if (ret) {
771 release_shadow_wa_ctx(&workload->wa_ctx);
772 goto out;
775 ret = prepare_workload(workload);
776 out:
777 if (ret) {
778 /* We might still need to add request with
779 * clean ctx to retire it properly..
781 rq = fetch_and_zero(&workload->req);
782 i915_request_put(rq);
785 if (!IS_ERR_OR_NULL(workload->req)) {
786 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
787 workload->engine->name, workload->req);
788 i915_request_add(workload->req);
789 workload->dispatched = true;
791 err_req:
792 if (ret)
793 workload->status = ret;
794 mutex_unlock(&vgpu->vgpu_lock);
795 return ret;
798 static struct intel_vgpu_workload *
799 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
801 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
802 struct intel_vgpu_workload *workload = NULL;
804 mutex_lock(&gvt->sched_lock);
807 * no current vgpu / will be scheduled out / no workload
808 * bail out
810 if (!scheduler->current_vgpu) {
811 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
812 goto out;
815 if (scheduler->need_reschedule) {
816 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
817 goto out;
820 if (!scheduler->current_vgpu->active ||
821 list_empty(workload_q_head(scheduler->current_vgpu, engine)))
822 goto out;
825 * still have current workload, maybe the workload disptacher
826 * fail to submit it for some reason, resubmit it.
828 if (scheduler->current_workload[engine->id]) {
829 workload = scheduler->current_workload[engine->id];
830 gvt_dbg_sched("ring %s still have current workload %p\n",
831 engine->name, workload);
832 goto out;
836 * pick a workload as current workload
837 * once current workload is set, schedule policy routines
838 * will wait the current workload is finished when trying to
839 * schedule out a vgpu.
841 scheduler->current_workload[engine->id] =
842 list_first_entry(workload_q_head(scheduler->current_vgpu,
843 engine),
844 struct intel_vgpu_workload, list);
846 workload = scheduler->current_workload[engine->id];
848 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
850 atomic_inc(&workload->vgpu->submission.running_workload_num);
851 out:
852 mutex_unlock(&gvt->sched_lock);
853 return workload;
856 static void update_guest_pdps(struct intel_vgpu *vgpu,
857 u64 ring_context_gpa, u32 pdp[8])
859 u64 gpa;
860 int i;
862 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
864 for (i = 0; i < 8; i++)
865 intel_gvt_hypervisor_write_gpa(vgpu,
866 gpa + i * 8, &pdp[7 - i], 4);
869 static __maybe_unused bool
870 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
872 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
873 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
875 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
876 gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
877 return false;
879 return true;
880 } else {
881 /* see comment in LRI handler in cmd_parser.c */
882 gvt_dbg_mm("invalid shadow mm type\n");
883 return false;
887 static void update_guest_context(struct intel_vgpu_workload *workload)
889 struct i915_request *rq = workload->req;
890 struct intel_vgpu *vgpu = workload->vgpu;
891 struct execlist_ring_context *shadow_ring_context;
892 struct intel_context *ctx = workload->req->context;
893 void *context_base;
894 void *src;
895 unsigned long context_gpa, context_page_num;
896 unsigned long gpa_base; /* first gpa of consecutive GPAs */
897 unsigned long gpa_size; /* size of consecutive GPAs*/
898 int i;
899 u32 ring_base;
900 u32 head, tail;
901 u16 wrap_count;
903 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
904 workload->ctx_desc.lrca);
906 GEM_BUG_ON(!intel_context_is_pinned(ctx));
908 head = workload->rb_head;
909 tail = workload->rb_tail;
910 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
912 if (tail < head) {
913 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
914 wrap_count = 0;
915 else
916 wrap_count += 1;
919 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
921 ring_base = rq->engine->mmio_base;
922 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
923 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
925 context_page_num = rq->engine->context_size;
926 context_page_num = context_page_num >> PAGE_SHIFT;
928 if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
929 context_page_num = 19;
931 context_base = (void *) ctx->lrc_reg_state -
932 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
934 /* find consecutive GPAs from gma until the first inconsecutive GPA.
935 * write to the consecutive GPAs from src virtual address
937 gpa_size = 0;
938 for (i = 2; i < context_page_num; i++) {
939 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
940 (u32)((workload->ctx_desc.lrca + i) <<
941 I915_GTT_PAGE_SHIFT));
942 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
943 gvt_vgpu_err("invalid guest context descriptor\n");
944 return;
947 if (gpa_size == 0) {
948 gpa_base = context_gpa;
949 src = context_base + (i << I915_GTT_PAGE_SHIFT);
950 } else if (context_gpa != gpa_base + gpa_size)
951 goto write;
953 gpa_size += I915_GTT_PAGE_SIZE;
955 if (i == context_page_num - 1)
956 goto write;
958 continue;
960 write:
961 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
962 gpa_base = context_gpa;
963 gpa_size = I915_GTT_PAGE_SIZE;
964 src = context_base + (i << I915_GTT_PAGE_SHIFT);
967 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
968 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
970 shadow_ring_context = (void *) ctx->lrc_reg_state;
972 if (!list_empty(&workload->lri_shadow_mm)) {
973 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
974 struct intel_vgpu_mm,
975 ppgtt_mm.link);
976 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
977 update_guest_pdps(vgpu, workload->ring_context_gpa,
978 (void *)m->ppgtt_mm.guest_pdps);
981 #define COPY_REG(name) \
982 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
983 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
985 COPY_REG(ctx_ctrl);
986 COPY_REG(ctx_timestamp);
988 #undef COPY_REG
990 intel_gvt_hypervisor_write_gpa(vgpu,
991 workload->ring_context_gpa +
992 sizeof(*shadow_ring_context),
993 (void *)shadow_ring_context +
994 sizeof(*shadow_ring_context),
995 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
998 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
999 intel_engine_mask_t engine_mask)
1001 struct intel_vgpu_submission *s = &vgpu->submission;
1002 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1003 struct intel_engine_cs *engine;
1004 struct intel_vgpu_workload *pos, *n;
1005 intel_engine_mask_t tmp;
1007 /* free the unsubmited workloads in the queues. */
1008 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
1009 list_for_each_entry_safe(pos, n,
1010 &s->workload_q_head[engine->id], list) {
1011 list_del_init(&pos->list);
1012 intel_vgpu_destroy_workload(pos);
1014 clear_bit(engine->id, s->shadow_ctx_desc_updated);
1018 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1020 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1021 struct intel_vgpu_workload *workload =
1022 scheduler->current_workload[ring_id];
1023 struct intel_vgpu *vgpu = workload->vgpu;
1024 struct intel_vgpu_submission *s = &vgpu->submission;
1025 struct i915_request *rq = workload->req;
1026 int event;
1028 mutex_lock(&vgpu->vgpu_lock);
1029 mutex_lock(&gvt->sched_lock);
1031 /* For the workload w/ request, needs to wait for the context
1032 * switch to make sure request is completed.
1033 * For the workload w/o request, directly complete the workload.
1035 if (rq) {
1036 wait_event(workload->shadow_ctx_status_wq,
1037 !atomic_read(&workload->shadow_ctx_active));
1039 /* If this request caused GPU hang, req->fence.error will
1040 * be set to -EIO. Use -EIO to set workload status so
1041 * that when this request caused GPU hang, didn't trigger
1042 * context switch interrupt to guest.
1044 if (likely(workload->status == -EINPROGRESS)) {
1045 if (workload->req->fence.error == -EIO)
1046 workload->status = -EIO;
1047 else
1048 workload->status = 0;
1051 if (!workload->status &&
1052 !(vgpu->resetting_eng & BIT(ring_id))) {
1053 update_guest_context(workload);
1055 for_each_set_bit(event, workload->pending_events,
1056 INTEL_GVT_EVENT_MAX)
1057 intel_vgpu_trigger_virtual_event(vgpu, event);
1060 i915_request_put(fetch_and_zero(&workload->req));
1063 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1064 ring_id, workload, workload->status);
1066 scheduler->current_workload[ring_id] = NULL;
1068 list_del_init(&workload->list);
1070 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1071 /* if workload->status is not successful means HW GPU
1072 * has occurred GPU hang or something wrong with i915/GVT,
1073 * and GVT won't inject context switch interrupt to guest.
1074 * So this error is a vGPU hang actually to the guest.
1075 * According to this we should emunlate a vGPU hang. If
1076 * there are pending workloads which are already submitted
1077 * from guest, we should clean them up like HW GPU does.
1079 * if it is in middle of engine resetting, the pending
1080 * workloads won't be submitted to HW GPU and will be
1081 * cleaned up during the resetting process later, so doing
1082 * the workload clean up here doesn't have any impact.
1084 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1087 workload->complete(workload);
1089 intel_vgpu_shadow_mm_unpin(workload);
1090 intel_vgpu_destroy_workload(workload);
1092 atomic_dec(&s->running_workload_num);
1093 wake_up(&scheduler->workload_complete_wq);
1095 if (gvt->scheduler.need_reschedule)
1096 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1098 mutex_unlock(&gvt->sched_lock);
1099 mutex_unlock(&vgpu->vgpu_lock);
1102 static int workload_thread(void *arg)
1104 struct intel_engine_cs *engine = arg;
1105 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1106 struct intel_gvt *gvt = engine->i915->gvt;
1107 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1108 struct intel_vgpu_workload *workload = NULL;
1109 struct intel_vgpu *vgpu = NULL;
1110 int ret;
1111 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1113 gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1115 while (!kthread_should_stop()) {
1116 intel_wakeref_t wakeref;
1118 add_wait_queue(&scheduler->waitq[engine->id], &wait);
1119 do {
1120 workload = pick_next_workload(gvt, engine);
1121 if (workload)
1122 break;
1123 wait_woken(&wait, TASK_INTERRUPTIBLE,
1124 MAX_SCHEDULE_TIMEOUT);
1125 } while (!kthread_should_stop());
1126 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1128 if (!workload)
1129 break;
1131 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1132 engine->name, workload,
1133 workload->vgpu->id);
1135 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1137 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1138 engine->name, workload);
1140 if (need_force_wake)
1141 intel_uncore_forcewake_get(engine->uncore,
1142 FORCEWAKE_ALL);
1144 * Update the vReg of the vGPU which submitted this
1145 * workload. The vGPU may use these registers for checking
1146 * the context state. The value comes from GPU commands
1147 * in this workload.
1149 update_vreg_in_ctx(workload);
1151 ret = dispatch_workload(workload);
1153 if (ret) {
1154 vgpu = workload->vgpu;
1155 gvt_vgpu_err("fail to dispatch workload, skip\n");
1156 goto complete;
1159 gvt_dbg_sched("ring %s wait workload %p\n",
1160 engine->name, workload);
1161 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1163 complete:
1164 gvt_dbg_sched("will complete workload %p, status: %d\n",
1165 workload, workload->status);
1167 complete_current_workload(gvt, engine->id);
1169 if (need_force_wake)
1170 intel_uncore_forcewake_put(engine->uncore,
1171 FORCEWAKE_ALL);
1173 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1174 if (ret && (vgpu_is_vm_unhealthy(ret)))
1175 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1177 return 0;
1180 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1182 struct intel_vgpu_submission *s = &vgpu->submission;
1183 struct intel_gvt *gvt = vgpu->gvt;
1184 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1186 if (atomic_read(&s->running_workload_num)) {
1187 gvt_dbg_sched("wait vgpu idle\n");
1189 wait_event(scheduler->workload_complete_wq,
1190 !atomic_read(&s->running_workload_num));
1194 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1196 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1197 struct intel_engine_cs *engine;
1198 enum intel_engine_id i;
1200 gvt_dbg_core("clean workload scheduler\n");
1202 for_each_engine(engine, gvt->gt, i) {
1203 atomic_notifier_chain_unregister(
1204 &engine->context_status_notifier,
1205 &gvt->shadow_ctx_notifier_block[i]);
1206 kthread_stop(scheduler->thread[i]);
1210 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1212 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1213 struct intel_engine_cs *engine;
1214 enum intel_engine_id i;
1215 int ret;
1217 gvt_dbg_core("init workload scheduler\n");
1219 init_waitqueue_head(&scheduler->workload_complete_wq);
1221 for_each_engine(engine, gvt->gt, i) {
1222 init_waitqueue_head(&scheduler->waitq[i]);
1224 scheduler->thread[i] = kthread_run(workload_thread, engine,
1225 "gvt:%s", engine->name);
1226 if (IS_ERR(scheduler->thread[i])) {
1227 gvt_err("fail to create workload thread\n");
1228 ret = PTR_ERR(scheduler->thread[i]);
1229 goto err;
1232 gvt->shadow_ctx_notifier_block[i].notifier_call =
1233 shadow_context_status_change;
1234 atomic_notifier_chain_register(&engine->context_status_notifier,
1235 &gvt->shadow_ctx_notifier_block[i]);
1238 return 0;
1240 err:
1241 intel_gvt_clean_workload_scheduler(gvt);
1242 return ret;
1245 static void
1246 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1247 struct i915_ppgtt *ppgtt)
1249 int i;
1251 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1252 set_dma_address(ppgtt->pd, s->i915_context_pml4);
1253 } else {
1254 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1255 struct i915_page_directory * const pd =
1256 i915_pd_entry(ppgtt->pd, i);
1258 set_dma_address(pd, s->i915_context_pdps[i]);
1264 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1265 * @vgpu: a vGPU
1267 * This function is called when a vGPU is being destroyed.
1270 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1272 struct intel_vgpu_submission *s = &vgpu->submission;
1273 struct intel_engine_cs *engine;
1274 enum intel_engine_id id;
1276 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1278 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1279 for_each_engine(engine, vgpu->gvt->gt, id)
1280 intel_context_put(s->shadow[id]);
1282 kmem_cache_destroy(s->workloads);
1287 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1288 * @vgpu: a vGPU
1289 * @engine_mask: engines expected to be reset
1291 * This function is called when a vGPU is being destroyed.
1294 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1295 intel_engine_mask_t engine_mask)
1297 struct intel_vgpu_submission *s = &vgpu->submission;
1299 if (!s->active)
1300 return;
1302 intel_vgpu_clean_workloads(vgpu, engine_mask);
1303 s->ops->reset(vgpu, engine_mask);
1306 static void
1307 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1308 struct i915_ppgtt *ppgtt)
1310 int i;
1312 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1313 s->i915_context_pml4 = px_dma(ppgtt->pd);
1314 } else {
1315 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1316 struct i915_page_directory * const pd =
1317 i915_pd_entry(ppgtt->pd, i);
1319 s->i915_context_pdps[i] = px_dma(pd);
1325 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1326 * @vgpu: a vGPU
1328 * This function is called when a vGPU is being created.
1330 * Returns:
1331 * Zero on success, negative error code if failed.
1334 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1336 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1337 struct intel_vgpu_submission *s = &vgpu->submission;
1338 struct intel_engine_cs *engine;
1339 struct i915_ppgtt *ppgtt;
1340 enum intel_engine_id i;
1341 int ret;
1343 ppgtt = i915_ppgtt_create(&i915->gt);
1344 if (IS_ERR(ppgtt))
1345 return PTR_ERR(ppgtt);
1347 i915_context_ppgtt_root_save(s, ppgtt);
1349 for_each_engine(engine, vgpu->gvt->gt, i) {
1350 struct intel_context *ce;
1352 INIT_LIST_HEAD(&s->workload_q_head[i]);
1353 s->shadow[i] = ERR_PTR(-EINVAL);
1355 ce = intel_context_create(engine);
1356 if (IS_ERR(ce)) {
1357 ret = PTR_ERR(ce);
1358 goto out_shadow_ctx;
1361 i915_vm_put(ce->vm);
1362 ce->vm = i915_vm_get(&ppgtt->vm);
1363 intel_context_set_single_submission(ce);
1365 /* Max ring buffer size */
1366 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1367 const unsigned int ring_size = 512 * SZ_4K;
1369 ce->ring = __intel_context_ring_size(ring_size);
1372 s->shadow[i] = ce;
1375 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1377 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1378 sizeof(struct intel_vgpu_workload), 0,
1379 SLAB_HWCACHE_ALIGN,
1380 offsetof(struct intel_vgpu_workload, rb_tail),
1381 sizeof_field(struct intel_vgpu_workload, rb_tail),
1382 NULL);
1384 if (!s->workloads) {
1385 ret = -ENOMEM;
1386 goto out_shadow_ctx;
1389 atomic_set(&s->running_workload_num, 0);
1390 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1392 memset(s->last_ctx, 0, sizeof(s->last_ctx));
1394 i915_vm_put(&ppgtt->vm);
1395 return 0;
1397 out_shadow_ctx:
1398 i915_context_ppgtt_root_restore(s, ppgtt);
1399 for_each_engine(engine, vgpu->gvt->gt, i) {
1400 if (IS_ERR(s->shadow[i]))
1401 break;
1403 intel_context_put(s->shadow[i]);
1405 i915_vm_put(&ppgtt->vm);
1406 return ret;
1410 * intel_vgpu_select_submission_ops - select virtual submission interface
1411 * @vgpu: a vGPU
1412 * @engine_mask: either ALL_ENGINES or target engine mask
1413 * @interface: expected vGPU virtual submission interface
1415 * This function is called when guest configures submission interface.
1417 * Returns:
1418 * Zero on success, negative error code if failed.
1421 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1422 intel_engine_mask_t engine_mask,
1423 unsigned int interface)
1425 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1426 struct intel_vgpu_submission *s = &vgpu->submission;
1427 const struct intel_vgpu_submission_ops *ops[] = {
1428 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1429 &intel_vgpu_execlist_submission_ops,
1431 int ret;
1433 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1434 return -EINVAL;
1436 if (drm_WARN_ON(&i915->drm,
1437 interface == 0 && engine_mask != ALL_ENGINES))
1438 return -EINVAL;
1440 if (s->active)
1441 s->ops->clean(vgpu, engine_mask);
1443 if (interface == 0) {
1444 s->ops = NULL;
1445 s->virtual_submission_interface = 0;
1446 s->active = false;
1447 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1448 return 0;
1451 ret = ops[interface]->init(vgpu, engine_mask);
1452 if (ret)
1453 return ret;
1455 s->ops = ops[interface];
1456 s->virtual_submission_interface = interface;
1457 s->active = true;
1459 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1460 vgpu->id, s->ops->name);
1462 return 0;
1466 * intel_vgpu_destroy_workload - destroy a vGPU workload
1467 * @workload: workload to destroy
1469 * This function is called when destroy a vGPU workload.
1472 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1474 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1476 intel_context_unpin(s->shadow[workload->engine->id]);
1477 release_shadow_batch_buffer(workload);
1478 release_shadow_wa_ctx(&workload->wa_ctx);
1480 if (!list_empty(&workload->lri_shadow_mm)) {
1481 struct intel_vgpu_mm *m, *mm;
1482 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1483 ppgtt_mm.link) {
1484 list_del(&m->ppgtt_mm.link);
1485 intel_vgpu_mm_put(m);
1489 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1490 if (workload->shadow_mm)
1491 intel_vgpu_mm_put(workload->shadow_mm);
1493 kmem_cache_free(s->workloads, workload);
1496 static struct intel_vgpu_workload *
1497 alloc_workload(struct intel_vgpu *vgpu)
1499 struct intel_vgpu_submission *s = &vgpu->submission;
1500 struct intel_vgpu_workload *workload;
1502 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1503 if (!workload)
1504 return ERR_PTR(-ENOMEM);
1506 INIT_LIST_HEAD(&workload->list);
1507 INIT_LIST_HEAD(&workload->shadow_bb);
1508 INIT_LIST_HEAD(&workload->lri_shadow_mm);
1510 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1511 atomic_set(&workload->shadow_ctx_active, 0);
1513 workload->status = -EINPROGRESS;
1514 workload->vgpu = vgpu;
1516 return workload;
1519 #define RING_CTX_OFF(x) \
1520 offsetof(struct execlist_ring_context, x)
1522 static void read_guest_pdps(struct intel_vgpu *vgpu,
1523 u64 ring_context_gpa, u32 pdp[8])
1525 u64 gpa;
1526 int i;
1528 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1530 for (i = 0; i < 8; i++)
1531 intel_gvt_hypervisor_read_gpa(vgpu,
1532 gpa + i * 8, &pdp[7 - i], 4);
1535 static int prepare_mm(struct intel_vgpu_workload *workload)
1537 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1538 struct intel_vgpu_mm *mm;
1539 struct intel_vgpu *vgpu = workload->vgpu;
1540 enum intel_gvt_gtt_type root_entry_type;
1541 u64 pdps[GVT_RING_CTX_NR_PDPS];
1543 switch (desc->addressing_mode) {
1544 case 1: /* legacy 32-bit */
1545 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1546 break;
1547 case 3: /* legacy 64-bit */
1548 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1549 break;
1550 default:
1551 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1552 return -EINVAL;
1555 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1557 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1558 if (IS_ERR(mm))
1559 return PTR_ERR(mm);
1561 workload->shadow_mm = mm;
1562 return 0;
1565 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1566 ((a)->lrca == (b)->lrca))
1569 * intel_vgpu_create_workload - create a vGPU workload
1570 * @vgpu: a vGPU
1571 * @engine: the engine
1572 * @desc: a guest context descriptor
1574 * This function is called when creating a vGPU workload.
1576 * Returns:
1577 * struct intel_vgpu_workload * on success, negative error code in
1578 * pointer if failed.
1581 struct intel_vgpu_workload *
1582 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1583 const struct intel_engine_cs *engine,
1584 struct execlist_ctx_descriptor_format *desc)
1586 struct intel_vgpu_submission *s = &vgpu->submission;
1587 struct list_head *q = workload_q_head(vgpu, engine);
1588 struct intel_vgpu_workload *last_workload = NULL;
1589 struct intel_vgpu_workload *workload = NULL;
1590 u64 ring_context_gpa;
1591 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1592 u32 guest_head;
1593 int ret;
1595 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1596 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1597 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1598 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1599 return ERR_PTR(-EINVAL);
1602 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1603 RING_CTX_OFF(ring_header.val), &head, 4);
1605 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1606 RING_CTX_OFF(ring_tail.val), &tail, 4);
1608 guest_head = head;
1610 head &= RB_HEAD_OFF_MASK;
1611 tail &= RB_TAIL_OFF_MASK;
1613 list_for_each_entry_reverse(last_workload, q, list) {
1615 if (same_context(&last_workload->ctx_desc, desc)) {
1616 gvt_dbg_el("ring %s cur workload == last\n",
1617 engine->name);
1618 gvt_dbg_el("ctx head %x real head %lx\n", head,
1619 last_workload->rb_tail);
1621 * cannot use guest context head pointer here,
1622 * as it might not be updated at this time
1624 head = last_workload->rb_tail;
1625 break;
1629 gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1631 /* record some ring buffer register values for scan and shadow */
1632 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1633 RING_CTX_OFF(rb_start.val), &start, 4);
1634 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1635 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1636 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1637 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1639 if (!intel_gvt_ggtt_validate_range(vgpu, start,
1640 _RING_CTL_BUF_SIZE(ctl))) {
1641 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1642 return ERR_PTR(-EINVAL);
1645 workload = alloc_workload(vgpu);
1646 if (IS_ERR(workload))
1647 return workload;
1649 workload->engine = engine;
1650 workload->ctx_desc = *desc;
1651 workload->ring_context_gpa = ring_context_gpa;
1652 workload->rb_head = head;
1653 workload->guest_rb_head = guest_head;
1654 workload->rb_tail = tail;
1655 workload->rb_start = start;
1656 workload->rb_ctl = ctl;
1658 if (engine->id == RCS0) {
1659 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1660 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1661 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1662 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1664 workload->wa_ctx.indirect_ctx.guest_gma =
1665 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1666 workload->wa_ctx.indirect_ctx.size =
1667 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1668 CACHELINE_BYTES;
1670 if (workload->wa_ctx.indirect_ctx.size != 0) {
1671 if (!intel_gvt_ggtt_validate_range(vgpu,
1672 workload->wa_ctx.indirect_ctx.guest_gma,
1673 workload->wa_ctx.indirect_ctx.size)) {
1674 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1675 workload->wa_ctx.indirect_ctx.guest_gma);
1676 kmem_cache_free(s->workloads, workload);
1677 return ERR_PTR(-EINVAL);
1681 workload->wa_ctx.per_ctx.guest_gma =
1682 per_ctx & PER_CTX_ADDR_MASK;
1683 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1684 if (workload->wa_ctx.per_ctx.valid) {
1685 if (!intel_gvt_ggtt_validate_range(vgpu,
1686 workload->wa_ctx.per_ctx.guest_gma,
1687 CACHELINE_BYTES)) {
1688 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1689 workload->wa_ctx.per_ctx.guest_gma);
1690 kmem_cache_free(s->workloads, workload);
1691 return ERR_PTR(-EINVAL);
1696 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1697 workload, engine->name, head, tail, start, ctl);
1699 ret = prepare_mm(workload);
1700 if (ret) {
1701 kmem_cache_free(s->workloads, workload);
1702 return ERR_PTR(ret);
1705 /* Only scan and shadow the first workload in the queue
1706 * as there is only one pre-allocated buf-obj for shadow.
1708 if (list_empty(q)) {
1709 intel_wakeref_t wakeref;
1711 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1712 ret = intel_gvt_scan_and_shadow_workload(workload);
1715 if (ret) {
1716 if (vgpu_is_vm_unhealthy(ret))
1717 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1718 intel_vgpu_destroy_workload(workload);
1719 return ERR_PTR(ret);
1722 ret = intel_context_pin(s->shadow[engine->id]);
1723 if (ret) {
1724 intel_vgpu_destroy_workload(workload);
1725 return ERR_PTR(ret);
1728 return workload;
1732 * intel_vgpu_queue_workload - Qeue a vGPU workload
1733 * @workload: the workload to queue in
1735 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1737 list_add_tail(&workload->list,
1738 workload_q_head(workload->vgpu, workload->engine));
1739 intel_gvt_kick_schedule(workload->vgpu->gvt);
1740 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);