2 * SPDX-License-Identifier: MIT
4 * Copyright © 2019 Intel Corporation
7 #include <linux/debugobjects.h>
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
19 * Active refs memory management
21 * To be more economical with memory, we reap all the i915_active trees as
22 * they idle (when we know the active requests are inactive) and allocate the
23 * nodes from a local slab cache to hopefully reduce the fragmentation.
25 static struct i915_global_active
{
26 struct i915_global base
;
27 struct kmem_cache
*slab_cache
;
32 struct i915_active_fence base
;
33 struct i915_active
*ref
;
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
39 static inline struct active_node
*
40 node_from_active(struct i915_active_fence
*active
)
42 return container_of(active
, struct active_node
, base
);
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
47 static inline bool is_barrier(const struct i915_active_fence
*active
)
49 return IS_ERR(rcu_access_pointer(active
->fence
));
52 static inline struct llist_node
*barrier_to_ll(struct active_node
*node
)
54 GEM_BUG_ON(!is_barrier(&node
->base
));
55 return (struct llist_node
*)&node
->base
.cb
.node
;
58 static inline struct intel_engine_cs
*
59 __barrier_to_engine(struct active_node
*node
)
61 return (struct intel_engine_cs
*)READ_ONCE(node
->base
.cb
.node
.prev
);
64 static inline struct intel_engine_cs
*
65 barrier_to_engine(struct active_node
*node
)
67 GEM_BUG_ON(!is_barrier(&node
->base
));
68 return __barrier_to_engine(node
);
71 static inline struct active_node
*barrier_from_ll(struct llist_node
*x
)
73 return container_of((struct list_head
*)x
,
74 struct active_node
, base
.cb
.node
);
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
79 static void *active_debug_hint(void *addr
)
81 struct i915_active
*ref
= addr
;
83 return (void *)ref
->active
?: (void *)ref
->retire
?: (void *)ref
;
86 static const struct debug_obj_descr active_debug_desc
= {
87 .name
= "i915_active",
88 .debug_hint
= active_debug_hint
,
91 static void debug_active_init(struct i915_active
*ref
)
93 debug_object_init(ref
, &active_debug_desc
);
96 static void debug_active_activate(struct i915_active
*ref
)
98 lockdep_assert_held(&ref
->tree_lock
);
99 if (!atomic_read(&ref
->count
)) /* before the first inc */
100 debug_object_activate(ref
, &active_debug_desc
);
103 static void debug_active_deactivate(struct i915_active
*ref
)
105 lockdep_assert_held(&ref
->tree_lock
);
106 if (!atomic_read(&ref
->count
)) /* after the last dec */
107 debug_object_deactivate(ref
, &active_debug_desc
);
110 static void debug_active_fini(struct i915_active
*ref
)
112 debug_object_free(ref
, &active_debug_desc
);
115 static void debug_active_assert(struct i915_active
*ref
)
117 debug_object_assert_init(ref
, &active_debug_desc
);
122 static inline void debug_active_init(struct i915_active
*ref
) { }
123 static inline void debug_active_activate(struct i915_active
*ref
) { }
124 static inline void debug_active_deactivate(struct i915_active
*ref
) { }
125 static inline void debug_active_fini(struct i915_active
*ref
) { }
126 static inline void debug_active_assert(struct i915_active
*ref
) { }
131 __active_retire(struct i915_active
*ref
)
133 struct rb_root root
= RB_ROOT
;
134 struct active_node
*it
, *n
;
137 GEM_BUG_ON(i915_active_is_idle(ref
));
139 /* return the unused nodes to our slabcache -- flushing the allocator */
140 if (!atomic_dec_and_lock_irqsave(&ref
->count
, &ref
->tree_lock
, flags
))
143 GEM_BUG_ON(rcu_access_pointer(ref
->excl
.fence
));
144 debug_active_deactivate(ref
);
146 /* Even if we have not used the cache, we may still have a barrier */
148 ref
->cache
= fetch_node(ref
->tree
.rb_node
);
150 /* Keep the MRU cached node for reuse */
152 /* Discard all other nodes in the tree */
153 rb_erase(&ref
->cache
->node
, &ref
->tree
);
156 /* Rebuild the tree with only the cached node */
157 rb_link_node(&ref
->cache
->node
, NULL
, &ref
->tree
.rb_node
);
158 rb_insert_color(&ref
->cache
->node
, &ref
->tree
);
159 GEM_BUG_ON(ref
->tree
.rb_node
!= &ref
->cache
->node
);
161 /* Make the cached node available for reuse with any timeline */
162 if (IS_ENABLED(CONFIG_64BIT
))
163 ref
->cache
->timeline
= 0; /* needs cmpxchg(u64) */
166 spin_unlock_irqrestore(&ref
->tree_lock
, flags
);
168 /* After the final retire, the entire struct may be freed */
172 /* ... except if you wait on it, you must manage your own references! */
175 /* Finally free the discarded timeline tree */
176 rbtree_postorder_for_each_entry_safe(it
, n
, &root
, node
) {
177 GEM_BUG_ON(i915_active_fence_isset(&it
->base
));
178 kmem_cache_free(global
.slab_cache
, it
);
183 active_work(struct work_struct
*wrk
)
185 struct i915_active
*ref
= container_of(wrk
, typeof(*ref
), work
);
187 GEM_BUG_ON(!atomic_read(&ref
->count
));
188 if (atomic_add_unless(&ref
->count
, -1, 1))
191 __active_retire(ref
);
195 active_retire(struct i915_active
*ref
)
197 GEM_BUG_ON(!atomic_read(&ref
->count
));
198 if (atomic_add_unless(&ref
->count
, -1, 1))
201 if (ref
->flags
& I915_ACTIVE_RETIRE_SLEEPS
) {
202 queue_work(system_unbound_wq
, &ref
->work
);
206 __active_retire(ref
);
209 static inline struct dma_fence
**
210 __active_fence_slot(struct i915_active_fence
*active
)
212 return (struct dma_fence
** __force
)&active
->fence
;
216 active_fence_cb(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
218 struct i915_active_fence
*active
=
219 container_of(cb
, typeof(*active
), cb
);
221 return cmpxchg(__active_fence_slot(active
), fence
, NULL
) == fence
;
225 node_retire(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
227 if (active_fence_cb(fence
, cb
))
228 active_retire(container_of(cb
, struct active_node
, base
.cb
)->ref
);
232 excl_retire(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
234 if (active_fence_cb(fence
, cb
))
235 active_retire(container_of(cb
, struct i915_active
, excl
.cb
));
238 static struct active_node
*__active_lookup(struct i915_active
*ref
, u64 idx
)
240 struct active_node
*it
;
242 GEM_BUG_ON(idx
== 0); /* 0 is the unordered timeline, rsvd for cache */
245 * We track the most recently used timeline to skip a rbtree search
246 * for the common case, under typical loads we never need the rbtree
247 * at all. We can reuse the last slot if it is empty, that is
248 * after the previous activity has been retired, or if it matches the
251 it
= READ_ONCE(ref
->cache
);
253 u64 cached
= READ_ONCE(it
->timeline
);
255 /* Once claimed, this slot will only belong to this idx */
259 #ifdef CONFIG_64BIT /* for cmpxchg(u64) */
261 * An unclaimed cache [.timeline=0] can only be claimed once.
263 * If the value is already non-zero, some other thread has
264 * claimed the cache and we know that is does not match our
265 * idx. If, and only if, the timeline is currently zero is it
266 * worth competing to claim it atomically for ourselves (for
267 * only the winner of that race will cmpxchg return the old
270 if (!cached
&& !cmpxchg(&it
->timeline
, 0, idx
))
275 BUILD_BUG_ON(offsetof(typeof(*it
), node
));
277 /* While active, the tree can only be built; not destroyed */
278 GEM_BUG_ON(i915_active_is_idle(ref
));
280 it
= fetch_node(ref
->tree
.rb_node
);
282 if (it
->timeline
< idx
) {
283 it
= fetch_node(it
->node
.rb_right
);
284 } else if (it
->timeline
> idx
) {
285 it
= fetch_node(it
->node
.rb_left
);
287 WRITE_ONCE(ref
->cache
, it
);
292 /* NB: If the tree rotated beneath us, we may miss our target. */
296 static struct i915_active_fence
*
297 active_instance(struct i915_active
*ref
, u64 idx
)
299 struct active_node
*node
, *prealloc
;
300 struct rb_node
**p
, *parent
;
302 node
= __active_lookup(ref
, idx
);
306 /* Preallocate a replacement, just in case */
307 prealloc
= kmem_cache_alloc(global
.slab_cache
, GFP_KERNEL
);
311 spin_lock_irq(&ref
->tree_lock
);
312 GEM_BUG_ON(i915_active_is_idle(ref
));
315 p
= &ref
->tree
.rb_node
;
319 node
= rb_entry(parent
, struct active_node
, node
);
320 if (node
->timeline
== idx
) {
321 kmem_cache_free(global
.slab_cache
, prealloc
);
325 if (node
->timeline
< idx
)
326 p
= &parent
->rb_right
;
328 p
= &parent
->rb_left
;
332 __i915_active_fence_init(&node
->base
, NULL
, node_retire
);
334 node
->timeline
= idx
;
336 rb_link_node(&node
->node
, parent
, p
);
337 rb_insert_color(&node
->node
, &ref
->tree
);
340 WRITE_ONCE(ref
->cache
, node
);
341 spin_unlock_irq(&ref
->tree_lock
);
346 void __i915_active_init(struct i915_active
*ref
,
347 int (*active
)(struct i915_active
*ref
),
348 void (*retire
)(struct i915_active
*ref
),
349 struct lock_class_key
*mkey
,
350 struct lock_class_key
*wkey
)
354 debug_active_init(ref
);
357 ref
->active
= active
;
358 ref
->retire
= ptr_unpack_bits(retire
, &bits
, 2);
359 if (bits
& I915_ACTIVE_MAY_SLEEP
)
360 ref
->flags
|= I915_ACTIVE_RETIRE_SLEEPS
;
362 spin_lock_init(&ref
->tree_lock
);
366 init_llist_head(&ref
->preallocated_barriers
);
367 atomic_set(&ref
->count
, 0);
368 __mutex_init(&ref
->mutex
, "i915_active", mkey
);
369 __i915_active_fence_init(&ref
->excl
, NULL
, excl_retire
);
370 INIT_WORK(&ref
->work
, active_work
);
371 #if IS_ENABLED(CONFIG_LOCKDEP)
372 lockdep_init_map(&ref
->work
.lockdep_map
, "i915_active.work", wkey
, 0);
376 static bool ____active_del_barrier(struct i915_active
*ref
,
377 struct active_node
*node
,
378 struct intel_engine_cs
*engine
)
381 struct llist_node
*head
= NULL
, *tail
= NULL
;
382 struct llist_node
*pos
, *next
;
384 GEM_BUG_ON(node
->timeline
!= engine
->kernel_context
->timeline
->fence_context
);
387 * Rebuild the llist excluding our node. We may perform this
388 * outside of the kernel_context timeline mutex and so someone
389 * else may be manipulating the engine->barrier_tasks, in
390 * which case either we or they will be upset :)
392 * A second __active_del_barrier() will report failure to claim
393 * the active_node and the caller will just shrug and know not to
394 * claim ownership of its node.
396 * A concurrent i915_request_add_active_barriers() will miss adding
397 * any of the tasks, but we will try again on the next -- and since
398 * we are actively using the barrier, we know that there will be
399 * at least another opportunity when we idle.
401 llist_for_each_safe(pos
, next
, llist_del_all(&engine
->barrier_tasks
)) {
402 if (node
== barrier_from_ll(pos
)) {
413 llist_add_batch(head
, tail
, &engine
->barrier_tasks
);
419 __active_del_barrier(struct i915_active
*ref
, struct active_node
*node
)
421 return ____active_del_barrier(ref
, node
, barrier_to_engine(node
));
425 replace_barrier(struct i915_active
*ref
, struct i915_active_fence
*active
)
427 if (!is_barrier(active
)) /* proto-node used by our idle barrier? */
431 * This request is on the kernel_context timeline, and so
432 * we can use it to substitute for the pending idle-barrer
433 * request that we want to emit on the kernel_context.
435 __active_del_barrier(ref
, node_from_active(active
));
439 int i915_active_ref(struct i915_active
*ref
, u64 idx
, struct dma_fence
*fence
)
441 struct i915_active_fence
*active
;
444 /* Prevent reaping in case we malloc/wait while building the tree */
445 err
= i915_active_acquire(ref
);
449 active
= active_instance(ref
, idx
);
455 if (replace_barrier(ref
, active
)) {
456 RCU_INIT_POINTER(active
->fence
, NULL
);
457 atomic_dec(&ref
->count
);
459 if (!__i915_active_fence_set(active
, fence
))
460 __i915_active_acquire(ref
);
463 i915_active_release(ref
);
467 static struct dma_fence
*
468 __i915_active_set_fence(struct i915_active
*ref
,
469 struct i915_active_fence
*active
,
470 struct dma_fence
*fence
)
472 struct dma_fence
*prev
;
474 if (replace_barrier(ref
, active
)) {
475 RCU_INIT_POINTER(active
->fence
, fence
);
480 prev
= __i915_active_fence_set(active
, fence
);
482 prev
= dma_fence_get_rcu(prev
);
484 __i915_active_acquire(ref
);
490 static struct i915_active_fence
*
491 __active_fence(struct i915_active
*ref
, u64 idx
)
493 struct active_node
*it
;
495 it
= __active_lookup(ref
, idx
);
496 if (unlikely(!it
)) { /* Contention with parallel tree builders! */
497 spin_lock_irq(&ref
->tree_lock
);
498 it
= __active_lookup(ref
, idx
);
499 spin_unlock_irq(&ref
->tree_lock
);
501 GEM_BUG_ON(!it
); /* slot must be preallocated */
507 __i915_active_ref(struct i915_active
*ref
, u64 idx
, struct dma_fence
*fence
)
509 /* Only valid while active, see i915_active_acquire_for_context() */
510 return __i915_active_set_fence(ref
, __active_fence(ref
, idx
), fence
);
514 i915_active_set_exclusive(struct i915_active
*ref
, struct dma_fence
*f
)
516 /* We expect the caller to manage the exclusive timeline ordering */
517 return __i915_active_set_fence(ref
, &ref
->excl
, f
);
520 bool i915_active_acquire_if_busy(struct i915_active
*ref
)
522 debug_active_assert(ref
);
523 return atomic_add_unless(&ref
->count
, 1, 0);
526 static void __i915_active_activate(struct i915_active
*ref
)
528 spin_lock_irq(&ref
->tree_lock
); /* __active_retire() */
529 if (!atomic_fetch_inc(&ref
->count
))
530 debug_active_activate(ref
);
531 spin_unlock_irq(&ref
->tree_lock
);
534 int i915_active_acquire(struct i915_active
*ref
)
538 if (i915_active_acquire_if_busy(ref
))
542 __i915_active_activate(ref
);
546 err
= mutex_lock_interruptible(&ref
->mutex
);
550 if (likely(!i915_active_acquire_if_busy(ref
))) {
551 err
= ref
->active(ref
);
553 __i915_active_activate(ref
);
556 mutex_unlock(&ref
->mutex
);
561 int i915_active_acquire_for_context(struct i915_active
*ref
, u64 idx
)
563 struct i915_active_fence
*active
;
566 err
= i915_active_acquire(ref
);
570 active
= active_instance(ref
, idx
);
572 i915_active_release(ref
);
576 return 0; /* return with active ref */
579 void i915_active_release(struct i915_active
*ref
)
581 debug_active_assert(ref
);
585 static void enable_signaling(struct i915_active_fence
*active
)
587 struct dma_fence
*fence
;
589 if (unlikely(is_barrier(active
)))
592 fence
= i915_active_fence_get(active
);
596 dma_fence_enable_sw_signaling(fence
);
597 dma_fence_put(fence
);
600 static int flush_barrier(struct active_node
*it
)
602 struct intel_engine_cs
*engine
;
604 if (likely(!is_barrier(&it
->base
)))
607 engine
= __barrier_to_engine(it
);
608 smp_rmb(); /* serialise with add_active_barriers */
609 if (!is_barrier(&it
->base
))
612 return intel_engine_flush_barriers(engine
);
615 static int flush_lazy_signals(struct i915_active
*ref
)
617 struct active_node
*it
, *n
;
620 enable_signaling(&ref
->excl
);
621 rbtree_postorder_for_each_entry_safe(it
, n
, &ref
->tree
, node
) {
622 err
= flush_barrier(it
); /* unconnected idle barrier? */
626 enable_signaling(&it
->base
);
632 int __i915_active_wait(struct i915_active
*ref
, int state
)
638 if (!i915_active_acquire_if_busy(ref
))
641 /* Any fence added after the wait begins will not be auto-signaled */
642 err
= flush_lazy_signals(ref
);
643 i915_active_release(ref
);
647 if (!i915_active_is_idle(ref
) &&
648 ___wait_var_event(ref
, i915_active_is_idle(ref
),
649 state
, 0, 0, schedule()))
652 flush_work(&ref
->work
);
656 static int __await_active(struct i915_active_fence
*active
,
657 int (*fn
)(void *arg
, struct dma_fence
*fence
),
660 struct dma_fence
*fence
;
662 if (is_barrier(active
)) /* XXX flush the barrier? */
665 fence
= i915_active_fence_get(active
);
669 err
= fn(arg
, fence
);
670 dma_fence_put(fence
);
678 struct wait_barrier
{
679 struct wait_queue_entry base
;
680 struct i915_active
*ref
;
684 barrier_wake(wait_queue_entry_t
*wq
, unsigned int mode
, int flags
, void *key
)
686 struct wait_barrier
*wb
= container_of(wq
, typeof(*wb
), base
);
688 if (i915_active_is_idle(wb
->ref
)) {
689 list_del(&wq
->entry
);
690 i915_sw_fence_complete(wq
->private);
697 static int __await_barrier(struct i915_active
*ref
, struct i915_sw_fence
*fence
)
699 struct wait_barrier
*wb
;
701 wb
= kmalloc(sizeof(*wb
), GFP_KERNEL
);
705 GEM_BUG_ON(i915_active_is_idle(ref
));
706 if (!i915_sw_fence_await(fence
)) {
712 wb
->base
.func
= barrier_wake
;
713 wb
->base
.private = fence
;
716 add_wait_queue(__var_waitqueue(ref
), &wb
->base
);
720 static int await_active(struct i915_active
*ref
,
722 int (*fn
)(void *arg
, struct dma_fence
*fence
),
723 void *arg
, struct i915_sw_fence
*barrier
)
727 if (!i915_active_acquire_if_busy(ref
))
730 if (flags
& I915_ACTIVE_AWAIT_EXCL
&&
731 rcu_access_pointer(ref
->excl
.fence
)) {
732 err
= __await_active(&ref
->excl
, fn
, arg
);
737 if (flags
& I915_ACTIVE_AWAIT_ACTIVE
) {
738 struct active_node
*it
, *n
;
740 rbtree_postorder_for_each_entry_safe(it
, n
, &ref
->tree
, node
) {
741 err
= __await_active(&it
->base
, fn
, arg
);
747 if (flags
& I915_ACTIVE_AWAIT_BARRIER
) {
748 err
= flush_lazy_signals(ref
);
752 err
= __await_barrier(ref
, barrier
);
758 i915_active_release(ref
);
762 static int rq_await_fence(void *arg
, struct dma_fence
*fence
)
764 return i915_request_await_dma_fence(arg
, fence
);
767 int i915_request_await_active(struct i915_request
*rq
,
768 struct i915_active
*ref
,
771 return await_active(ref
, flags
, rq_await_fence
, rq
, &rq
->submit
);
774 static int sw_await_fence(void *arg
, struct dma_fence
*fence
)
776 return i915_sw_fence_await_dma_fence(arg
, fence
, 0,
777 GFP_NOWAIT
| __GFP_NOWARN
);
780 int i915_sw_fence_await_active(struct i915_sw_fence
*fence
,
781 struct i915_active
*ref
,
784 return await_active(ref
, flags
, sw_await_fence
, fence
, fence
);
787 void i915_active_fini(struct i915_active
*ref
)
789 debug_active_fini(ref
);
790 GEM_BUG_ON(atomic_read(&ref
->count
));
791 GEM_BUG_ON(work_pending(&ref
->work
));
792 mutex_destroy(&ref
->mutex
);
795 kmem_cache_free(global
.slab_cache
, ref
->cache
);
798 static inline bool is_idle_barrier(struct active_node
*node
, u64 idx
)
800 return node
->timeline
== idx
&& !i915_active_fence_isset(&node
->base
);
803 static struct active_node
*reuse_idle_barrier(struct i915_active
*ref
, u64 idx
)
805 struct rb_node
*prev
, *p
;
807 if (RB_EMPTY_ROOT(&ref
->tree
))
810 GEM_BUG_ON(i915_active_is_idle(ref
));
813 * Try to reuse any existing barrier nodes already allocated for this
814 * i915_active, due to overlapping active phases there is likely a
815 * node kept alive (as we reuse before parking). We prefer to reuse
816 * completely idle barriers (less hassle in manipulating the llists),
817 * but otherwise any will do.
819 if (ref
->cache
&& is_idle_barrier(ref
->cache
, idx
)) {
820 p
= &ref
->cache
->node
;
825 p
= ref
->tree
.rb_node
;
827 struct active_node
*node
=
828 rb_entry(p
, struct active_node
, node
);
830 if (is_idle_barrier(node
, idx
))
834 if (node
->timeline
< idx
)
835 p
= READ_ONCE(p
->rb_right
);
837 p
= READ_ONCE(p
->rb_left
);
841 * No quick match, but we did find the leftmost rb_node for the
842 * kernel_context. Walk the rb_tree in-order to see if there were
843 * any idle-barriers on this timeline that we missed, or just use
844 * the first pending barrier.
846 for (p
= prev
; p
; p
= rb_next(p
)) {
847 struct active_node
*node
=
848 rb_entry(p
, struct active_node
, node
);
849 struct intel_engine_cs
*engine
;
851 if (node
->timeline
> idx
)
854 if (node
->timeline
< idx
)
857 if (is_idle_barrier(node
, idx
))
861 * The list of pending barriers is protected by the
862 * kernel_context timeline, which notably we do not hold
863 * here. i915_request_add_active_barriers() may consume
864 * the barrier before we claim it, so we have to check
867 engine
= __barrier_to_engine(node
);
868 smp_rmb(); /* serialise with add_active_barriers */
869 if (is_barrier(&node
->base
) &&
870 ____active_del_barrier(ref
, node
, engine
))
877 spin_lock_irq(&ref
->tree_lock
);
878 rb_erase(p
, &ref
->tree
); /* Hide from waits and sibling allocations */
879 if (p
== &ref
->cache
->node
)
880 WRITE_ONCE(ref
->cache
, NULL
);
881 spin_unlock_irq(&ref
->tree_lock
);
883 return rb_entry(p
, struct active_node
, node
);
886 int i915_active_acquire_preallocate_barrier(struct i915_active
*ref
,
887 struct intel_engine_cs
*engine
)
889 intel_engine_mask_t tmp
, mask
= engine
->mask
;
890 struct llist_node
*first
= NULL
, *last
= NULL
;
891 struct intel_gt
*gt
= engine
->gt
;
893 GEM_BUG_ON(i915_active_is_idle(ref
));
895 /* Wait until the previous preallocation is completed */
896 while (!llist_empty(&ref
->preallocated_barriers
))
900 * Preallocate a node for each physical engine supporting the target
901 * engine (remember virtual engines have more than one sibling).
902 * We can then use the preallocated nodes in
903 * i915_active_acquire_barrier()
906 for_each_engine_masked(engine
, gt
, mask
, tmp
) {
907 u64 idx
= engine
->kernel_context
->timeline
->fence_context
;
908 struct llist_node
*prev
= first
;
909 struct active_node
*node
;
912 node
= reuse_idle_barrier(ref
, idx
);
915 node
= kmem_cache_alloc(global
.slab_cache
, GFP_KERNEL
);
919 RCU_INIT_POINTER(node
->base
.fence
, NULL
);
920 node
->base
.cb
.func
= node_retire
;
921 node
->timeline
= idx
;
925 if (!i915_active_fence_isset(&node
->base
)) {
927 * Mark this as being *our* unconnected proto-node.
929 * Since this node is not in any list, and we have
930 * decoupled it from the rbtree, we can reuse the
931 * request to indicate this is an idle-barrier node
932 * and then we can use the rb_node and list pointers
933 * for our tracking of the pending barrier.
935 RCU_INIT_POINTER(node
->base
.fence
, ERR_PTR(-EAGAIN
));
936 node
->base
.cb
.node
.prev
= (void *)engine
;
937 __i915_active_acquire(ref
);
939 GEM_BUG_ON(rcu_access_pointer(node
->base
.fence
) != ERR_PTR(-EAGAIN
));
941 GEM_BUG_ON(barrier_to_engine(node
) != engine
);
942 first
= barrier_to_ll(node
);
946 intel_engine_pm_get(engine
);
949 GEM_BUG_ON(!llist_empty(&ref
->preallocated_barriers
));
950 llist_add_batch(first
, last
, &ref
->preallocated_barriers
);
956 struct active_node
*node
= barrier_from_ll(first
);
960 atomic_dec(&ref
->count
);
961 intel_engine_pm_put(barrier_to_engine(node
));
963 kmem_cache_free(global
.slab_cache
, node
);
968 void i915_active_acquire_barrier(struct i915_active
*ref
)
970 struct llist_node
*pos
, *next
;
973 GEM_BUG_ON(i915_active_is_idle(ref
));
976 * Transfer the list of preallocated barriers into the
977 * i915_active rbtree, but only as proto-nodes. They will be
978 * populated by i915_request_add_active_barriers() to point to the
979 * request that will eventually release them.
981 llist_for_each_safe(pos
, next
, take_preallocated_barriers(ref
)) {
982 struct active_node
*node
= barrier_from_ll(pos
);
983 struct intel_engine_cs
*engine
= barrier_to_engine(node
);
984 struct rb_node
**p
, *parent
;
986 spin_lock_irqsave_nested(&ref
->tree_lock
, flags
,
987 SINGLE_DEPTH_NESTING
);
989 p
= &ref
->tree
.rb_node
;
991 struct active_node
*it
;
995 it
= rb_entry(parent
, struct active_node
, node
);
996 if (it
->timeline
< node
->timeline
)
997 p
= &parent
->rb_right
;
999 p
= &parent
->rb_left
;
1001 rb_link_node(&node
->node
, parent
, p
);
1002 rb_insert_color(&node
->node
, &ref
->tree
);
1003 spin_unlock_irqrestore(&ref
->tree_lock
, flags
);
1005 GEM_BUG_ON(!intel_engine_pm_is_awake(engine
));
1006 llist_add(barrier_to_ll(node
), &engine
->barrier_tasks
);
1007 intel_engine_pm_put_delay(engine
, 1);
1011 static struct dma_fence
**ll_to_fence_slot(struct llist_node
*node
)
1013 return __active_fence_slot(&barrier_from_ll(node
)->base
);
1016 void i915_request_add_active_barriers(struct i915_request
*rq
)
1018 struct intel_engine_cs
*engine
= rq
->engine
;
1019 struct llist_node
*node
, *next
;
1020 unsigned long flags
;
1022 GEM_BUG_ON(!intel_context_is_barrier(rq
->context
));
1023 GEM_BUG_ON(intel_engine_is_virtual(engine
));
1024 GEM_BUG_ON(i915_request_timeline(rq
) != engine
->kernel_context
->timeline
);
1026 node
= llist_del_all(&engine
->barrier_tasks
);
1030 * Attach the list of proto-fences to the in-flight request such
1031 * that the parent i915_active will be released when this request
1034 spin_lock_irqsave(&rq
->lock
, flags
);
1035 llist_for_each_safe(node
, next
, node
) {
1036 /* serialise with reuse_idle_barrier */
1037 smp_store_mb(*ll_to_fence_slot(node
), &rq
->fence
);
1038 list_add_tail((struct list_head
*)node
, &rq
->fence
.cb_list
);
1040 spin_unlock_irqrestore(&rq
->lock
, flags
);
1044 * __i915_active_fence_set: Update the last active fence along its timeline
1045 * @active: the active tracker
1046 * @fence: the new fence (under construction)
1048 * Records the new @fence as the last active fence along its timeline in
1049 * this active tracker, moving the tracking callbacks from the previous
1050 * fence onto this one. Returns the previous fence (if not already completed),
1051 * which the caller must ensure is executed before the new fence. To ensure
1052 * that the order of fences within the timeline of the i915_active_fence is
1053 * understood, it should be locked by the caller.
1056 __i915_active_fence_set(struct i915_active_fence
*active
,
1057 struct dma_fence
*fence
)
1059 struct dma_fence
*prev
;
1060 unsigned long flags
;
1062 if (fence
== rcu_access_pointer(active
->fence
))
1065 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
, &fence
->flags
));
1068 * Consider that we have two threads arriving (A and B), with
1069 * C already resident as the active->fence.
1071 * A does the xchg first, and so it sees C or NULL depending
1072 * on the timing of the interrupt handler. If it is NULL, the
1073 * previous fence must have been signaled and we know that
1074 * we are first on the timeline. If it is still present,
1075 * we acquire the lock on that fence and serialise with the interrupt
1076 * handler, in the process removing it from any future interrupt
1077 * callback. A will then wait on C before executing (if present).
1079 * As B is second, it sees A as the previous fence and so waits for
1080 * it to complete its transition and takes over the occupancy for
1081 * itself -- remembering that it needs to wait on A before executing.
1083 * Note the strong ordering of the timeline also provides consistent
1084 * nesting rules for the fence->lock; the inner lock is always the
1087 spin_lock_irqsave(fence
->lock
, flags
);
1088 prev
= xchg(__active_fence_slot(active
), fence
);
1090 GEM_BUG_ON(prev
== fence
);
1091 spin_lock_nested(prev
->lock
, SINGLE_DEPTH_NESTING
);
1092 __list_del_entry(&active
->cb
.node
);
1093 spin_unlock(prev
->lock
); /* serialise with prev->cb_list */
1095 list_add_tail(&active
->cb
.node
, &fence
->cb_list
);
1096 spin_unlock_irqrestore(fence
->lock
, flags
);
1101 int i915_active_fence_set(struct i915_active_fence
*active
,
1102 struct i915_request
*rq
)
1104 struct dma_fence
*fence
;
1107 /* Must maintain timeline ordering wrt previous active requests */
1109 fence
= __i915_active_fence_set(active
, &rq
->fence
);
1110 if (fence
) /* but the previous fence may not belong to that timeline! */
1111 fence
= dma_fence_get_rcu(fence
);
1114 err
= i915_request_await_dma_fence(rq
, fence
);
1115 dma_fence_put(fence
);
1121 void i915_active_noop(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
1123 active_fence_cb(fence
, cb
);
1126 struct auto_active
{
1127 struct i915_active base
;
1131 struct i915_active
*i915_active_get(struct i915_active
*ref
)
1133 struct auto_active
*aa
= container_of(ref
, typeof(*aa
), base
);
1139 static void auto_release(struct kref
*ref
)
1141 struct auto_active
*aa
= container_of(ref
, typeof(*aa
), ref
);
1143 i915_active_fini(&aa
->base
);
1147 void i915_active_put(struct i915_active
*ref
)
1149 struct auto_active
*aa
= container_of(ref
, typeof(*aa
), base
);
1151 kref_put(&aa
->ref
, auto_release
);
1154 static int auto_active(struct i915_active
*ref
)
1156 i915_active_get(ref
);
1160 static void auto_retire(struct i915_active
*ref
)
1162 i915_active_put(ref
);
1165 struct i915_active
*i915_active_create(void)
1167 struct auto_active
*aa
;
1169 aa
= kmalloc(sizeof(*aa
), GFP_KERNEL
);
1173 kref_init(&aa
->ref
);
1174 i915_active_init(&aa
->base
, auto_active
, auto_retire
);
1179 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1180 #include "selftests/i915_active.c"
1183 static void i915_global_active_shrink(void)
1185 kmem_cache_shrink(global
.slab_cache
);
1188 static void i915_global_active_exit(void)
1190 kmem_cache_destroy(global
.slab_cache
);
1193 static struct i915_global_active global
= { {
1194 .shrink
= i915_global_active_shrink
,
1195 .exit
= i915_global_active_exit
,
1198 int __init
i915_global_active_init(void)
1200 global
.slab_cache
= KMEM_CACHE(active_node
, SLAB_HWCACHE_ALIGN
);
1201 if (!global
.slab_cache
)
1204 i915_global_register(&global
.base
);