WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nvkm / subdev / fb / ramnv50.c
blob7b1eb44ff3da238b1c8bad8402bbcf4853a09822
1 /*
2 * Copyright 2013 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: Ben Skeggs
24 #define nv50_ram(p) container_of((p), struct nv50_ram, base)
25 #include "ram.h"
26 #include "ramseq.h"
27 #include "nv50.h"
29 #include <core/option.h>
30 #include <subdev/bios.h>
31 #include <subdev/bios/perf.h>
32 #include <subdev/bios/pll.h>
33 #include <subdev/bios/rammap.h>
34 #include <subdev/bios/timing.h>
35 #include <subdev/clk/pll.h>
36 #include <subdev/gpio.h>
38 struct nv50_ramseq {
39 struct hwsq base;
40 struct hwsq_reg r_0x002504;
41 struct hwsq_reg r_0x004008;
42 struct hwsq_reg r_0x00400c;
43 struct hwsq_reg r_0x00c040;
44 struct hwsq_reg r_0x100200;
45 struct hwsq_reg r_0x100210;
46 struct hwsq_reg r_0x10021c;
47 struct hwsq_reg r_0x1002d0;
48 struct hwsq_reg r_0x1002d4;
49 struct hwsq_reg r_0x1002dc;
50 struct hwsq_reg r_0x10053c;
51 struct hwsq_reg r_0x1005a0;
52 struct hwsq_reg r_0x1005a4;
53 struct hwsq_reg r_0x100710;
54 struct hwsq_reg r_0x100714;
55 struct hwsq_reg r_0x100718;
56 struct hwsq_reg r_0x10071c;
57 struct hwsq_reg r_0x100da0;
58 struct hwsq_reg r_0x100e20;
59 struct hwsq_reg r_0x100e24;
60 struct hwsq_reg r_0x611200;
61 struct hwsq_reg r_timing[9];
62 struct hwsq_reg r_mr[4];
63 struct hwsq_reg r_gpio[4];
66 struct nv50_ram {
67 struct nvkm_ram base;
68 struct nv50_ramseq hwsq;
71 #define T(t) cfg->timing_10_##t
72 static int
73 nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
75 struct nvbios_ramcfg *cfg = &ram->base.target.bios;
76 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
77 struct nvkm_device *device = subdev->device;
78 u32 cur2, cur4, cur7, cur8;
79 u8 unkt3b;
81 cur2 = nvkm_rd32(device, 0x100228);
82 cur4 = nvkm_rd32(device, 0x100230);
83 cur7 = nvkm_rd32(device, 0x10023c);
84 cur8 = nvkm_rd32(device, 0x100240);
86 switch ((!T(CWL)) * ram->base.type) {
87 case NVKM_RAM_TYPE_DDR2:
88 T(CWL) = T(CL) - 1;
89 break;
90 case NVKM_RAM_TYPE_GDDR3:
91 T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
92 break;
95 /* XXX: N=1 is not proper statistics */
96 if (device->chipset == 0xa0) {
97 unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
98 timing[6] = (0x2d + T(CL) - T(CWL) +
99 ram->base.next->bios.rammap_00_16_40) << 16 |
100 T(CWL) << 8 |
101 (0x2f + T(CL) - T(CWL));
102 } else {
103 unkt3b = 0x16;
104 timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
105 max_t(s8, T(CWL) - 2, 1) << 8 |
106 (0x2e + T(CL) - T(CWL));
109 timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
110 timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
111 max_t(u8, T(18), 1) << 16 |
112 (T(WTR) + 1 + T(CWL)) << 8 |
113 (3 + T(CL) - T(CWL));
114 timing[2] = (T(CWL) - 1) << 24 |
115 (T(RRD) << 16) |
116 (T(RCDWR) << 8) |
117 T(RCDRD);
118 timing[3] = (unkt3b - 2 + T(CL)) << 24 |
119 unkt3b << 16 |
120 (T(CL) - 1) << 8 |
121 (T(CL) - 1);
122 timing[4] = (cur4 & 0xffff0000) |
123 T(13) << 8 |
124 T(13);
125 timing[5] = T(RFC) << 24 |
126 max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
127 T(RP);
128 /* Timing 6 is already done above */
129 timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
130 timing[8] = (cur8 & 0xffffff00);
132 /* XXX: P.version == 1 only has DDR2 and GDDR3? */
133 if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
134 timing[5] |= (T(CL) + 3) << 8;
135 timing[8] |= (T(CL) - 4);
136 } else
137 if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
138 timing[5] |= (T(CL) + 2) << 8;
139 timing[8] |= (T(CL) - 2);
142 nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
143 timing[0], timing[1], timing[2], timing[3]);
144 nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
145 timing[4], timing[5], timing[6], timing[7]);
146 nvkm_debug(subdev, " 240: %08x\n", timing[8]);
147 return 0;
150 static int
151 nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing)
153 unsigned int i;
154 struct nvbios_ramcfg *cfg = &ram->base.target.bios;
155 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
156 struct nvkm_device *device = subdev->device;
158 for (i = 0; i <= 8; i++)
159 timing[i] = nvkm_rd32(device, 0x100220 + (i * 4));
161 /* Derive the bare minimum for the MR calculation to succeed */
162 cfg->timing_ver = 0x10;
163 T(CL) = (timing[3] & 0xff) + 1;
165 switch (ram->base.type) {
166 case NVKM_RAM_TYPE_DDR2:
167 T(CWL) = T(CL) - 1;
168 break;
169 case NVKM_RAM_TYPE_GDDR3:
170 T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1;
171 break;
172 default:
173 return -ENOSYS;
176 T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL);
178 return 0;
180 #undef T
182 static void
183 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
185 ram_mask(hwsq, mr[0], 0x100, 0x100);
186 ram_mask(hwsq, mr[0], 0x100, 0x000);
187 ram_nsec(hwsq, 24000);
190 static void
191 nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val)
193 struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio;
194 struct dcb_gpio_func func;
195 u32 reg, sh, gpio_val;
196 int ret;
198 if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
199 ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
200 if (ret)
201 return;
203 reg = func.line >> 3;
204 sh = (func.line & 0x7) << 2;
205 gpio_val = ram_rd32(hwsq, gpio[reg]);
207 if (gpio_val & (8 << sh))
208 val = !val;
209 if (!(func.log[1] & 1))
210 val = !val;
212 ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
213 ram_nsec(hwsq, 20000);
217 static int
218 nv50_ram_calc(struct nvkm_ram *base, u32 freq)
220 struct nv50_ram *ram = nv50_ram(base);
221 struct nv50_ramseq *hwsq = &ram->hwsq;
222 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
223 struct nvkm_bios *bios = subdev->device->bios;
224 struct nvbios_perfE perfE;
225 struct nvbios_pll mpll;
226 struct nvkm_ram_data *next;
227 u8 ver, hdr, cnt, len, strap, size;
228 u32 data;
229 u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
230 int N1, M1, N2, M2, P;
231 int ret, i;
232 u32 timing[9];
234 next = &ram->base.target;
235 next->freq = freq;
236 ram->base.next = next;
238 /* lookup closest matching performance table entry for frequency */
239 i = 0;
240 do {
241 data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
242 &size, &perfE);
243 if (!data || (ver < 0x25 || ver >= 0x40) ||
244 (size < 2)) {
245 nvkm_error(subdev, "invalid/missing perftab entry\n");
246 return -EINVAL;
248 } while (perfE.memory < freq);
250 nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
252 /* locate specific data set for the attached memory */
253 strap = nvbios_ramcfg_index(subdev);
254 if (strap >= cnt) {
255 nvkm_error(subdev, "invalid ramcfg strap\n");
256 return -EINVAL;
259 data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
260 &next->bios);
261 if (!data) {
262 nvkm_error(subdev, "invalid/missing rammap entry ");
263 return -EINVAL;
266 /* lookup memory timings, if bios says they're present */
267 if (next->bios.ramcfg_timing != 0xff) {
268 data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
269 &ver, &hdr, &cnt, &len, &next->bios);
270 if (!data || ver != 0x10 || hdr < 0x12) {
271 nvkm_error(subdev, "invalid/missing timing entry "
272 "%02x %04x %02x %02x\n",
273 strap, data, ver, hdr);
274 return -EINVAL;
276 nv50_ram_timing_calc(ram, timing);
277 } else {
278 nv50_ram_timing_read(ram, timing);
281 ret = ram_init(hwsq, subdev);
282 if (ret)
283 return ret;
285 /* Determine ram-specific MR values */
286 ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
287 ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
288 ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
290 switch (ram->base.type) {
291 case NVKM_RAM_TYPE_GDDR3:
292 ret = nvkm_gddr3_calc(&ram->base);
293 break;
294 default:
295 ret = -ENOSYS;
296 break;
299 if (ret) {
300 nvkm_error(subdev, "Could not calculate MR\n");
301 return ret;
304 if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02)
305 ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000);
307 /* Always disable this bit during reclock */
308 ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
310 ram_wait_vblank(hwsq);
311 ram_wr32(hwsq, 0x611200, 0x00003300);
312 ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
313 ram_nsec(hwsq, 8000);
314 ram_setf(hwsq, 0x10, 0x00); /* disable fb */
315 ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
316 ram_nsec(hwsq, 2000);
318 if (next->bios.timing_10_ODT)
319 nv50_ram_gpio(hwsq, 0x2e, 1);
321 ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
322 ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
323 ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
324 ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
325 ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
327 ret = nvbios_pll_parse(bios, 0x004008, &mpll);
328 mpll.vco2.max_freq = 0;
329 if (ret >= 0) {
330 ret = nv04_pll_calc(subdev, &mpll, freq,
331 &N1, &M1, &N2, &M2, &P);
332 if (ret <= 0)
333 ret = -EINVAL;
336 if (ret < 0)
337 return ret;
339 /* XXX: 750MHz seems rather arbitrary */
340 if (freq <= 750000) {
341 r100da0 = 0x00000010;
342 r004008 = 0x90000000;
343 } else {
344 r100da0 = 0x00000000;
345 r004008 = 0x80000000;
348 r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
350 ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
351 /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
352 * it have a different rammap bit from DLLoff? */
353 ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
354 next->bios.rammap_00_16_40 << 14);
355 ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
356 ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
358 /* XXX: GDDR3 only? */
359 if (subdev->device->chipset >= 0x92)
360 ram_wr32(hwsq, 0x100da0, r100da0);
362 nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ);
363 ram_nsec(hwsq, 64000); /*XXX*/
364 ram_nsec(hwsq, 32000); /*XXX*/
366 ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
368 ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
369 ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
370 ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
372 ram_nsec(hwsq, 12000);
374 switch (ram->base.type) {
375 case NVKM_RAM_TYPE_DDR2:
376 ram_nuke(hwsq, mr[0]); /* force update */
377 ram_mask(hwsq, mr[0], 0x000, 0x000);
378 break;
379 case NVKM_RAM_TYPE_GDDR3:
380 ram_nuke(hwsq, mr[1]); /* force update */
381 ram_wr32(hwsq, mr[1], ram->base.mr[1]);
382 ram_nuke(hwsq, mr[0]); /* force update */
383 ram_wr32(hwsq, mr[0], ram->base.mr[0]);
384 break;
385 default:
386 break;
389 ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
390 ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
391 ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
392 ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
393 ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
394 ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
395 ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
396 ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
397 ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
399 if (!next->bios.ramcfg_00_03_02)
400 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
401 ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
403 /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
404 unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000100;
405 unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
406 unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100;
407 unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
408 if (subdev->device->chipset <= 0x96) {
409 unk710 &= ~0x0000006e;
410 unk714 &= ~0x00000100;
412 if (!next->bios.ramcfg_00_03_08)
413 unk710 |= 0x00000060;
414 if (!next->bios.ramcfg_FBVDDQ)
415 unk714 |= 0x00000100;
416 if ( next->bios.ramcfg_00_04_04)
417 unk710 |= 0x0000000e;
418 } else {
419 unk710 &= ~0x00000001;
421 if (!next->bios.ramcfg_00_03_08)
422 unk710 |= 0x00000001;
425 if ( next->bios.ramcfg_00_03_01)
426 unk71c |= 0x00000100;
427 if ( next->bios.ramcfg_00_03_02)
428 unk710 |= 0x00000100;
429 if (!next->bios.ramcfg_00_03_08)
430 unk714 |= 0x00000020;
431 if ( next->bios.ramcfg_00_04_04)
432 unk714 |= 0x70000000;
433 if ( next->bios.ramcfg_00_04_20)
434 unk718 |= 0x00000100;
436 ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
437 ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
438 ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
439 ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
441 /* XXX: G94 does not even test these regs in trace. Harmless we do it,
442 * but why is it omitted? */
443 if (next->bios.rammap_00_16_20) {
444 ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
445 next->bios.ramcfg_00_06 << 8 |
446 next->bios.ramcfg_00_05);
447 ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
448 next->bios.ramcfg_00_08);
449 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
450 } else {
451 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
453 ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
455 if (!next->bios.timing_10_ODT)
456 nv50_ram_gpio(hwsq, 0x2e, 0);
458 /* Reset DLL */
459 if (!next->bios.ramcfg_DLLoff)
460 nvkm_sddr2_dll_reset(hwsq);
462 ram_setf(hwsq, 0x10, 0x01); /* enable fb */
463 ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
464 ram_wr32(hwsq, 0x611200, 0x00003330);
465 ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
467 if (next->bios.rammap_00_17_02)
468 ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
469 if (!next->bios.rammap_00_16_40)
470 ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
471 if (next->bios.ramcfg_00_03_02)
472 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
473 if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02)
474 ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200);
476 return 0;
479 static int
480 nv50_ram_prog(struct nvkm_ram *base)
482 struct nv50_ram *ram = nv50_ram(base);
483 struct nvkm_device *device = ram->base.fb->subdev.device;
484 ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
485 return 0;
488 static void
489 nv50_ram_tidy(struct nvkm_ram *base)
491 struct nv50_ram *ram = nv50_ram(base);
492 ram_exec(&ram->hwsq, false);
495 static const struct nvkm_ram_func
496 nv50_ram_func = {
497 .calc = nv50_ram_calc,
498 .prog = nv50_ram_prog,
499 .tidy = nv50_ram_tidy,
502 static u32
503 nv50_fb_vram_rblock(struct nvkm_ram *ram)
505 struct nvkm_subdev *subdev = &ram->fb->subdev;
506 struct nvkm_device *device = subdev->device;
507 int colbits, rowbitsa, rowbitsb, banks;
508 u64 rowsize, predicted;
509 u32 r0, r4, rt, rblock_size;
511 r0 = nvkm_rd32(device, 0x100200);
512 r4 = nvkm_rd32(device, 0x100204);
513 rt = nvkm_rd32(device, 0x100250);
514 nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
515 r0, r4, rt, nvkm_rd32(device, 0x001540));
517 colbits = (r4 & 0x0000f000) >> 12;
518 rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
519 rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
520 banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
522 rowsize = ram->parts * banks * (1 << colbits) * 8;
523 predicted = rowsize << rowbitsa;
524 if (r0 & 0x00000004)
525 predicted += rowsize << rowbitsb;
527 if (predicted != ram->size) {
528 nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
529 (u32)(ram->size >> 20));
532 rblock_size = rowsize;
533 if (rt & 1)
534 rblock_size *= 3;
536 nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
537 return rblock_size;
541 nv50_ram_ctor(const struct nvkm_ram_func *func,
542 struct nvkm_fb *fb, struct nvkm_ram *ram)
544 struct nvkm_device *device = fb->subdev.device;
545 struct nvkm_bios *bios = device->bios;
546 const u32 rsvd_head = ( 256 * 1024); /* vga memory */
547 const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
548 u64 size = nvkm_rd32(device, 0x10020c);
549 enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
550 int ret;
552 switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
553 case 0: type = NVKM_RAM_TYPE_DDR1; break;
554 case 1:
555 if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
556 type = NVKM_RAM_TYPE_DDR3;
557 else
558 type = NVKM_RAM_TYPE_DDR2;
559 break;
560 case 2: type = NVKM_RAM_TYPE_GDDR3; break;
561 case 3: type = NVKM_RAM_TYPE_GDDR4; break;
562 case 4: type = NVKM_RAM_TYPE_GDDR5; break;
563 default:
564 break;
567 size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
569 ret = nvkm_ram_ctor(func, fb, type, size, ram);
570 if (ret)
571 return ret;
573 ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
574 ram->parts = hweight8(ram->part_mask);
575 ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
576 nvkm_mm_fini(&ram->vram);
578 return nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
579 rsvd_head >> NVKM_RAM_MM_SHIFT,
580 (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
581 nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
585 nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
587 struct nv50_ram *ram;
588 int ret, i;
590 if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
591 return -ENOMEM;
592 *pram = &ram->base;
594 ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
595 if (ret)
596 return ret;
598 ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
599 ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
600 ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
601 ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
602 ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
603 ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
604 ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
605 ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
606 ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
607 ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
608 ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
609 ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
610 ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
611 ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
612 ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
613 ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
614 ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
615 ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
616 ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
617 ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
618 ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
620 for (i = 0; i < 9; i++)
621 ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
623 if (ram->base.ranks > 1) {
624 ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
625 ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
626 ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
627 ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
628 } else {
629 ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
630 ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
631 ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
632 ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
635 ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104);
636 ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108);
637 ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120);
638 ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124);
640 return 0;