2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
24 * GK20A does not have dedicated video memory, and to accurately represent this
25 * fact Nouveau will not create a RAM device for it. Therefore its instmem
26 * implementation must be done directly on top of system memory, while
27 * preserving coherency for read and write operations.
29 * Instmem can be allocated through two means:
30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31 * pages contiguous to the GPU. This is the preferred way.
32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
35 * In both cases CPU read and writes are performed by creating a write-combined
36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37 * be conservative we do this every time we acquire or release an instobj, but
38 * ideally L2 management should be handled at a higher level.
40 * To improve performance, CPU mappings are not removed upon instobj release.
41 * Instead they are placed into a LRU list to be recycled when the mapped space
42 * goes beyond a certain threshold. At the moment this limit is 1MB.
46 #include <core/memory.h>
47 #include <core/tegra.h>
48 #include <subdev/ltc.h>
49 #include <subdev/mmu.h>
51 struct gk20a_instobj
{
52 struct nvkm_memory memory
;
53 struct nvkm_mm_node
*mn
;
54 struct gk20a_instmem
*imem
;
59 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
62 * Used for objects allocated using the DMA API
64 struct gk20a_instobj_dma
{
65 struct gk20a_instobj base
;
68 struct nvkm_mm_node r
;
70 #define gk20a_instobj_dma(p) \
71 container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
74 * Used for objects flattened using the IOMMU API
76 struct gk20a_instobj_iommu
{
77 struct gk20a_instobj base
;
79 /* to link into gk20a_instmem::vaddr_lru */
80 struct list_head vaddr_node
;
81 /* how many clients are using vaddr? */
84 /* will point to the higher half of pages */
85 dma_addr_t
*dma_addrs
;
86 /* array of base.mem->size pages (+ dma_addr_ts) */
89 #define gk20a_instobj_iommu(p) \
90 container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
92 struct gk20a_instmem
{
93 struct nvkm_instmem base
;
95 /* protects vaddr_* and gk20a_instobj::vaddr* */
98 /* CPU mappings LRU */
99 unsigned int vaddr_use
;
100 unsigned int vaddr_max
;
101 struct list_head vaddr_lru
;
103 /* Only used if IOMMU if present */
104 struct mutex
*mm_mutex
;
106 struct iommu_domain
*domain
;
107 unsigned long iommu_pgshift
;
110 /* Only used by DMA API */
113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
115 static enum nvkm_memory_target
116 gk20a_instobj_target(struct nvkm_memory
*memory
)
118 return NVKM_MEM_TARGET_NCOH
;
122 gk20a_instobj_page(struct nvkm_memory
*memory
)
128 gk20a_instobj_addr(struct nvkm_memory
*memory
)
130 return (u64
)gk20a_instobj(memory
)->mn
->offset
<< 12;
134 gk20a_instobj_size(struct nvkm_memory
*memory
)
136 return (u64
)gk20a_instobj(memory
)->mn
->length
<< 12;
140 * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held.
143 gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu
*obj
)
145 struct gk20a_instmem
*imem
= obj
->base
.imem
;
146 /* there should not be any user left... */
147 WARN_ON(obj
->use_cpt
);
148 list_del(&obj
->vaddr_node
);
149 vunmap(obj
->base
.vaddr
);
150 obj
->base
.vaddr
= NULL
;
151 imem
->vaddr_use
-= nvkm_memory_size(&obj
->base
.memory
);
152 nvkm_debug(&imem
->base
.subdev
, "vaddr used: %x/%x\n", imem
->vaddr_use
,
157 * Must be called while holding gk20a_instmem::lock
160 gk20a_instmem_vaddr_gc(struct gk20a_instmem
*imem
, const u64 size
)
162 while (imem
->vaddr_use
+ size
> imem
->vaddr_max
) {
163 /* no candidate that can be unmapped, abort... */
164 if (list_empty(&imem
->vaddr_lru
))
167 gk20a_instobj_iommu_recycle_vaddr(
168 list_first_entry(&imem
->vaddr_lru
,
169 struct gk20a_instobj_iommu
, vaddr_node
));
173 static void __iomem
*
174 gk20a_instobj_acquire_dma(struct nvkm_memory
*memory
)
176 struct gk20a_instobj
*node
= gk20a_instobj(memory
);
177 struct gk20a_instmem
*imem
= node
->imem
;
178 struct nvkm_ltc
*ltc
= imem
->base
.subdev
.device
->ltc
;
185 static void __iomem
*
186 gk20a_instobj_acquire_iommu(struct nvkm_memory
*memory
)
188 struct gk20a_instobj_iommu
*node
= gk20a_instobj_iommu(memory
);
189 struct gk20a_instmem
*imem
= node
->base
.imem
;
190 struct nvkm_ltc
*ltc
= imem
->base
.subdev
.device
->ltc
;
191 const u64 size
= nvkm_memory_size(memory
);
195 mutex_lock(&imem
->lock
);
197 if (node
->base
.vaddr
) {
198 if (!node
->use_cpt
) {
199 /* remove from LRU list since mapping in use again */
200 list_del(&node
->vaddr_node
);
205 /* try to free some address space if we reached the limit */
206 gk20a_instmem_vaddr_gc(imem
, size
);
209 node
->base
.vaddr
= vmap(node
->pages
, size
>> PAGE_SHIFT
, VM_MAP
,
210 pgprot_writecombine(PAGE_KERNEL
));
211 if (!node
->base
.vaddr
) {
212 nvkm_error(&imem
->base
.subdev
, "cannot map instobj - "
213 "this is not going to end well...\n");
217 imem
->vaddr_use
+= size
;
218 nvkm_debug(&imem
->base
.subdev
, "vaddr used: %x/%x\n",
219 imem
->vaddr_use
, imem
->vaddr_max
);
223 mutex_unlock(&imem
->lock
);
225 return node
->base
.vaddr
;
229 gk20a_instobj_release_dma(struct nvkm_memory
*memory
)
231 struct gk20a_instobj
*node
= gk20a_instobj(memory
);
232 struct gk20a_instmem
*imem
= node
->imem
;
233 struct nvkm_ltc
*ltc
= imem
->base
.subdev
.device
->ltc
;
235 /* in case we got a write-combined mapping */
237 nvkm_ltc_invalidate(ltc
);
241 gk20a_instobj_release_iommu(struct nvkm_memory
*memory
)
243 struct gk20a_instobj_iommu
*node
= gk20a_instobj_iommu(memory
);
244 struct gk20a_instmem
*imem
= node
->base
.imem
;
245 struct nvkm_ltc
*ltc
= imem
->base
.subdev
.device
->ltc
;
247 mutex_lock(&imem
->lock
);
249 /* we should at least have one user to release... */
250 if (WARN_ON(node
->use_cpt
== 0))
253 /* add unused objs to the LRU list to recycle their mapping */
254 if (--node
->use_cpt
== 0)
255 list_add_tail(&node
->vaddr_node
, &imem
->vaddr_lru
);
258 mutex_unlock(&imem
->lock
);
261 nvkm_ltc_invalidate(ltc
);
265 gk20a_instobj_rd32(struct nvkm_memory
*memory
, u64 offset
)
267 struct gk20a_instobj
*node
= gk20a_instobj(memory
);
269 return node
->vaddr
[offset
/ 4];
273 gk20a_instobj_wr32(struct nvkm_memory
*memory
, u64 offset
, u32 data
)
275 struct gk20a_instobj
*node
= gk20a_instobj(memory
);
277 node
->vaddr
[offset
/ 4] = data
;
281 gk20a_instobj_map(struct nvkm_memory
*memory
, u64 offset
, struct nvkm_vmm
*vmm
,
282 struct nvkm_vma
*vma
, void *argv
, u32 argc
)
284 struct gk20a_instobj
*node
= gk20a_instobj(memory
);
285 struct nvkm_vmm_map map
= {
286 .memory
= &node
->memory
,
291 return nvkm_vmm_map(vmm
, vma
, argv
, argc
, &map
);
295 gk20a_instobj_dtor_dma(struct nvkm_memory
*memory
)
297 struct gk20a_instobj_dma
*node
= gk20a_instobj_dma(memory
);
298 struct gk20a_instmem
*imem
= node
->base
.imem
;
299 struct device
*dev
= imem
->base
.subdev
.device
->dev
;
301 if (unlikely(!node
->base
.vaddr
))
304 dma_free_attrs(dev
, (u64
)node
->base
.mn
->length
<< PAGE_SHIFT
,
305 node
->base
.vaddr
, node
->handle
, imem
->attrs
);
312 gk20a_instobj_dtor_iommu(struct nvkm_memory
*memory
)
314 struct gk20a_instobj_iommu
*node
= gk20a_instobj_iommu(memory
);
315 struct gk20a_instmem
*imem
= node
->base
.imem
;
316 struct device
*dev
= imem
->base
.subdev
.device
->dev
;
317 struct nvkm_mm_node
*r
= node
->base
.mn
;
323 mutex_lock(&imem
->lock
);
325 /* vaddr has already been recycled */
326 if (node
->base
.vaddr
)
327 gk20a_instobj_iommu_recycle_vaddr(node
);
329 mutex_unlock(&imem
->lock
);
331 /* clear IOMMU bit to unmap pages */
332 r
->offset
&= ~BIT(imem
->iommu_bit
- imem
->iommu_pgshift
);
334 /* Unmap pages from GPU address space and free them */
335 for (i
= 0; i
< node
->base
.mn
->length
; i
++) {
336 iommu_unmap(imem
->domain
,
337 (r
->offset
+ i
) << imem
->iommu_pgshift
, PAGE_SIZE
);
338 dma_unmap_page(dev
, node
->dma_addrs
[i
], PAGE_SIZE
,
340 __free_page(node
->pages
[i
]);
343 /* Release area from GPU address space */
344 mutex_lock(imem
->mm_mutex
);
345 nvkm_mm_free(imem
->mm
, &r
);
346 mutex_unlock(imem
->mm_mutex
);
352 static const struct nvkm_memory_func
353 gk20a_instobj_func_dma
= {
354 .dtor
= gk20a_instobj_dtor_dma
,
355 .target
= gk20a_instobj_target
,
356 .page
= gk20a_instobj_page
,
357 .addr
= gk20a_instobj_addr
,
358 .size
= gk20a_instobj_size
,
359 .acquire
= gk20a_instobj_acquire_dma
,
360 .release
= gk20a_instobj_release_dma
,
361 .map
= gk20a_instobj_map
,
364 static const struct nvkm_memory_func
365 gk20a_instobj_func_iommu
= {
366 .dtor
= gk20a_instobj_dtor_iommu
,
367 .target
= gk20a_instobj_target
,
368 .page
= gk20a_instobj_page
,
369 .addr
= gk20a_instobj_addr
,
370 .size
= gk20a_instobj_size
,
371 .acquire
= gk20a_instobj_acquire_iommu
,
372 .release
= gk20a_instobj_release_iommu
,
373 .map
= gk20a_instobj_map
,
376 static const struct nvkm_memory_ptrs
377 gk20a_instobj_ptrs
= {
378 .rd32
= gk20a_instobj_rd32
,
379 .wr32
= gk20a_instobj_wr32
,
383 gk20a_instobj_ctor_dma(struct gk20a_instmem
*imem
, u32 npages
, u32 align
,
384 struct gk20a_instobj
**_node
)
386 struct gk20a_instobj_dma
*node
;
387 struct nvkm_subdev
*subdev
= &imem
->base
.subdev
;
388 struct device
*dev
= subdev
->device
->dev
;
390 if (!(node
= kzalloc(sizeof(*node
), GFP_KERNEL
)))
392 *_node
= &node
->base
;
394 nvkm_memory_ctor(&gk20a_instobj_func_dma
, &node
->base
.memory
);
395 node
->base
.memory
.ptrs
= &gk20a_instobj_ptrs
;
397 node
->base
.vaddr
= dma_alloc_attrs(dev
, npages
<< PAGE_SHIFT
,
398 &node
->handle
, GFP_KERNEL
,
400 if (!node
->base
.vaddr
) {
401 nvkm_error(subdev
, "cannot allocate DMA memory\n");
405 /* alignment check */
406 if (unlikely(node
->handle
& (align
- 1)))
408 "memory not aligned as requested: %pad (0x%x)\n",
409 &node
->handle
, align
);
411 /* present memory for being mapped using small pages */
413 node
->r
.offset
= node
->handle
>> 12;
414 node
->r
.length
= (npages
<< PAGE_SHIFT
) >> 12;
416 node
->base
.mn
= &node
->r
;
421 gk20a_instobj_ctor_iommu(struct gk20a_instmem
*imem
, u32 npages
, u32 align
,
422 struct gk20a_instobj
**_node
)
424 struct gk20a_instobj_iommu
*node
;
425 struct nvkm_subdev
*subdev
= &imem
->base
.subdev
;
426 struct device
*dev
= subdev
->device
->dev
;
427 struct nvkm_mm_node
*r
;
432 * despite their variable size, instmem allocations are small enough
433 * (< 1 page) to be handled by kzalloc
435 if (!(node
= kzalloc(sizeof(*node
) + ((sizeof(node
->pages
[0]) +
436 sizeof(*node
->dma_addrs
)) * npages
), GFP_KERNEL
)))
438 *_node
= &node
->base
;
439 node
->dma_addrs
= (void *)(node
->pages
+ npages
);
441 nvkm_memory_ctor(&gk20a_instobj_func_iommu
, &node
->base
.memory
);
442 node
->base
.memory
.ptrs
= &gk20a_instobj_ptrs
;
444 /* Allocate backing memory */
445 for (i
= 0; i
< npages
; i
++) {
446 struct page
*p
= alloc_page(GFP_KERNEL
);
454 dma_adr
= dma_map_page(dev
, p
, 0, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
455 if (dma_mapping_error(dev
, dma_adr
)) {
456 nvkm_error(subdev
, "DMA mapping error!\n");
460 node
->dma_addrs
[i
] = dma_adr
;
463 mutex_lock(imem
->mm_mutex
);
464 /* Reserve area from GPU address space */
465 ret
= nvkm_mm_head(imem
->mm
, 0, 1, npages
, npages
,
466 align
>> imem
->iommu_pgshift
, &r
);
467 mutex_unlock(imem
->mm_mutex
);
469 nvkm_error(subdev
, "IOMMU space is full!\n");
473 /* Map into GPU address space */
474 for (i
= 0; i
< npages
; i
++) {
475 u32 offset
= (r
->offset
+ i
) << imem
->iommu_pgshift
;
477 ret
= iommu_map(imem
->domain
, offset
, node
->dma_addrs
[i
],
478 PAGE_SIZE
, IOMMU_READ
| IOMMU_WRITE
);
480 nvkm_error(subdev
, "IOMMU mapping failure: %d\n", ret
);
484 iommu_unmap(imem
->domain
, offset
, PAGE_SIZE
);
490 /* IOMMU bit tells that an address is to be resolved through the IOMMU */
491 r
->offset
|= BIT(imem
->iommu_bit
- imem
->iommu_pgshift
);
497 mutex_lock(imem
->mm_mutex
);
498 nvkm_mm_free(imem
->mm
, &r
);
499 mutex_unlock(imem
->mm_mutex
);
502 for (i
= 0; i
< npages
&& node
->pages
[i
] != NULL
; i
++) {
503 dma_addr_t dma_addr
= node
->dma_addrs
[i
];
505 dma_unmap_page(dev
, dma_addr
, PAGE_SIZE
,
507 __free_page(node
->pages
[i
]);
514 gk20a_instobj_new(struct nvkm_instmem
*base
, u32 size
, u32 align
, bool zero
,
515 struct nvkm_memory
**pmemory
)
517 struct gk20a_instmem
*imem
= gk20a_instmem(base
);
518 struct nvkm_subdev
*subdev
= &imem
->base
.subdev
;
519 struct gk20a_instobj
*node
= NULL
;
522 nvkm_debug(subdev
, "%s (%s): size: %x align: %x\n", __func__
,
523 imem
->domain
? "IOMMU" : "DMA", size
, align
);
525 /* Round size and align to page bounds */
526 size
= max(roundup(size
, PAGE_SIZE
), PAGE_SIZE
);
527 align
= max(roundup(align
, PAGE_SIZE
), PAGE_SIZE
);
530 ret
= gk20a_instobj_ctor_iommu(imem
, size
>> PAGE_SHIFT
,
533 ret
= gk20a_instobj_ctor_dma(imem
, size
>> PAGE_SHIFT
,
535 *pmemory
= node
? &node
->memory
: NULL
;
541 nvkm_debug(subdev
, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
542 size
, align
, (u64
)node
->mn
->offset
<< 12);
548 gk20a_instmem_dtor(struct nvkm_instmem
*base
)
550 struct gk20a_instmem
*imem
= gk20a_instmem(base
);
552 /* perform some sanity checks... */
553 if (!list_empty(&imem
->vaddr_lru
))
554 nvkm_warn(&base
->subdev
, "instobj LRU not empty!\n");
556 if (imem
->vaddr_use
!= 0)
557 nvkm_warn(&base
->subdev
, "instobj vmap area not empty! "
558 "0x%x bytes still mapped\n", imem
->vaddr_use
);
563 static const struct nvkm_instmem_func
565 .dtor
= gk20a_instmem_dtor
,
566 .memory_new
= gk20a_instobj_new
,
571 gk20a_instmem_new(struct nvkm_device
*device
, int index
,
572 struct nvkm_instmem
**pimem
)
574 struct nvkm_device_tegra
*tdev
= device
->func
->tegra(device
);
575 struct gk20a_instmem
*imem
;
577 if (!(imem
= kzalloc(sizeof(*imem
), GFP_KERNEL
)))
579 nvkm_instmem_ctor(&gk20a_instmem
, device
, index
, &imem
->base
);
580 mutex_init(&imem
->lock
);
581 *pimem
= &imem
->base
;
583 /* do not allow more than 1MB of CPU-mapped instmem */
585 imem
->vaddr_max
= 0x100000;
586 INIT_LIST_HEAD(&imem
->vaddr_lru
);
588 if (tdev
->iommu
.domain
) {
589 imem
->mm_mutex
= &tdev
->iommu
.mutex
;
590 imem
->mm
= &tdev
->iommu
.mm
;
591 imem
->domain
= tdev
->iommu
.domain
;
592 imem
->iommu_pgshift
= tdev
->iommu
.pgshift
;
593 imem
->iommu_bit
= tdev
->func
->iommu_bit
;
595 nvkm_info(&imem
->base
.subdev
, "using IOMMU\n");
597 imem
->attrs
= DMA_ATTR_WEAK_ORDERING
|
598 DMA_ATTR_WRITE_COMBINE
;
600 nvkm_info(&imem
->base
.subdev
, "using DMA API\n");