WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_vgpu.c
blob70fca72f5162e66feed2d73f9b6c10dbc4420001
1 /*
2 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
24 #include "i915_drv.h"
25 #include "i915_pvinfo.h"
26 #include "i915_vgpu.h"
28 /**
29 * DOC: Intel GVT-g guest support
31 * Intel GVT-g is a graphics virtualization technology which shares the
32 * GPU among multiple virtual machines on a time-sharing basis. Each
33 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
34 * features as the underlying physical GPU (pGPU), so i915 driver can run
35 * seamlessly in a virtual machine. This file provides vGPU specific
36 * optimizations when running in a virtual machine, to reduce the complexity
37 * of vGPU emulation and to improve the overall performance.
39 * A primary function introduced here is so-called "address space ballooning"
40 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
41 * so each VM can directly access a portion of the memory without hypervisor's
42 * intervention, e.g. filling textures or queuing commands. However with the
43 * partitioning an unmodified i915 driver would assume a smaller graphics
44 * memory starting from address ZERO, then requires vGPU emulation module to
45 * translate the graphics address between 'guest view' and 'host view', for
46 * all registers and command opcodes which contain a graphics memory address.
47 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
48 * by telling the exact partitioning knowledge to each guest i915 driver, which
49 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
50 * emulation module only needs to scan and validate graphics addresses without
51 * complexity of address translation.
55 /**
56 * intel_vgpu_detect - detect virtual GPU
57 * @dev_priv: i915 device private
59 * This function is called at the initialization stage, to detect whether
60 * running on a vGPU.
62 void intel_vgpu_detect(struct drm_i915_private *dev_priv)
64 struct pci_dev *pdev = dev_priv->drm.pdev;
65 u64 magic;
66 u16 version_major;
67 void __iomem *shared_area;
69 BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
72 * This is called before we setup the main MMIO BAR mappings used via
73 * the uncore structure, so we need to access the BAR directly. Since
74 * we do not support VGT on older gens, return early so we don't have
75 * to consider differently numbered or sized MMIO bars
77 if (INTEL_GEN(dev_priv) < 6)
78 return;
80 shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
81 if (!shared_area) {
82 drm_err(&dev_priv->drm,
83 "failed to map MMIO bar to check for VGT\n");
84 return;
87 magic = readq(shared_area + vgtif_offset(magic));
88 if (magic != VGT_MAGIC)
89 goto out;
91 version_major = readw(shared_area + vgtif_offset(version_major));
92 if (version_major < VGT_VERSION_MAJOR) {
93 drm_info(&dev_priv->drm, "VGT interface version mismatch!\n");
94 goto out;
97 dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
99 dev_priv->vgpu.active = true;
100 mutex_init(&dev_priv->vgpu.lock);
101 drm_info(&dev_priv->drm, "Virtual GPU for Intel GVT-g detected.\n");
103 out:
104 pci_iounmap(pdev, shared_area);
107 void intel_vgpu_register(struct drm_i915_private *i915)
110 * Notify a valid surface after modesetting, when running inside a VM.
112 if (intel_vgpu_active(i915))
113 intel_uncore_write(&i915->uncore, vgtif_reg(display_ready),
114 VGT_DRV_DISPLAY_READY);
117 bool intel_vgpu_active(struct drm_i915_private *dev_priv)
119 return dev_priv->vgpu.active;
122 bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
124 return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
127 bool intel_vgpu_has_hwsp_emulation(struct drm_i915_private *dev_priv)
129 return dev_priv->vgpu.caps & VGT_CAPS_HWSP_EMULATION;
132 bool intel_vgpu_has_huge_gtt(struct drm_i915_private *dev_priv)
134 return dev_priv->vgpu.caps & VGT_CAPS_HUGE_GTT;
137 struct _balloon_info_ {
139 * There are up to 2 regions per mappable/unmappable graphic
140 * memory that might be ballooned. Here, index 0/1 is for mappable
141 * graphic memory, 2/3 for unmappable graphic memory.
143 struct drm_mm_node space[4];
146 static struct _balloon_info_ bl_info;
148 static void vgt_deballoon_space(struct i915_ggtt *ggtt,
149 struct drm_mm_node *node)
151 struct drm_i915_private *dev_priv = ggtt->vm.i915;
152 if (!drm_mm_node_allocated(node))
153 return;
155 drm_dbg(&dev_priv->drm,
156 "deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
157 node->start,
158 node->start + node->size,
159 node->size / 1024);
161 ggtt->vm.reserved -= node->size;
162 drm_mm_remove_node(node);
166 * intel_vgt_deballoon - deballoon reserved graphics address trunks
167 * @ggtt: the global GGTT from which we reserved earlier
169 * This function is called to deallocate the ballooned-out graphic memory, when
170 * driver is unloaded or when ballooning fails.
172 void intel_vgt_deballoon(struct i915_ggtt *ggtt)
174 struct drm_i915_private *dev_priv = ggtt->vm.i915;
175 int i;
177 if (!intel_vgpu_active(ggtt->vm.i915))
178 return;
180 drm_dbg(&dev_priv->drm, "VGT deballoon.\n");
182 for (i = 0; i < 4; i++)
183 vgt_deballoon_space(ggtt, &bl_info.space[i]);
186 static int vgt_balloon_space(struct i915_ggtt *ggtt,
187 struct drm_mm_node *node,
188 unsigned long start, unsigned long end)
190 struct drm_i915_private *dev_priv = ggtt->vm.i915;
191 unsigned long size = end - start;
192 int ret;
194 if (start >= end)
195 return -EINVAL;
197 drm_info(&dev_priv->drm,
198 "balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
199 start, end, size / 1024);
200 ret = i915_gem_gtt_reserve(&ggtt->vm, node,
201 size, start, I915_COLOR_UNEVICTABLE,
203 if (!ret)
204 ggtt->vm.reserved += size;
206 return ret;
210 * intel_vgt_balloon - balloon out reserved graphics address trunks
211 * @ggtt: the global GGTT from which to reserve
213 * This function is called at the initialization stage, to balloon out the
214 * graphic address space allocated to other vGPUs, by marking these spaces as
215 * reserved. The ballooning related knowledge(starting address and size of
216 * the mappable/unmappable graphic memory) is described in the vgt_if structure
217 * in a reserved mmio range.
219 * To give an example, the drawing below depicts one typical scenario after
220 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
221 * out each for the mappable and the non-mappable part. From the vGPU1 point of
222 * view, the total size is the same as the physical one, with the start address
223 * of its graphic space being zero. Yet there are some portions ballooned out(
224 * the shadow part, which are marked as reserved by drm allocator). From the
225 * host point of view, the graphic address space is partitioned by multiple
226 * vGPUs in different VMs. ::
228 * vGPU1 view Host view
229 * 0 ------> +-----------+ +-----------+
230 * ^ |###########| | vGPU3 |
231 * | |###########| +-----------+
232 * | |###########| | vGPU2 |
233 * | +-----------+ +-----------+
234 * mappable GM | available | ==> | vGPU1 |
235 * | +-----------+ +-----------+
236 * | |###########| | |
237 * v |###########| | Host |
238 * +=======+===========+ +===========+
239 * ^ |###########| | vGPU3 |
240 * | |###########| +-----------+
241 * | |###########| | vGPU2 |
242 * | +-----------+ +-----------+
243 * unmappable GM | available | ==> | vGPU1 |
244 * | +-----------+ +-----------+
245 * | |###########| | |
246 * | |###########| | Host |
247 * v |###########| | |
248 * total GM size ------> +-----------+ +-----------+
250 * Returns:
251 * zero on success, non-zero if configuration invalid or ballooning failed
253 int intel_vgt_balloon(struct i915_ggtt *ggtt)
255 struct drm_i915_private *dev_priv = ggtt->vm.i915;
256 struct intel_uncore *uncore = &dev_priv->uncore;
257 unsigned long ggtt_end = ggtt->vm.total;
259 unsigned long mappable_base, mappable_size, mappable_end;
260 unsigned long unmappable_base, unmappable_size, unmappable_end;
261 int ret;
263 if (!intel_vgpu_active(ggtt->vm.i915))
264 return 0;
266 mappable_base =
267 intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
268 mappable_size =
269 intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
270 unmappable_base =
271 intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
272 unmappable_size =
273 intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
275 mappable_end = mappable_base + mappable_size;
276 unmappable_end = unmappable_base + unmappable_size;
278 drm_info(&dev_priv->drm, "VGT ballooning configuration:\n");
279 drm_info(&dev_priv->drm,
280 "Mappable graphic memory: base 0x%lx size %ldKiB\n",
281 mappable_base, mappable_size / 1024);
282 drm_info(&dev_priv->drm,
283 "Unmappable graphic memory: base 0x%lx size %ldKiB\n",
284 unmappable_base, unmappable_size / 1024);
286 if (mappable_end > ggtt->mappable_end ||
287 unmappable_base < ggtt->mappable_end ||
288 unmappable_end > ggtt_end) {
289 drm_err(&dev_priv->drm, "Invalid ballooning configuration!\n");
290 return -EINVAL;
293 /* Unmappable graphic memory ballooning */
294 if (unmappable_base > ggtt->mappable_end) {
295 ret = vgt_balloon_space(ggtt, &bl_info.space[2],
296 ggtt->mappable_end, unmappable_base);
298 if (ret)
299 goto err;
302 if (unmappable_end < ggtt_end) {
303 ret = vgt_balloon_space(ggtt, &bl_info.space[3],
304 unmappable_end, ggtt_end);
305 if (ret)
306 goto err_upon_mappable;
309 /* Mappable graphic memory ballooning */
310 if (mappable_base) {
311 ret = vgt_balloon_space(ggtt, &bl_info.space[0],
312 0, mappable_base);
314 if (ret)
315 goto err_upon_unmappable;
318 if (mappable_end < ggtt->mappable_end) {
319 ret = vgt_balloon_space(ggtt, &bl_info.space[1],
320 mappable_end, ggtt->mappable_end);
322 if (ret)
323 goto err_below_mappable;
326 drm_info(&dev_priv->drm, "VGT balloon successfully\n");
327 return 0;
329 err_below_mappable:
330 vgt_deballoon_space(ggtt, &bl_info.space[0]);
331 err_upon_unmappable:
332 vgt_deballoon_space(ggtt, &bl_info.space[3]);
333 err_upon_mappable:
334 vgt_deballoon_space(ggtt, &bl_info.space[2]);
335 err:
336 drm_err(&dev_priv->drm, "VGT balloon fail\n");
337 return ret;