WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_hw_ctl.c
blob8981cfa9dbc3722c757fabc4da1f90caa759d3a2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3 */
5 #include <linux/delay.h>
6 #include "dpu_hwio.h"
7 #include "dpu_hw_ctl.h"
8 #include "dpu_kms.h"
9 #include "dpu_trace.h"
11 #define CTL_LAYER(lm) \
12 (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
13 #define CTL_LAYER_EXT(lm) \
14 (0x40 + (((lm) - LM_0) * 0x004))
15 #define CTL_LAYER_EXT2(lm) \
16 (0x70 + (((lm) - LM_0) * 0x004))
17 #define CTL_LAYER_EXT3(lm) \
18 (0xA0 + (((lm) - LM_0) * 0x004))
19 #define CTL_TOP 0x014
20 #define CTL_FLUSH 0x018
21 #define CTL_START 0x01C
22 #define CTL_PREPARE 0x0d0
23 #define CTL_SW_RESET 0x030
24 #define CTL_LAYER_EXTN_OFFSET 0x40
25 #define CTL_MERGE_3D_ACTIVE 0x0E4
26 #define CTL_INTF_ACTIVE 0x0F4
27 #define CTL_MERGE_3D_FLUSH 0x100
28 #define CTL_INTF_FLUSH 0x110
29 #define CTL_INTF_MASTER 0x134
31 #define CTL_MIXER_BORDER_OUT BIT(24)
32 #define CTL_FLUSH_MASK_CTL BIT(17)
34 #define DPU_REG_RESET_TIMEOUT_US 2000
35 #define MERGE_3D_IDX 23
36 #define INTF_IDX 31
38 static const struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl,
39 const struct dpu_mdss_cfg *m,
40 void __iomem *addr,
41 struct dpu_hw_blk_reg_map *b)
43 int i;
45 for (i = 0; i < m->ctl_count; i++) {
46 if (ctl == m->ctl[i].id) {
47 b->base_off = addr;
48 b->blk_off = m->ctl[i].base;
49 b->length = m->ctl[i].len;
50 b->hwversion = m->hwversion;
51 b->log_mask = DPU_DBG_MASK_CTL;
52 return &m->ctl[i];
55 return ERR_PTR(-ENOMEM);
58 static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
59 enum dpu_lm lm)
61 int i;
62 int stages = -EINVAL;
64 for (i = 0; i < count; i++) {
65 if (lm == mixer[i].id) {
66 stages = mixer[i].sblk->maxblendstages;
67 break;
71 return stages;
74 static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
76 struct dpu_hw_blk_reg_map *c = &ctx->hw;
78 return DPU_REG_READ(c, CTL_FLUSH);
81 static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
83 trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
84 dpu_hw_ctl_get_flush_register(ctx));
85 DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
88 static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
90 trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
91 dpu_hw_ctl_get_flush_register(ctx));
92 DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
95 static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
97 trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
98 dpu_hw_ctl_get_flush_register(ctx));
99 ctx->pending_flush_mask = 0x0;
102 static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
103 u32 flushbits)
105 trace_dpu_hw_ctl_update_pending_flush(flushbits,
106 ctx->pending_flush_mask);
107 ctx->pending_flush_mask |= flushbits;
110 static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
112 return ctx->pending_flush_mask;
115 static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx)
118 if (ctx->pending_flush_mask & BIT(MERGE_3D_IDX))
119 DPU_REG_WRITE(&ctx->hw, CTL_MERGE_3D_FLUSH,
120 ctx->pending_merge_3d_flush_mask);
121 if (ctx->pending_flush_mask & BIT(INTF_IDX))
122 DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH,
123 ctx->pending_intf_flush_mask);
125 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
128 static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
130 trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
131 dpu_hw_ctl_get_flush_register(ctx));
132 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
135 static uint32_t dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl *ctx,
136 enum dpu_sspp sspp)
138 uint32_t flushbits = 0;
140 switch (sspp) {
141 case SSPP_VIG0:
142 flushbits = BIT(0);
143 break;
144 case SSPP_VIG1:
145 flushbits = BIT(1);
146 break;
147 case SSPP_VIG2:
148 flushbits = BIT(2);
149 break;
150 case SSPP_VIG3:
151 flushbits = BIT(18);
152 break;
153 case SSPP_RGB0:
154 flushbits = BIT(3);
155 break;
156 case SSPP_RGB1:
157 flushbits = BIT(4);
158 break;
159 case SSPP_RGB2:
160 flushbits = BIT(5);
161 break;
162 case SSPP_RGB3:
163 flushbits = BIT(19);
164 break;
165 case SSPP_DMA0:
166 flushbits = BIT(11);
167 break;
168 case SSPP_DMA1:
169 flushbits = BIT(12);
170 break;
171 case SSPP_DMA2:
172 flushbits = BIT(24);
173 break;
174 case SSPP_DMA3:
175 flushbits = BIT(25);
176 break;
177 case SSPP_CURSOR0:
178 flushbits = BIT(22);
179 break;
180 case SSPP_CURSOR1:
181 flushbits = BIT(23);
182 break;
183 default:
184 break;
187 return flushbits;
190 static uint32_t dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl *ctx,
191 enum dpu_lm lm)
193 uint32_t flushbits = 0;
195 switch (lm) {
196 case LM_0:
197 flushbits = BIT(6);
198 break;
199 case LM_1:
200 flushbits = BIT(7);
201 break;
202 case LM_2:
203 flushbits = BIT(8);
204 break;
205 case LM_3:
206 flushbits = BIT(9);
207 break;
208 case LM_4:
209 flushbits = BIT(10);
210 break;
211 case LM_5:
212 flushbits = BIT(20);
213 break;
214 default:
215 return -EINVAL;
218 flushbits |= CTL_FLUSH_MASK_CTL;
220 return flushbits;
223 static void dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl *ctx,
224 enum dpu_intf intf)
226 switch (intf) {
227 case INTF_0:
228 ctx->pending_flush_mask |= BIT(31);
229 break;
230 case INTF_1:
231 ctx->pending_flush_mask |= BIT(30);
232 break;
233 case INTF_2:
234 ctx->pending_flush_mask |= BIT(29);
235 break;
236 case INTF_3:
237 ctx->pending_flush_mask |= BIT(28);
238 break;
239 default:
240 break;
244 static void dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl *ctx,
245 enum dpu_intf intf)
247 ctx->pending_intf_flush_mask |= BIT(intf - INTF_0);
248 ctx->pending_flush_mask |= BIT(INTF_IDX);
251 static void dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl *ctx,
252 enum dpu_merge_3d merge_3d)
254 ctx->pending_merge_3d_flush_mask |= BIT(merge_3d - MERGE_3D_0);
255 ctx->pending_flush_mask |= BIT(MERGE_3D_IDX);
258 static uint32_t dpu_hw_ctl_get_bitmask_dspp(struct dpu_hw_ctl *ctx,
259 enum dpu_dspp dspp)
261 uint32_t flushbits = 0;
263 switch (dspp) {
264 case DSPP_0:
265 flushbits = BIT(13);
266 break;
267 case DSPP_1:
268 flushbits = BIT(14);
269 break;
270 case DSPP_2:
271 flushbits = BIT(15);
272 break;
273 case DSPP_3:
274 flushbits = BIT(21);
275 break;
276 default:
277 return 0;
280 return flushbits;
283 static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
285 struct dpu_hw_blk_reg_map *c = &ctx->hw;
286 ktime_t timeout;
287 u32 status;
289 timeout = ktime_add_us(ktime_get(), timeout_us);
292 * it takes around 30us to have mdp finish resetting its ctl path
293 * poll every 50us so that reset should be completed at 1st poll
295 do {
296 status = DPU_REG_READ(c, CTL_SW_RESET);
297 status &= 0x1;
298 if (status)
299 usleep_range(20, 50);
300 } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
302 return status;
305 static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
307 struct dpu_hw_blk_reg_map *c = &ctx->hw;
309 pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
310 DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
311 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
312 return -EINVAL;
314 return 0;
317 static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
319 struct dpu_hw_blk_reg_map *c = &ctx->hw;
320 u32 status;
322 status = DPU_REG_READ(c, CTL_SW_RESET);
323 status &= 0x01;
324 if (!status)
325 return 0;
327 pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
328 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
329 pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
330 return -EINVAL;
333 return 0;
336 static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
338 struct dpu_hw_blk_reg_map *c = &ctx->hw;
339 int i;
341 for (i = 0; i < ctx->mixer_count; i++) {
342 DPU_REG_WRITE(c, CTL_LAYER(LM_0 + i), 0);
343 DPU_REG_WRITE(c, CTL_LAYER_EXT(LM_0 + i), 0);
344 DPU_REG_WRITE(c, CTL_LAYER_EXT2(LM_0 + i), 0);
345 DPU_REG_WRITE(c, CTL_LAYER_EXT3(LM_0 + i), 0);
349 static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
350 enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
352 struct dpu_hw_blk_reg_map *c = &ctx->hw;
353 u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
354 u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
355 int i, j;
356 int stages;
357 int pipes_per_stage;
359 stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
360 if (stages < 0)
361 return;
363 if (test_bit(DPU_MIXER_SOURCESPLIT,
364 &ctx->mixer_hw_caps->features))
365 pipes_per_stage = PIPES_PER_STAGE;
366 else
367 pipes_per_stage = 1;
369 mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
371 if (!stage_cfg)
372 goto exit;
374 for (i = 0; i <= stages; i++) {
375 /* overflow to ext register if 'i + 1 > 7' */
376 mix = (i + 1) & 0x7;
377 ext = i >= 7;
379 for (j = 0 ; j < pipes_per_stage; j++) {
380 enum dpu_sspp_multirect_index rect_index =
381 stage_cfg->multirect_index[i][j];
383 switch (stage_cfg->stage[i][j]) {
384 case SSPP_VIG0:
385 if (rect_index == DPU_SSPP_RECT_1) {
386 mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
387 } else {
388 mixercfg |= mix << 0;
389 mixercfg_ext |= ext << 0;
391 break;
392 case SSPP_VIG1:
393 if (rect_index == DPU_SSPP_RECT_1) {
394 mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
395 } else {
396 mixercfg |= mix << 3;
397 mixercfg_ext |= ext << 2;
399 break;
400 case SSPP_VIG2:
401 if (rect_index == DPU_SSPP_RECT_1) {
402 mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
403 } else {
404 mixercfg |= mix << 6;
405 mixercfg_ext |= ext << 4;
407 break;
408 case SSPP_VIG3:
409 if (rect_index == DPU_SSPP_RECT_1) {
410 mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
411 } else {
412 mixercfg |= mix << 26;
413 mixercfg_ext |= ext << 6;
415 break;
416 case SSPP_RGB0:
417 mixercfg |= mix << 9;
418 mixercfg_ext |= ext << 8;
419 break;
420 case SSPP_RGB1:
421 mixercfg |= mix << 12;
422 mixercfg_ext |= ext << 10;
423 break;
424 case SSPP_RGB2:
425 mixercfg |= mix << 15;
426 mixercfg_ext |= ext << 12;
427 break;
428 case SSPP_RGB3:
429 mixercfg |= mix << 29;
430 mixercfg_ext |= ext << 14;
431 break;
432 case SSPP_DMA0:
433 if (rect_index == DPU_SSPP_RECT_1) {
434 mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
435 } else {
436 mixercfg |= mix << 18;
437 mixercfg_ext |= ext << 16;
439 break;
440 case SSPP_DMA1:
441 if (rect_index == DPU_SSPP_RECT_1) {
442 mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
443 } else {
444 mixercfg |= mix << 21;
445 mixercfg_ext |= ext << 18;
447 break;
448 case SSPP_DMA2:
449 if (rect_index == DPU_SSPP_RECT_1) {
450 mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
451 } else {
452 mix |= (i + 1) & 0xF;
453 mixercfg_ext2 |= mix << 0;
455 break;
456 case SSPP_DMA3:
457 if (rect_index == DPU_SSPP_RECT_1) {
458 mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
459 } else {
460 mix |= (i + 1) & 0xF;
461 mixercfg_ext2 |= mix << 4;
463 break;
464 case SSPP_CURSOR0:
465 mixercfg_ext |= ((i + 1) & 0xF) << 20;
466 break;
467 case SSPP_CURSOR1:
468 mixercfg_ext |= ((i + 1) & 0xF) << 26;
469 break;
470 default:
471 break;
476 exit:
477 DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
478 DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
479 DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
480 DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
484 static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx,
485 struct dpu_hw_intf_cfg *cfg)
487 struct dpu_hw_blk_reg_map *c = &ctx->hw;
488 u32 intf_active = 0;
489 u32 mode_sel = 0;
491 if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD)
492 mode_sel |= BIT(17);
494 intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
495 intf_active |= BIT(cfg->intf - INTF_0);
497 DPU_REG_WRITE(c, CTL_TOP, mode_sel);
498 DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
499 DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, BIT(cfg->merge_3d - MERGE_3D_0));
502 static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
503 struct dpu_hw_intf_cfg *cfg)
505 struct dpu_hw_blk_reg_map *c = &ctx->hw;
506 u32 intf_cfg = 0;
508 intf_cfg |= (cfg->intf & 0xF) << 4;
510 if (cfg->mode_3d) {
511 intf_cfg |= BIT(19);
512 intf_cfg |= (cfg->mode_3d - 0x1) << 20;
515 switch (cfg->intf_mode_sel) {
516 case DPU_CTL_MODE_SEL_VID:
517 intf_cfg &= ~BIT(17);
518 intf_cfg &= ~(0x3 << 15);
519 break;
520 case DPU_CTL_MODE_SEL_CMD:
521 intf_cfg |= BIT(17);
522 intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
523 break;
524 default:
525 pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
526 return;
529 DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
532 static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
533 unsigned long cap)
535 if (cap & BIT(DPU_CTL_ACTIVE_CFG)) {
536 ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1;
537 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1;
538 ops->update_pending_flush_intf =
539 dpu_hw_ctl_update_pending_flush_intf_v1;
540 ops->update_pending_flush_merge_3d =
541 dpu_hw_ctl_update_pending_flush_merge_3d_v1;
542 } else {
543 ops->trigger_flush = dpu_hw_ctl_trigger_flush;
544 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
545 ops->update_pending_flush_intf =
546 dpu_hw_ctl_update_pending_flush_intf;
548 ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
549 ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
550 ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
551 ops->get_flush_register = dpu_hw_ctl_get_flush_register;
552 ops->trigger_start = dpu_hw_ctl_trigger_start;
553 ops->trigger_pending = dpu_hw_ctl_trigger_pending;
554 ops->reset = dpu_hw_ctl_reset_control;
555 ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
556 ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
557 ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
558 ops->get_bitmask_sspp = dpu_hw_ctl_get_bitmask_sspp;
559 ops->get_bitmask_mixer = dpu_hw_ctl_get_bitmask_mixer;
560 ops->get_bitmask_dspp = dpu_hw_ctl_get_bitmask_dspp;
563 static struct dpu_hw_blk_ops dpu_hw_ops;
565 struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx,
566 void __iomem *addr,
567 const struct dpu_mdss_cfg *m)
569 struct dpu_hw_ctl *c;
570 const struct dpu_ctl_cfg *cfg;
572 c = kzalloc(sizeof(*c), GFP_KERNEL);
573 if (!c)
574 return ERR_PTR(-ENOMEM);
576 cfg = _ctl_offset(idx, m, addr, &c->hw);
577 if (IS_ERR_OR_NULL(cfg)) {
578 kfree(c);
579 pr_err("failed to create dpu_hw_ctl %d\n", idx);
580 return ERR_PTR(-EINVAL);
583 c->caps = cfg;
584 _setup_ctl_ops(&c->ops, c->caps->features);
585 c->idx = idx;
586 c->mixer_count = m->mixer_count;
587 c->mixer_hw_caps = m->mixer;
589 dpu_hw_blk_init(&c->base, DPU_HW_BLK_CTL, idx, &dpu_hw_ops);
591 return c;
594 void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx)
596 if (ctx)
597 dpu_hw_blk_destroy(&ctx->base);
598 kfree(ctx);