1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
7 #include "msm_gpu_trace.h"
9 #include "a6xx_gmu.xml.h"
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/soc/qcom/llcc-qcom.h>
17 static inline bool _a6xx_check_idle(struct msm_gpu
*gpu
)
19 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
20 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
22 /* Check that the GMU is idle */
23 if (!a6xx_gmu_isidle(&a6xx_gpu
->gmu
))
26 /* Check tha the CX master is idle */
27 if (gpu_read(gpu
, REG_A6XX_RBBM_STATUS
) &
28 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER
)
31 return !(gpu_read(gpu
, REG_A6XX_RBBM_INT_0_STATUS
) &
32 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT
);
35 static bool a6xx_idle(struct msm_gpu
*gpu
, struct msm_ringbuffer
*ring
)
37 /* wait for CP to drain ringbuffer: */
38 if (!adreno_idle(gpu
, ring
))
41 if (spin_until(_a6xx_check_idle(gpu
))) {
42 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
43 gpu
->name
, __builtin_return_address(0),
44 gpu_read(gpu
, REG_A6XX_RBBM_STATUS
),
45 gpu_read(gpu
, REG_A6XX_RBBM_INT_0_STATUS
),
46 gpu_read(gpu
, REG_A6XX_CP_RB_RPTR
),
47 gpu_read(gpu
, REG_A6XX_CP_RB_WPTR
));
54 static void a6xx_flush(struct msm_gpu
*gpu
, struct msm_ringbuffer
*ring
)
56 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
57 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
61 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
62 if (a6xx_gpu
->has_whereami
&& !adreno_gpu
->base
.hw_apriv
) {
63 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
65 OUT_PKT7(ring
, CP_WHERE_AM_I
, 2);
66 OUT_RING(ring
, lower_32_bits(shadowptr(a6xx_gpu
, ring
)));
67 OUT_RING(ring
, upper_32_bits(shadowptr(a6xx_gpu
, ring
)));
70 spin_lock_irqsave(&ring
->preempt_lock
, flags
);
72 /* Copy the shadow to the actual register */
73 ring
->cur
= ring
->next
;
75 /* Make sure to wrap wptr if we need to */
76 wptr
= get_wptr(ring
);
78 spin_unlock_irqrestore(&ring
->preempt_lock
, flags
);
80 /* Make sure everything is posted before making a decision */
83 gpu_write(gpu
, REG_A6XX_CP_RB_WPTR
, wptr
);
86 static void get_stats_counter(struct msm_ringbuffer
*ring
, u32 counter
,
89 OUT_PKT7(ring
, CP_REG_TO_MEM
, 3);
90 OUT_RING(ring
, CP_REG_TO_MEM_0_REG(counter
) |
91 CP_REG_TO_MEM_0_CNT(2) |
93 OUT_RING(ring
, lower_32_bits(iova
));
94 OUT_RING(ring
, upper_32_bits(iova
));
97 static void a6xx_set_pagetable(struct a6xx_gpu
*a6xx_gpu
,
98 struct msm_ringbuffer
*ring
, struct msm_file_private
*ctx
)
102 u64 memptr
= rbmemptr(ring
, ttbr0
);
104 if (ctx
== a6xx_gpu
->cur_ctx
)
107 if (msm_iommu_pagetable_params(ctx
->aspace
->mmu
, &ttbr
, &asid
))
110 /* Execute the table update */
111 OUT_PKT7(ring
, CP_SMMU_TABLE_UPDATE
, 4);
112 OUT_RING(ring
, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr
)));
115 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr
)) |
116 CP_SMMU_TABLE_UPDATE_1_ASID(asid
));
117 OUT_RING(ring
, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
118 OUT_RING(ring
, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
121 * Write the new TTBR0 to the memstore. This is good for debugging.
123 OUT_PKT7(ring
, CP_MEM_WRITE
, 4);
124 OUT_RING(ring
, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr
)));
125 OUT_RING(ring
, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr
)));
126 OUT_RING(ring
, lower_32_bits(ttbr
));
127 OUT_RING(ring
, (asid
<< 16) | upper_32_bits(ttbr
));
130 * And finally, trigger a uche flush to be sure there isn't anything
131 * lingering in that part of the GPU
134 OUT_PKT7(ring
, CP_EVENT_WRITE
, 1);
135 OUT_RING(ring
, 0x31);
137 a6xx_gpu
->cur_ctx
= ctx
;
140 static void a6xx_submit(struct msm_gpu
*gpu
, struct msm_gem_submit
*submit
)
142 unsigned int index
= submit
->seqno
% MSM_GPU_SUBMIT_STATS_COUNT
;
143 struct msm_drm_private
*priv
= gpu
->dev
->dev_private
;
144 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
145 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
146 struct msm_ringbuffer
*ring
= submit
->ring
;
149 a6xx_set_pagetable(a6xx_gpu
, ring
, submit
->queue
->ctx
);
151 get_stats_counter(ring
, REG_A6XX_RBBM_PERFCTR_CP_0_LO
,
152 rbmemptr_stats(ring
, index
, cpcycles_start
));
155 * For PM4 the GMU register offsets are calculated from the base of the
156 * GPU registers so we need to add 0x1a800 to the register value on A630
157 * to get the right value from PM4.
159 get_stats_counter(ring
, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L
+ 0x1a800,
160 rbmemptr_stats(ring
, index
, alwayson_start
));
162 /* Invalidate CCU depth and color */
163 OUT_PKT7(ring
, CP_EVENT_WRITE
, 1);
164 OUT_RING(ring
, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH
));
166 OUT_PKT7(ring
, CP_EVENT_WRITE
, 1);
167 OUT_RING(ring
, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR
));
169 /* Submit the commands */
170 for (i
= 0; i
< submit
->nr_cmds
; i
++) {
171 switch (submit
->cmd
[i
].type
) {
172 case MSM_SUBMIT_CMD_IB_TARGET_BUF
:
174 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF
:
175 if (priv
->lastctx
== submit
->queue
->ctx
)
178 case MSM_SUBMIT_CMD_BUF
:
179 OUT_PKT7(ring
, CP_INDIRECT_BUFFER_PFE
, 3);
180 OUT_RING(ring
, lower_32_bits(submit
->cmd
[i
].iova
));
181 OUT_RING(ring
, upper_32_bits(submit
->cmd
[i
].iova
));
182 OUT_RING(ring
, submit
->cmd
[i
].size
);
187 get_stats_counter(ring
, REG_A6XX_RBBM_PERFCTR_CP_0_LO
,
188 rbmemptr_stats(ring
, index
, cpcycles_end
));
189 get_stats_counter(ring
, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L
+ 0x1a800,
190 rbmemptr_stats(ring
, index
, alwayson_end
));
192 /* Write the fence to the scratch register */
193 OUT_PKT4(ring
, REG_A6XX_CP_SCRATCH_REG(2), 1);
194 OUT_RING(ring
, submit
->seqno
);
197 * Execute a CACHE_FLUSH_TS event. This will ensure that the
198 * timestamp is written to the memory and then triggers the interrupt
200 OUT_PKT7(ring
, CP_EVENT_WRITE
, 4);
201 OUT_RING(ring
, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS
) |
202 CP_EVENT_WRITE_0_IRQ
);
203 OUT_RING(ring
, lower_32_bits(rbmemptr(ring
, fence
)));
204 OUT_RING(ring
, upper_32_bits(rbmemptr(ring
, fence
)));
205 OUT_RING(ring
, submit
->seqno
);
207 trace_msm_gpu_submit_flush(submit
,
208 gmu_read64(&a6xx_gpu
->gmu
, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L
,
209 REG_A6XX_GMU_ALWAYS_ON_COUNTER_H
));
211 a6xx_flush(gpu
, ring
);
214 const struct adreno_reglist a630_hwcg
[] = {
215 {REG_A6XX_RBBM_CLOCK_CNTL_SP0
, 0x22222222},
216 {REG_A6XX_RBBM_CLOCK_CNTL_SP1
, 0x22222222},
217 {REG_A6XX_RBBM_CLOCK_CNTL_SP2
, 0x22222222},
218 {REG_A6XX_RBBM_CLOCK_CNTL_SP3
, 0x22222222},
219 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0
, 0x02022220},
220 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1
, 0x02022220},
221 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2
, 0x02022220},
222 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3
, 0x02022220},
223 {REG_A6XX_RBBM_CLOCK_DELAY_SP0
, 0x00000080},
224 {REG_A6XX_RBBM_CLOCK_DELAY_SP1
, 0x00000080},
225 {REG_A6XX_RBBM_CLOCK_DELAY_SP2
, 0x00000080},
226 {REG_A6XX_RBBM_CLOCK_DELAY_SP3
, 0x00000080},
227 {REG_A6XX_RBBM_CLOCK_HYST_SP0
, 0x0000f3cf},
228 {REG_A6XX_RBBM_CLOCK_HYST_SP1
, 0x0000f3cf},
229 {REG_A6XX_RBBM_CLOCK_HYST_SP2
, 0x0000f3cf},
230 {REG_A6XX_RBBM_CLOCK_HYST_SP3
, 0x0000f3cf},
231 {REG_A6XX_RBBM_CLOCK_CNTL_TP0
, 0x02222222},
232 {REG_A6XX_RBBM_CLOCK_CNTL_TP1
, 0x02222222},
233 {REG_A6XX_RBBM_CLOCK_CNTL_TP2
, 0x02222222},
234 {REG_A6XX_RBBM_CLOCK_CNTL_TP3
, 0x02222222},
235 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0
, 0x22222222},
236 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1
, 0x22222222},
237 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2
, 0x22222222},
238 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3
, 0x22222222},
239 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0
, 0x22222222},
240 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1
, 0x22222222},
241 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2
, 0x22222222},
242 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3
, 0x22222222},
243 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0
, 0x00022222},
244 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1
, 0x00022222},
245 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2
, 0x00022222},
246 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3
, 0x00022222},
247 {REG_A6XX_RBBM_CLOCK_HYST_TP0
, 0x77777777},
248 {REG_A6XX_RBBM_CLOCK_HYST_TP1
, 0x77777777},
249 {REG_A6XX_RBBM_CLOCK_HYST_TP2
, 0x77777777},
250 {REG_A6XX_RBBM_CLOCK_HYST_TP3
, 0x77777777},
251 {REG_A6XX_RBBM_CLOCK_HYST2_TP0
, 0x77777777},
252 {REG_A6XX_RBBM_CLOCK_HYST2_TP1
, 0x77777777},
253 {REG_A6XX_RBBM_CLOCK_HYST2_TP2
, 0x77777777},
254 {REG_A6XX_RBBM_CLOCK_HYST2_TP3
, 0x77777777},
255 {REG_A6XX_RBBM_CLOCK_HYST3_TP0
, 0x77777777},
256 {REG_A6XX_RBBM_CLOCK_HYST3_TP1
, 0x77777777},
257 {REG_A6XX_RBBM_CLOCK_HYST3_TP2
, 0x77777777},
258 {REG_A6XX_RBBM_CLOCK_HYST3_TP3
, 0x77777777},
259 {REG_A6XX_RBBM_CLOCK_HYST4_TP0
, 0x00077777},
260 {REG_A6XX_RBBM_CLOCK_HYST4_TP1
, 0x00077777},
261 {REG_A6XX_RBBM_CLOCK_HYST4_TP2
, 0x00077777},
262 {REG_A6XX_RBBM_CLOCK_HYST4_TP3
, 0x00077777},
263 {REG_A6XX_RBBM_CLOCK_DELAY_TP0
, 0x11111111},
264 {REG_A6XX_RBBM_CLOCK_DELAY_TP1
, 0x11111111},
265 {REG_A6XX_RBBM_CLOCK_DELAY_TP2
, 0x11111111},
266 {REG_A6XX_RBBM_CLOCK_DELAY_TP3
, 0x11111111},
267 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0
, 0x11111111},
268 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1
, 0x11111111},
269 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2
, 0x11111111},
270 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3
, 0x11111111},
271 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0
, 0x11111111},
272 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1
, 0x11111111},
273 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2
, 0x11111111},
274 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3
, 0x11111111},
275 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0
, 0x00011111},
276 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1
, 0x00011111},
277 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2
, 0x00011111},
278 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3
, 0x00011111},
279 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE
, 0x22222222},
280 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE
, 0x22222222},
281 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE
, 0x22222222},
282 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE
, 0x00222222},
283 {REG_A6XX_RBBM_CLOCK_HYST_UCHE
, 0x00000004},
284 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE
, 0x00000002},
285 {REG_A6XX_RBBM_CLOCK_CNTL_RB0
, 0x22222222},
286 {REG_A6XX_RBBM_CLOCK_CNTL_RB1
, 0x22222222},
287 {REG_A6XX_RBBM_CLOCK_CNTL_RB2
, 0x22222222},
288 {REG_A6XX_RBBM_CLOCK_CNTL_RB3
, 0x22222222},
289 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0
, 0x00002222},
290 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1
, 0x00002222},
291 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2
, 0x00002222},
292 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3
, 0x00002222},
293 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0
, 0x00002220},
294 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1
, 0x00002220},
295 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2
, 0x00002220},
296 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3
, 0x00002220},
297 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0
, 0x00040f00},
298 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1
, 0x00040f00},
299 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2
, 0x00040f00},
300 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3
, 0x00040f00},
301 {REG_A6XX_RBBM_CLOCK_CNTL_RAC
, 0x05022022},
302 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC
, 0x00005555},
303 {REG_A6XX_RBBM_CLOCK_DELAY_RAC
, 0x00000011},
304 {REG_A6XX_RBBM_CLOCK_HYST_RAC
, 0x00445044},
305 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM
, 0x04222222},
306 {REG_A6XX_RBBM_CLOCK_MODE_GPC
, 0x00222222},
307 {REG_A6XX_RBBM_CLOCK_MODE_VFD
, 0x00002222},
308 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM
, 0x00000000},
309 {REG_A6XX_RBBM_CLOCK_HYST_GPC
, 0x04104004},
310 {REG_A6XX_RBBM_CLOCK_HYST_VFD
, 0x00000000},
311 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ
, 0x00000000},
312 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM
, 0x00004000},
313 {REG_A6XX_RBBM_CLOCK_DELAY_GPC
, 0x00000200},
314 {REG_A6XX_RBBM_CLOCK_DELAY_VFD
, 0x00002222},
315 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2
, 0x00000002},
316 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ
, 0x00002222},
317 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX
, 0x00000222},
318 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX
, 0x00000111},
319 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX
, 0x00000555},
323 const struct adreno_reglist a640_hwcg
[] = {
324 {REG_A6XX_RBBM_CLOCK_CNTL_SP0
, 0x02222222},
325 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0
, 0x02222220},
326 {REG_A6XX_RBBM_CLOCK_DELAY_SP0
, 0x00000080},
327 {REG_A6XX_RBBM_CLOCK_HYST_SP0
, 0x0000F3CF},
328 {REG_A6XX_RBBM_CLOCK_CNTL_TP0
, 0x02222222},
329 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0
, 0x22222222},
330 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0
, 0x22222222},
331 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0
, 0x00022222},
332 {REG_A6XX_RBBM_CLOCK_DELAY_TP0
, 0x11111111},
333 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0
, 0x11111111},
334 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0
, 0x11111111},
335 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0
, 0x00011111},
336 {REG_A6XX_RBBM_CLOCK_HYST_TP0
, 0x77777777},
337 {REG_A6XX_RBBM_CLOCK_HYST2_TP0
, 0x77777777},
338 {REG_A6XX_RBBM_CLOCK_HYST3_TP0
, 0x77777777},
339 {REG_A6XX_RBBM_CLOCK_HYST4_TP0
, 0x00077777},
340 {REG_A6XX_RBBM_CLOCK_CNTL_RB0
, 0x22222222},
341 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0
, 0x01002222},
342 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0
, 0x00002220},
343 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0
, 0x00040F00},
344 {REG_A6XX_RBBM_CLOCK_CNTL_RAC
, 0x05222022},
345 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC
, 0x00005555},
346 {REG_A6XX_RBBM_CLOCK_DELAY_RAC
, 0x00000011},
347 {REG_A6XX_RBBM_CLOCK_HYST_RAC
, 0x00445044},
348 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM
, 0x04222222},
349 {REG_A6XX_RBBM_CLOCK_MODE_VFD
, 0x00002222},
350 {REG_A6XX_RBBM_CLOCK_MODE_GPC
, 0x00222222},
351 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2
, 0x00000002},
352 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ
, 0x00002222},
353 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM
, 0x00004000},
354 {REG_A6XX_RBBM_CLOCK_DELAY_VFD
, 0x00002222},
355 {REG_A6XX_RBBM_CLOCK_DELAY_GPC
, 0x00000200},
356 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ
, 0x00000000},
357 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM
, 0x00000000},
358 {REG_A6XX_RBBM_CLOCK_HYST_VFD
, 0x00000000},
359 {REG_A6XX_RBBM_CLOCK_HYST_GPC
, 0x04104004},
360 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ
, 0x00000000},
361 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE
, 0x00000222},
362 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE
, 0x00000111},
363 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE
, 0x00000000},
364 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE
, 0x22222222},
365 {REG_A6XX_RBBM_CLOCK_HYST_UCHE
, 0x00000004},
366 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE
, 0x00000002},
367 {REG_A6XX_RBBM_ISDB_CNT
, 0x00000182},
368 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT
, 0x00000000},
369 {REG_A6XX_RBBM_SP_HYST_CNT
, 0x00000000},
370 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX
, 0x00000222},
371 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX
, 0x00000111},
372 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX
, 0x00000555},
376 const struct adreno_reglist a650_hwcg
[] = {
377 {REG_A6XX_RBBM_CLOCK_CNTL_SP0
, 0x02222222},
378 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0
, 0x02222220},
379 {REG_A6XX_RBBM_CLOCK_DELAY_SP0
, 0x00000080},
380 {REG_A6XX_RBBM_CLOCK_HYST_SP0
, 0x0000F3CF},
381 {REG_A6XX_RBBM_CLOCK_CNTL_TP0
, 0x02222222},
382 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0
, 0x22222222},
383 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0
, 0x22222222},
384 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0
, 0x00022222},
385 {REG_A6XX_RBBM_CLOCK_DELAY_TP0
, 0x11111111},
386 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0
, 0x11111111},
387 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0
, 0x11111111},
388 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0
, 0x00011111},
389 {REG_A6XX_RBBM_CLOCK_HYST_TP0
, 0x77777777},
390 {REG_A6XX_RBBM_CLOCK_HYST2_TP0
, 0x77777777},
391 {REG_A6XX_RBBM_CLOCK_HYST3_TP0
, 0x77777777},
392 {REG_A6XX_RBBM_CLOCK_HYST4_TP0
, 0x00077777},
393 {REG_A6XX_RBBM_CLOCK_CNTL_RB0
, 0x22222222},
394 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0
, 0x01002222},
395 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0
, 0x00002220},
396 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0
, 0x00040F00},
397 {REG_A6XX_RBBM_CLOCK_CNTL_RAC
, 0x25222022},
398 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC
, 0x00005555},
399 {REG_A6XX_RBBM_CLOCK_DELAY_RAC
, 0x00000011},
400 {REG_A6XX_RBBM_CLOCK_HYST_RAC
, 0x00445044},
401 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM
, 0x04222222},
402 {REG_A6XX_RBBM_CLOCK_MODE_VFD
, 0x00002222},
403 {REG_A6XX_RBBM_CLOCK_MODE_GPC
, 0x00222222},
404 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2
, 0x00000002},
405 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ
, 0x00002222},
406 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM
, 0x00004000},
407 {REG_A6XX_RBBM_CLOCK_DELAY_VFD
, 0x00002222},
408 {REG_A6XX_RBBM_CLOCK_DELAY_GPC
, 0x00000200},
409 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ
, 0x00000000},
410 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM
, 0x00000000},
411 {REG_A6XX_RBBM_CLOCK_HYST_VFD
, 0x00000000},
412 {REG_A6XX_RBBM_CLOCK_HYST_GPC
, 0x04104004},
413 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ
, 0x00000000},
414 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE
, 0x00000222},
415 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE
, 0x00000111},
416 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE
, 0x00000777},
417 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE
, 0x22222222},
418 {REG_A6XX_RBBM_CLOCK_HYST_UCHE
, 0x00000004},
419 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE
, 0x00000002},
420 {REG_A6XX_RBBM_ISDB_CNT
, 0x00000182},
421 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT
, 0x00000000},
422 {REG_A6XX_RBBM_SP_HYST_CNT
, 0x00000000},
423 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX
, 0x00000222},
424 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX
, 0x00000111},
425 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX
, 0x00000555},
429 static void a6xx_set_hwcg(struct msm_gpu
*gpu
, bool state
)
431 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
432 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
433 struct a6xx_gmu
*gmu
= &a6xx_gpu
->gmu
;
434 const struct adreno_reglist
*reg
;
436 u32 val
, clock_cntl_on
;
438 if (!adreno_gpu
->info
->hwcg
)
441 if (adreno_is_a630(adreno_gpu
))
442 clock_cntl_on
= 0x8aa8aa02;
444 clock_cntl_on
= 0x8aa8aa82;
446 val
= gpu_read(gpu
, REG_A6XX_RBBM_CLOCK_CNTL
);
448 /* Don't re-program the registers if they are already correct */
449 if ((!state
&& !val
) || (state
&& (val
== clock_cntl_on
)))
452 /* Disable SP clock before programming HWCG registers */
453 gmu_rmw(gmu
, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL
, 1, 0);
455 for (i
= 0; (reg
= &adreno_gpu
->info
->hwcg
[i
], reg
->offset
); i
++)
456 gpu_write(gpu
, reg
->offset
, state
? reg
->value
: 0);
458 /* Enable SP clock */
459 gmu_rmw(gmu
, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL
, 0, 1);
461 gpu_write(gpu
, REG_A6XX_RBBM_CLOCK_CNTL
, state
? clock_cntl_on
: 0);
464 static void a6xx_set_ubwc_config(struct msm_gpu
*gpu
)
466 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
469 u32 rgb565_predicator
= 0;
470 u32 uavflagprd_inv
= 0;
472 /* a618 is using the hw default values */
473 if (adreno_is_a618(adreno_gpu
))
476 if (adreno_is_a640(adreno_gpu
))
479 if (adreno_is_a650(adreno_gpu
)) {
480 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
483 rgb565_predicator
= 1;
487 gpu_write(gpu
, REG_A6XX_RB_NC_MODE_CNTL
,
488 rgb565_predicator
<< 11 | amsbc
<< 4 | lower_bit
<< 1);
489 gpu_write(gpu
, REG_A6XX_TPL1_NC_MODE_CNTL
, lower_bit
<< 1);
490 gpu_write(gpu
, REG_A6XX_SP_NC_MODE_CNTL
,
491 uavflagprd_inv
>> 4 | lower_bit
<< 1);
492 gpu_write(gpu
, REG_A6XX_UCHE_MODE_CNTL
, lower_bit
<< 21);
495 static int a6xx_cp_init(struct msm_gpu
*gpu
)
497 struct msm_ringbuffer
*ring
= gpu
->rb
[0];
499 OUT_PKT7(ring
, CP_ME_INIT
, 8);
501 OUT_RING(ring
, 0x0000002f);
503 /* Enable multiple hardware contexts */
504 OUT_RING(ring
, 0x00000003);
506 /* Enable error detection */
507 OUT_RING(ring
, 0x20000000);
509 /* Don't enable header dump */
510 OUT_RING(ring
, 0x00000000);
511 OUT_RING(ring
, 0x00000000);
513 /* No workarounds enabled */
514 OUT_RING(ring
, 0x00000000);
516 /* Pad rest of the cmds with 0's */
517 OUT_RING(ring
, 0x00000000);
518 OUT_RING(ring
, 0x00000000);
520 a6xx_flush(gpu
, ring
);
521 return a6xx_idle(gpu
, ring
) ? 0 : -EINVAL
;
524 static void a6xx_ucode_check_version(struct a6xx_gpu
*a6xx_gpu
,
525 struct drm_gem_object
*obj
)
527 u32
*buf
= msm_gem_get_vaddr(obj
);
533 * If the lowest nibble is 0xa that is an indication that this microcode
534 * has been patched. The actual version is in dword [3] but we only care
535 * about the patchlevel which is the lowest nibble of dword [3]
537 * Otherwise check that the firmware is greater than or equal to 1.90
538 * which was the first version that had this fix built in
540 if (((buf
[0] & 0xf) == 0xa) && (buf
[2] & 0xf) >= 1)
541 a6xx_gpu
->has_whereami
= true;
542 else if ((buf
[0] & 0xfff) > 0x190)
543 a6xx_gpu
->has_whereami
= true;
545 msm_gem_put_vaddr(obj
);
548 static int a6xx_ucode_init(struct msm_gpu
*gpu
)
550 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
551 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
553 if (!a6xx_gpu
->sqe_bo
) {
554 a6xx_gpu
->sqe_bo
= adreno_fw_create_bo(gpu
,
555 adreno_gpu
->fw
[ADRENO_FW_SQE
], &a6xx_gpu
->sqe_iova
);
557 if (IS_ERR(a6xx_gpu
->sqe_bo
)) {
558 int ret
= PTR_ERR(a6xx_gpu
->sqe_bo
);
560 a6xx_gpu
->sqe_bo
= NULL
;
561 DRM_DEV_ERROR(&gpu
->pdev
->dev
,
562 "Could not allocate SQE ucode: %d\n", ret
);
567 msm_gem_object_set_name(a6xx_gpu
->sqe_bo
, "sqefw");
568 a6xx_ucode_check_version(a6xx_gpu
, a6xx_gpu
->sqe_bo
);
571 gpu_write64(gpu
, REG_A6XX_CP_SQE_INSTR_BASE_LO
,
572 REG_A6XX_CP_SQE_INSTR_BASE_HI
, a6xx_gpu
->sqe_iova
);
577 static int a6xx_zap_shader_init(struct msm_gpu
*gpu
)
585 ret
= adreno_zap_shader_load(gpu
, GPU_PAS_ID
);
591 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
592 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
593 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
594 A6XX_RBBM_INT_0_MASK_CP_IB2 | \
595 A6XX_RBBM_INT_0_MASK_CP_IB1 | \
596 A6XX_RBBM_INT_0_MASK_CP_RB | \
597 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
598 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
599 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
600 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
601 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
603 static int a6xx_hw_init(struct msm_gpu
*gpu
)
605 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
606 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
609 /* Make sure the GMU keeps the GPU on while we set it up */
610 a6xx_gmu_set_oob(&a6xx_gpu
->gmu
, GMU_OOB_GPU_SET
);
612 gpu_write(gpu
, REG_A6XX_RBBM_SECVID_TSB_CNTL
, 0);
615 * Disable the trusted memory range - we don't actually supported secure
616 * memory rendering at this point in time and we don't want to block off
617 * part of the virtual memory space.
619 gpu_write64(gpu
, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO
,
620 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI
, 0x00000000);
621 gpu_write(gpu
, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE
, 0x00000000);
623 /* Turn on 64 bit addressing for all blocks */
624 gpu_write(gpu
, REG_A6XX_CP_ADDR_MODE_CNTL
, 0x1);
625 gpu_write(gpu
, REG_A6XX_VSC_ADDR_MODE_CNTL
, 0x1);
626 gpu_write(gpu
, REG_A6XX_GRAS_ADDR_MODE_CNTL
, 0x1);
627 gpu_write(gpu
, REG_A6XX_RB_ADDR_MODE_CNTL
, 0x1);
628 gpu_write(gpu
, REG_A6XX_PC_ADDR_MODE_CNTL
, 0x1);
629 gpu_write(gpu
, REG_A6XX_HLSQ_ADDR_MODE_CNTL
, 0x1);
630 gpu_write(gpu
, REG_A6XX_VFD_ADDR_MODE_CNTL
, 0x1);
631 gpu_write(gpu
, REG_A6XX_VPC_ADDR_MODE_CNTL
, 0x1);
632 gpu_write(gpu
, REG_A6XX_UCHE_ADDR_MODE_CNTL
, 0x1);
633 gpu_write(gpu
, REG_A6XX_SP_ADDR_MODE_CNTL
, 0x1);
634 gpu_write(gpu
, REG_A6XX_TPL1_ADDR_MODE_CNTL
, 0x1);
635 gpu_write(gpu
, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL
, 0x1);
637 /* enable hardware clockgating */
638 a6xx_set_hwcg(gpu
, true);
641 if (adreno_is_a640(adreno_gpu
) || adreno_is_a650(adreno_gpu
)) {
642 gpu_write(gpu
, REG_A6XX_GBIF_QSB_SIDE0
, 0x00071620);
643 gpu_write(gpu
, REG_A6XX_GBIF_QSB_SIDE1
, 0x00071620);
644 gpu_write(gpu
, REG_A6XX_GBIF_QSB_SIDE2
, 0x00071620);
645 gpu_write(gpu
, REG_A6XX_GBIF_QSB_SIDE3
, 0x00071620);
646 gpu_write(gpu
, REG_A6XX_GBIF_QSB_SIDE3
, 0x00071620);
647 gpu_write(gpu
, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL
, 0x3);
649 gpu_write(gpu
, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL
, 0x3);
652 if (adreno_is_a630(adreno_gpu
))
653 gpu_write(gpu
, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN
, 0x00000009);
655 /* Make all blocks contribute to the GPU BUSY perf counter */
656 gpu_write(gpu
, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED
, 0xffffffff);
658 /* Disable L2 bypass in the UCHE */
659 gpu_write(gpu
, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO
, 0xffffffc0);
660 gpu_write(gpu
, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI
, 0x0001ffff);
661 gpu_write(gpu
, REG_A6XX_UCHE_TRAP_BASE_LO
, 0xfffff000);
662 gpu_write(gpu
, REG_A6XX_UCHE_TRAP_BASE_HI
, 0x0001ffff);
663 gpu_write(gpu
, REG_A6XX_UCHE_WRITE_THRU_BASE_LO
, 0xfffff000);
664 gpu_write(gpu
, REG_A6XX_UCHE_WRITE_THRU_BASE_HI
, 0x0001ffff);
666 if (!adreno_is_a650(adreno_gpu
)) {
667 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
668 gpu_write64(gpu
, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO
,
669 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI
, 0x00100000);
671 gpu_write64(gpu
, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO
,
672 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI
,
673 0x00100000 + adreno_gpu
->gmem
- 1);
676 gpu_write(gpu
, REG_A6XX_UCHE_FILTER_CNTL
, 0x804);
677 gpu_write(gpu
, REG_A6XX_UCHE_CACHE_WAYS
, 0x4);
679 if (adreno_is_a640(adreno_gpu
) || adreno_is_a650(adreno_gpu
))
680 gpu_write(gpu
, REG_A6XX_CP_ROQ_THRESHOLDS_2
, 0x02000140);
682 gpu_write(gpu
, REG_A6XX_CP_ROQ_THRESHOLDS_2
, 0x010000c0);
683 gpu_write(gpu
, REG_A6XX_CP_ROQ_THRESHOLDS_1
, 0x8040362c);
685 /* Setting the mem pool size */
686 gpu_write(gpu
, REG_A6XX_CP_MEM_POOL_SIZE
, 128);
688 /* Setting the primFifo thresholds default values */
689 if (adreno_is_a650(adreno_gpu
))
690 gpu_write(gpu
, REG_A6XX_PC_DBG_ECO_CNTL
, 0x00300000);
691 else if (adreno_is_a640(adreno_gpu
))
692 gpu_write(gpu
, REG_A6XX_PC_DBG_ECO_CNTL
, 0x00200000);
694 gpu_write(gpu
, REG_A6XX_PC_DBG_ECO_CNTL
, (0x300 << 11));
696 /* Set the AHB default slave response to "ERROR" */
697 gpu_write(gpu
, REG_A6XX_CP_AHB_CNTL
, 0x1);
699 /* Turn on performance counters */
700 gpu_write(gpu
, REG_A6XX_RBBM_PERFCTR_CNTL
, 0x1);
702 /* Select CP0 to always count cycles */
703 gpu_write(gpu
, REG_A6XX_CP_PERFCTR_CP_SEL_0
, PERF_CP_ALWAYS_COUNT
);
705 a6xx_set_ubwc_config(gpu
);
707 /* Enable fault detection */
708 gpu_write(gpu
, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL
,
709 (1 << 30) | 0x1fffff);
711 gpu_write(gpu
, REG_A6XX_UCHE_CLIENT_PF
, 1);
713 /* Set weights for bicubic filtering */
714 if (adreno_is_a650(adreno_gpu
)) {
715 gpu_write(gpu
, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0
, 0);
716 gpu_write(gpu
, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1
,
718 gpu_write(gpu
, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2
,
720 gpu_write(gpu
, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3
,
722 gpu_write(gpu
, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4
,
726 /* Protect registers from the CP */
727 gpu_write(gpu
, REG_A6XX_CP_PROTECT_CNTL
, 0x00000003);
729 gpu_write(gpu
, REG_A6XX_CP_PROTECT(0),
730 A6XX_PROTECT_RDONLY(0x600, 0x51));
731 gpu_write(gpu
, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2));
732 gpu_write(gpu
, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13));
733 gpu_write(gpu
, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8));
734 gpu_write(gpu
, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1));
735 gpu_write(gpu
, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187));
736 gpu_write(gpu
, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810));
737 gpu_write(gpu
, REG_A6XX_CP_PROTECT(7),
738 A6XX_PROTECT_RDONLY(0xfc00, 0x3));
739 gpu_write(gpu
, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0));
740 gpu_write(gpu
, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0));
741 gpu_write(gpu
, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0));
742 gpu_write(gpu
, REG_A6XX_CP_PROTECT(11),
743 A6XX_PROTECT_RDONLY(0x0, 0x4f9));
744 gpu_write(gpu
, REG_A6XX_CP_PROTECT(12),
745 A6XX_PROTECT_RDONLY(0x501, 0xa));
746 gpu_write(gpu
, REG_A6XX_CP_PROTECT(13),
747 A6XX_PROTECT_RDONLY(0x511, 0x44));
748 gpu_write(gpu
, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe));
749 gpu_write(gpu
, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0));
750 gpu_write(gpu
, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf));
751 gpu_write(gpu
, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0));
752 gpu_write(gpu
, REG_A6XX_CP_PROTECT(18),
753 A6XX_PROTECT_RW(0xbe20, 0x11f3));
754 gpu_write(gpu
, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82));
755 gpu_write(gpu
, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8));
756 gpu_write(gpu
, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19));
757 gpu_write(gpu
, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d));
758 gpu_write(gpu
, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76));
759 gpu_write(gpu
, REG_A6XX_CP_PROTECT(24),
760 A6XX_PROTECT_RDONLY(0x980, 0x4));
761 gpu_write(gpu
, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0));
763 /* Enable expanded apriv for targets that support it */
765 gpu_write(gpu
, REG_A6XX_CP_APRIV_CNTL
,
766 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
769 /* Enable interrupts */
770 gpu_write(gpu
, REG_A6XX_RBBM_INT_0_MASK
, A6XX_INT_MASK
);
772 ret
= adreno_hw_init(gpu
);
776 ret
= a6xx_ucode_init(gpu
);
780 /* Set the ringbuffer address */
781 gpu_write64(gpu
, REG_A6XX_CP_RB_BASE
, REG_A6XX_CP_RB_BASE_HI
,
784 /* Targets that support extended APRIV can use the RPTR shadow from
785 * hardware but all the other ones need to disable the feature. Targets
786 * that support the WHERE_AM_I opcode can use that instead
788 if (adreno_gpu
->base
.hw_apriv
)
789 gpu_write(gpu
, REG_A6XX_CP_RB_CNTL
, MSM_GPU_RB_CNTL_DEFAULT
);
791 gpu_write(gpu
, REG_A6XX_CP_RB_CNTL
,
792 MSM_GPU_RB_CNTL_DEFAULT
| AXXX_CP_RB_CNTL_NO_UPDATE
);
795 * Expanded APRIV and targets that support WHERE_AM_I both need a
796 * privileged buffer to store the RPTR shadow
799 if (adreno_gpu
->base
.hw_apriv
|| a6xx_gpu
->has_whereami
) {
800 if (!a6xx_gpu
->shadow_bo
) {
801 a6xx_gpu
->shadow
= msm_gem_kernel_new_locked(gpu
->dev
,
802 sizeof(u32
) * gpu
->nr_rings
,
803 MSM_BO_UNCACHED
| MSM_BO_MAP_PRIV
,
804 gpu
->aspace
, &a6xx_gpu
->shadow_bo
,
805 &a6xx_gpu
->shadow_iova
);
807 if (IS_ERR(a6xx_gpu
->shadow
))
808 return PTR_ERR(a6xx_gpu
->shadow
);
811 gpu_write64(gpu
, REG_A6XX_CP_RB_RPTR_ADDR_LO
,
812 REG_A6XX_CP_RB_RPTR_ADDR_HI
,
813 shadowptr(a6xx_gpu
, gpu
->rb
[0]));
816 /* Always come up on rb 0 */
817 a6xx_gpu
->cur_ring
= gpu
->rb
[0];
819 a6xx_gpu
->cur_ctx
= NULL
;
821 /* Enable the SQE_to start the CP engine */
822 gpu_write(gpu
, REG_A6XX_CP_SQE_CNTL
, 1);
824 ret
= a6xx_cp_init(gpu
);
829 * Try to load a zap shader into the secure world. If successful
830 * we can use the CP to switch out of secure mode. If not then we
831 * have no resource but to try to switch ourselves out manually. If we
832 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
833 * be blocked and a permissions violation will soon follow.
835 ret
= a6xx_zap_shader_init(gpu
);
837 OUT_PKT7(gpu
->rb
[0], CP_SET_SECURE_MODE
, 1);
838 OUT_RING(gpu
->rb
[0], 0x00000000);
840 a6xx_flush(gpu
, gpu
->rb
[0]);
841 if (!a6xx_idle(gpu
, gpu
->rb
[0]))
843 } else if (ret
== -ENODEV
) {
845 * This device does not use zap shader (but print a warning
846 * just in case someone got their dt wrong.. hopefully they
847 * have a debug UART to realize the error of their ways...
848 * if you mess this up you are about to crash horribly)
850 dev_warn_once(gpu
->dev
->dev
,
851 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
852 gpu_write(gpu
, REG_A6XX_RBBM_SECVID_TRUST_CNTL
, 0x0);
860 * Tell the GMU that we are done touching the GPU and it can start power
863 a6xx_gmu_clear_oob(&a6xx_gpu
->gmu
, GMU_OOB_GPU_SET
);
865 if (a6xx_gpu
->gmu
.legacy
) {
866 /* Take the GMU out of its special boot mode */
867 a6xx_gmu_clear_oob(&a6xx_gpu
->gmu
, GMU_OOB_BOOT_SLUMBER
);
873 static void a6xx_dump(struct msm_gpu
*gpu
)
875 DRM_DEV_INFO(&gpu
->pdev
->dev
, "status: %08x\n",
876 gpu_read(gpu
, REG_A6XX_RBBM_STATUS
));
880 #define VBIF_RESET_ACK_TIMEOUT 100
881 #define VBIF_RESET_ACK_MASK 0x00f0
883 static void a6xx_recover(struct msm_gpu
*gpu
)
885 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
886 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
889 adreno_dump_info(gpu
);
891 for (i
= 0; i
< 8; i
++)
892 DRM_DEV_INFO(&gpu
->pdev
->dev
, "CP_SCRATCH_REG%d: %u\n", i
,
893 gpu_read(gpu
, REG_A6XX_CP_SCRATCH_REG(i
)));
899 * Turn off keep alive that might have been enabled by the hang
902 gmu_write(&a6xx_gpu
->gmu
, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE
, 0);
904 gpu
->funcs
->pm_suspend(gpu
);
905 gpu
->funcs
->pm_resume(gpu
);
907 msm_gpu_hw_init(gpu
);
910 static int a6xx_fault_handler(void *arg
, unsigned long iova
, int flags
)
912 struct msm_gpu
*gpu
= arg
;
914 pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
916 gpu_read(gpu
, REG_A6XX_CP_SCRATCH_REG(4)),
917 gpu_read(gpu
, REG_A6XX_CP_SCRATCH_REG(5)),
918 gpu_read(gpu
, REG_A6XX_CP_SCRATCH_REG(6)),
919 gpu_read(gpu
, REG_A6XX_CP_SCRATCH_REG(7)));
924 static void a6xx_cp_hw_err_irq(struct msm_gpu
*gpu
)
926 u32 status
= gpu_read(gpu
, REG_A6XX_CP_INTERRUPT_STATUS
);
928 if (status
& A6XX_CP_INT_CP_OPCODE_ERROR
) {
931 gpu_write(gpu
, REG_A6XX_CP_SQE_STAT_ADDR
, 1);
932 val
= gpu_read(gpu
, REG_A6XX_CP_SQE_STAT_DATA
);
933 dev_err_ratelimited(&gpu
->pdev
->dev
,
934 "CP | opcode error | possible opcode=0x%8.8X\n",
938 if (status
& A6XX_CP_INT_CP_UCODE_ERROR
)
939 dev_err_ratelimited(&gpu
->pdev
->dev
,
940 "CP ucode error interrupt\n");
942 if (status
& A6XX_CP_INT_CP_HW_FAULT_ERROR
)
943 dev_err_ratelimited(&gpu
->pdev
->dev
, "CP | HW fault | status=0x%8.8X\n",
944 gpu_read(gpu
, REG_A6XX_CP_HW_FAULT
));
946 if (status
& A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR
) {
947 u32 val
= gpu_read(gpu
, REG_A6XX_CP_PROTECT_STATUS
);
949 dev_err_ratelimited(&gpu
->pdev
->dev
,
950 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
951 val
& (1 << 20) ? "READ" : "WRITE",
952 (val
& 0x3ffff), val
);
955 if (status
& A6XX_CP_INT_CP_AHB_ERROR
)
956 dev_err_ratelimited(&gpu
->pdev
->dev
, "CP AHB error interrupt\n");
958 if (status
& A6XX_CP_INT_CP_VSD_PARITY_ERROR
)
959 dev_err_ratelimited(&gpu
->pdev
->dev
, "CP VSD decoder parity error\n");
961 if (status
& A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR
)
962 dev_err_ratelimited(&gpu
->pdev
->dev
, "CP illegal instruction error\n");
966 static void a6xx_fault_detect_irq(struct msm_gpu
*gpu
)
968 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
969 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
970 struct msm_ringbuffer
*ring
= gpu
->funcs
->active_ring(gpu
);
973 * Force the GPU to stay on until after we finish
974 * collecting information
976 gmu_write(&a6xx_gpu
->gmu
, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE
, 1);
978 DRM_DEV_ERROR(&gpu
->pdev
->dev
,
979 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
980 ring
? ring
->id
: -1, ring
? ring
->seqno
: 0,
981 gpu_read(gpu
, REG_A6XX_RBBM_STATUS
),
982 gpu_read(gpu
, REG_A6XX_CP_RB_RPTR
),
983 gpu_read(gpu
, REG_A6XX_CP_RB_WPTR
),
984 gpu_read64(gpu
, REG_A6XX_CP_IB1_BASE
, REG_A6XX_CP_IB1_BASE_HI
),
985 gpu_read(gpu
, REG_A6XX_CP_IB1_REM_SIZE
),
986 gpu_read64(gpu
, REG_A6XX_CP_IB2_BASE
, REG_A6XX_CP_IB2_BASE_HI
),
987 gpu_read(gpu
, REG_A6XX_CP_IB2_REM_SIZE
));
989 /* Turn off the hangcheck timer to keep it from bothering us */
990 del_timer(&gpu
->hangcheck_timer
);
992 kthread_queue_work(gpu
->worker
, &gpu
->recover_work
);
995 static irqreturn_t
a6xx_irq(struct msm_gpu
*gpu
)
997 u32 status
= gpu_read(gpu
, REG_A6XX_RBBM_INT_0_STATUS
);
999 gpu_write(gpu
, REG_A6XX_RBBM_INT_CLEAR_CMD
, status
);
1001 if (status
& A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT
)
1002 a6xx_fault_detect_irq(gpu
);
1004 if (status
& A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR
)
1005 dev_err_ratelimited(&gpu
->pdev
->dev
, "CP | AHB bus error\n");
1007 if (status
& A6XX_RBBM_INT_0_MASK_CP_HW_ERROR
)
1008 a6xx_cp_hw_err_irq(gpu
);
1010 if (status
& A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW
)
1011 dev_err_ratelimited(&gpu
->pdev
->dev
, "RBBM | ATB ASYNC overflow\n");
1013 if (status
& A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW
)
1014 dev_err_ratelimited(&gpu
->pdev
->dev
, "RBBM | ATB bus overflow\n");
1016 if (status
& A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS
)
1017 dev_err_ratelimited(&gpu
->pdev
->dev
, "UCHE | Out of bounds access\n");
1019 if (status
& A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS
)
1020 msm_gpu_retire(gpu
);
1025 static void a6xx_llc_rmw(struct a6xx_gpu
*a6xx_gpu
, u32 reg
, u32 mask
, u32
or)
1027 return msm_rmw(a6xx_gpu
->llc_mmio
+ (reg
<< 2), mask
, or);
1030 static void a6xx_llc_write(struct a6xx_gpu
*a6xx_gpu
, u32 reg
, u32 value
)
1032 return msm_writel(value
, a6xx_gpu
->llc_mmio
+ (reg
<< 2));
1035 static void a6xx_llc_deactivate(struct a6xx_gpu
*a6xx_gpu
)
1037 llcc_slice_deactivate(a6xx_gpu
->llc_slice
);
1038 llcc_slice_deactivate(a6xx_gpu
->htw_llc_slice
);
1041 static void a6xx_llc_activate(struct a6xx_gpu
*a6xx_gpu
)
1043 struct adreno_gpu
*adreno_gpu
= &a6xx_gpu
->base
;
1044 struct msm_gpu
*gpu
= &adreno_gpu
->base
;
1045 u32 cntl1_regval
= 0;
1047 if (IS_ERR(a6xx_gpu
->llc_mmio
))
1050 if (!llcc_slice_activate(a6xx_gpu
->llc_slice
)) {
1051 u32 gpu_scid
= llcc_get_slice_id(a6xx_gpu
->llc_slice
);
1054 cntl1_regval
= (gpu_scid
<< 0) | (gpu_scid
<< 5) | (gpu_scid
<< 10) |
1055 (gpu_scid
<< 15) | (gpu_scid
<< 20);
1059 * For targets with a MMU500, activate the slice but don't program the
1060 * register. The XBL will take care of that.
1062 if (!llcc_slice_activate(a6xx_gpu
->htw_llc_slice
)) {
1063 if (!a6xx_gpu
->have_mmu500
) {
1064 u32 gpuhtw_scid
= llcc_get_slice_id(a6xx_gpu
->htw_llc_slice
);
1066 gpuhtw_scid
&= 0x1f;
1067 cntl1_regval
|= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid
);
1073 * Program the slice IDs for the various GPU blocks and GPU MMU
1076 if (a6xx_gpu
->have_mmu500
)
1077 gpu_rmw(gpu
, REG_A6XX_GBIF_SCACHE_CNTL1
, GENMASK(24, 0),
1080 a6xx_llc_write(a6xx_gpu
,
1081 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1
, cntl1_regval
);
1084 * Program cacheability overrides to not allocate cache
1085 * lines on a write miss
1087 a6xx_llc_rmw(a6xx_gpu
,
1088 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0
, 0xF, 0x03);
1093 static void a6xx_llc_slices_destroy(struct a6xx_gpu
*a6xx_gpu
)
1095 llcc_slice_putd(a6xx_gpu
->llc_slice
);
1096 llcc_slice_putd(a6xx_gpu
->htw_llc_slice
);
1099 static void a6xx_llc_slices_init(struct platform_device
*pdev
,
1100 struct a6xx_gpu
*a6xx_gpu
)
1102 struct device_node
*phandle
;
1104 a6xx_gpu
->llc_mmio
= msm_ioremap(pdev
, "cx_mem", "gpu_cx");
1105 if (IS_ERR(a6xx_gpu
->llc_mmio
))
1109 * There is a different programming path for targets with an mmu500
1110 * attached, so detect if that is the case
1112 phandle
= of_parse_phandle(pdev
->dev
.of_node
, "iommus", 0);
1113 a6xx_gpu
->have_mmu500
= (phandle
&&
1114 of_device_is_compatible(phandle
, "arm,mmu-500"));
1115 of_node_put(phandle
);
1117 a6xx_gpu
->llc_slice
= llcc_slice_getd(LLCC_GPU
);
1118 a6xx_gpu
->htw_llc_slice
= llcc_slice_getd(LLCC_GPUHTW
);
1120 if (IS_ERR(a6xx_gpu
->llc_slice
) && IS_ERR(a6xx_gpu
->htw_llc_slice
))
1121 a6xx_gpu
->llc_mmio
= ERR_PTR(-EINVAL
);
1124 static int a6xx_pm_resume(struct msm_gpu
*gpu
)
1126 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
1127 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
1130 gpu
->needs_hw_init
= true;
1132 trace_msm_gpu_resume(0);
1134 ret
= a6xx_gmu_resume(a6xx_gpu
);
1138 msm_gpu_resume_devfreq(gpu
);
1140 a6xx_llc_activate(a6xx_gpu
);
1145 static int a6xx_pm_suspend(struct msm_gpu
*gpu
)
1147 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
1148 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
1151 trace_msm_gpu_suspend(0);
1153 a6xx_llc_deactivate(a6xx_gpu
);
1155 devfreq_suspend_device(gpu
->devfreq
.devfreq
);
1157 ret
= a6xx_gmu_stop(a6xx_gpu
);
1161 if (adreno_gpu
->base
.hw_apriv
|| a6xx_gpu
->has_whereami
)
1162 for (i
= 0; i
< gpu
->nr_rings
; i
++)
1163 a6xx_gpu
->shadow
[i
] = 0;
1168 static int a6xx_get_timestamp(struct msm_gpu
*gpu
, uint64_t *value
)
1170 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
1171 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
1173 /* Force the GPU power on so we can read this register */
1174 a6xx_gmu_set_oob(&a6xx_gpu
->gmu
, GMU_OOB_GPU_SET
);
1176 *value
= gpu_read64(gpu
, REG_A6XX_RBBM_PERFCTR_CP_0_LO
,
1177 REG_A6XX_RBBM_PERFCTR_CP_0_HI
);
1179 a6xx_gmu_clear_oob(&a6xx_gpu
->gmu
, GMU_OOB_GPU_SET
);
1183 static struct msm_ringbuffer
*a6xx_active_ring(struct msm_gpu
*gpu
)
1185 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
1186 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
1188 return a6xx_gpu
->cur_ring
;
1191 static void a6xx_destroy(struct msm_gpu
*gpu
)
1193 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
1194 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
1196 if (a6xx_gpu
->sqe_bo
) {
1197 msm_gem_unpin_iova(a6xx_gpu
->sqe_bo
, gpu
->aspace
);
1198 drm_gem_object_put(a6xx_gpu
->sqe_bo
);
1201 if (a6xx_gpu
->shadow_bo
) {
1202 msm_gem_unpin_iova(a6xx_gpu
->shadow_bo
, gpu
->aspace
);
1203 drm_gem_object_put(a6xx_gpu
->shadow_bo
);
1206 a6xx_llc_slices_destroy(a6xx_gpu
);
1208 a6xx_gmu_remove(a6xx_gpu
);
1210 adreno_gpu_cleanup(adreno_gpu
);
1214 static unsigned long a6xx_gpu_busy(struct msm_gpu
*gpu
)
1216 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
1217 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
1218 u64 busy_cycles
, busy_time
;
1221 /* Only read the gpu busy if the hardware is already active */
1222 if (pm_runtime_get_if_in_use(a6xx_gpu
->gmu
.dev
) == 0)
1225 busy_cycles
= gmu_read64(&a6xx_gpu
->gmu
,
1226 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L
,
1227 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H
);
1229 busy_time
= (busy_cycles
- gpu
->devfreq
.busy_cycles
) * 10;
1230 do_div(busy_time
, 192);
1232 gpu
->devfreq
.busy_cycles
= busy_cycles
;
1234 pm_runtime_put(a6xx_gpu
->gmu
.dev
);
1236 if (WARN_ON(busy_time
> ~0LU))
1239 return (unsigned long)busy_time
;
1242 static struct msm_gem_address_space
*
1243 a6xx_create_private_address_space(struct msm_gpu
*gpu
)
1245 struct msm_mmu
*mmu
;
1247 mmu
= msm_iommu_pagetable_create(gpu
->aspace
->mmu
);
1250 return ERR_CAST(mmu
);
1252 return msm_gem_address_space_create(mmu
,
1253 "gpu", 0x100000000ULL
, 0x1ffffffffULL
);
1256 static uint32_t a6xx_get_rptr(struct msm_gpu
*gpu
, struct msm_ringbuffer
*ring
)
1258 struct adreno_gpu
*adreno_gpu
= to_adreno_gpu(gpu
);
1259 struct a6xx_gpu
*a6xx_gpu
= to_a6xx_gpu(adreno_gpu
);
1261 if (adreno_gpu
->base
.hw_apriv
|| a6xx_gpu
->has_whereami
)
1262 return a6xx_gpu
->shadow
[ring
->id
];
1264 return ring
->memptrs
->rptr
= gpu_read(gpu
, REG_A6XX_CP_RB_RPTR
);
1267 static const struct adreno_gpu_funcs funcs
= {
1269 .get_param
= adreno_get_param
,
1270 .hw_init
= a6xx_hw_init
,
1271 .pm_suspend
= a6xx_pm_suspend
,
1272 .pm_resume
= a6xx_pm_resume
,
1273 .recover
= a6xx_recover
,
1274 .submit
= a6xx_submit
,
1275 .active_ring
= a6xx_active_ring
,
1277 .destroy
= a6xx_destroy
,
1278 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1281 .gpu_busy
= a6xx_gpu_busy
,
1282 .gpu_get_freq
= a6xx_gmu_get_freq
,
1283 .gpu_set_freq
= a6xx_gmu_set_freq
,
1284 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1285 .gpu_state_get
= a6xx_gpu_state_get
,
1286 .gpu_state_put
= a6xx_gpu_state_put
,
1288 .create_address_space
= adreno_iommu_create_address_space
,
1289 .create_private_address_space
= a6xx_create_private_address_space
,
1290 .get_rptr
= a6xx_get_rptr
,
1292 .get_timestamp
= a6xx_get_timestamp
,
1295 struct msm_gpu
*a6xx_gpu_init(struct drm_device
*dev
)
1297 struct msm_drm_private
*priv
= dev
->dev_private
;
1298 struct platform_device
*pdev
= priv
->gpu_pdev
;
1299 struct adreno_platform_config
*config
= pdev
->dev
.platform_data
;
1300 const struct adreno_info
*info
;
1301 struct device_node
*node
;
1302 struct a6xx_gpu
*a6xx_gpu
;
1303 struct adreno_gpu
*adreno_gpu
;
1304 struct msm_gpu
*gpu
;
1307 a6xx_gpu
= kzalloc(sizeof(*a6xx_gpu
), GFP_KERNEL
);
1309 return ERR_PTR(-ENOMEM
);
1311 adreno_gpu
= &a6xx_gpu
->base
;
1312 gpu
= &adreno_gpu
->base
;
1314 adreno_gpu
->registers
= NULL
;
1317 * We need to know the platform type before calling into adreno_gpu_init
1318 * so that the hw_apriv flag can be correctly set. Snoop into the info
1319 * and grab the revision number
1321 info
= adreno_info(config
->rev
);
1323 if (info
&& info
->revn
== 650)
1324 adreno_gpu
->base
.hw_apriv
= true;
1326 a6xx_llc_slices_init(pdev
, a6xx_gpu
);
1328 ret
= adreno_gpu_init(dev
, pdev
, adreno_gpu
, &funcs
, 1);
1330 a6xx_destroy(&(a6xx_gpu
->base
.base
));
1331 return ERR_PTR(ret
);
1334 /* Check if there is a GMU phandle and set it up */
1335 node
= of_parse_phandle(pdev
->dev
.of_node
, "qcom,gmu", 0);
1337 /* FIXME: How do we gracefully handle this? */
1340 ret
= a6xx_gmu_init(a6xx_gpu
, node
);
1342 a6xx_destroy(&(a6xx_gpu
->base
.base
));
1343 return ERR_PTR(ret
);
1347 msm_mmu_set_fault_handler(gpu
->aspace
->mmu
, gpu
,
1348 a6xx_fault_handler
);