WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / radeon / ni_dma.c
blobbd515ad4fe4ccc65fda2d1593ef3296c619e8dac
1 /*
2 * Copyright 2010 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: Alex Deucher
25 #include "radeon.h"
26 #include "radeon_asic.h"
27 #include "radeon_trace.h"
28 #include "ni.h"
29 #include "nid.h"
32 * DMA
33 * Starting with R600, the GPU has an asynchronous
34 * DMA engine. The programming model is very similar
35 * to the 3D engine (ring buffer, IBs, etc.), but the
36 * DMA controller has it's own packet format that is
37 * different form the PM4 format used by the 3D engine.
38 * It supports copying data, writing embedded data,
39 * solid fills, and a number of other things. It also
40 * has support for tiling/detiling of buffers.
41 * Cayman and newer support two asynchronous DMA engines.
44 /**
45 * cayman_dma_get_rptr - get the current read pointer
47 * @rdev: radeon_device pointer
48 * @ring: radeon ring pointer
50 * Get the current rptr from the hardware (cayman+).
52 uint32_t cayman_dma_get_rptr(struct radeon_device *rdev,
53 struct radeon_ring *ring)
55 u32 rptr, reg;
57 if (rdev->wb.enabled) {
58 rptr = rdev->wb.wb[ring->rptr_offs/4];
59 } else {
60 if (ring->idx == R600_RING_TYPE_DMA_INDEX)
61 reg = DMA_RB_RPTR + DMA0_REGISTER_OFFSET;
62 else
63 reg = DMA_RB_RPTR + DMA1_REGISTER_OFFSET;
65 rptr = RREG32(reg);
68 return (rptr & 0x3fffc) >> 2;
71 /**
72 * cayman_dma_get_wptr - get the current write pointer
74 * @rdev: radeon_device pointer
75 * @ring: radeon ring pointer
77 * Get the current wptr from the hardware (cayman+).
79 uint32_t cayman_dma_get_wptr(struct radeon_device *rdev,
80 struct radeon_ring *ring)
82 u32 reg;
84 if (ring->idx == R600_RING_TYPE_DMA_INDEX)
85 reg = DMA_RB_WPTR + DMA0_REGISTER_OFFSET;
86 else
87 reg = DMA_RB_WPTR + DMA1_REGISTER_OFFSET;
89 return (RREG32(reg) & 0x3fffc) >> 2;
92 /**
93 * cayman_dma_set_wptr - commit the write pointer
95 * @rdev: radeon_device pointer
96 * @ring: radeon ring pointer
98 * Write the wptr back to the hardware (cayman+).
100 void cayman_dma_set_wptr(struct radeon_device *rdev,
101 struct radeon_ring *ring)
103 u32 reg;
105 if (ring->idx == R600_RING_TYPE_DMA_INDEX)
106 reg = DMA_RB_WPTR + DMA0_REGISTER_OFFSET;
107 else
108 reg = DMA_RB_WPTR + DMA1_REGISTER_OFFSET;
110 WREG32(reg, (ring->wptr << 2) & 0x3fffc);
114 * cayman_dma_ring_ib_execute - Schedule an IB on the DMA engine
116 * @rdev: radeon_device pointer
117 * @ib: IB object to schedule
119 * Schedule an IB in the DMA ring (cayman-SI).
121 void cayman_dma_ring_ib_execute(struct radeon_device *rdev,
122 struct radeon_ib *ib)
124 struct radeon_ring *ring = &rdev->ring[ib->ring];
125 unsigned vm_id = ib->vm ? ib->vm->ids[ib->ring].id : 0;
127 if (rdev->wb.enabled) {
128 u32 next_rptr = ring->wptr + 4;
129 while ((next_rptr & 7) != 5)
130 next_rptr++;
131 next_rptr += 3;
132 radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1));
133 radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
134 radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xff);
135 radeon_ring_write(ring, next_rptr);
138 /* The indirect buffer packet must end on an 8 DW boundary in the DMA ring.
139 * Pad as necessary with NOPs.
141 while ((ring->wptr & 7) != 5)
142 radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0));
143 radeon_ring_write(ring, DMA_IB_PACKET(DMA_PACKET_INDIRECT_BUFFER, vm_id, 0));
144 radeon_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0));
145 radeon_ring_write(ring, (ib->length_dw << 12) | (upper_32_bits(ib->gpu_addr) & 0xFF));
150 * cayman_dma_stop - stop the async dma engines
152 * @rdev: radeon_device pointer
154 * Stop the async dma engines (cayman-SI).
156 void cayman_dma_stop(struct radeon_device *rdev)
158 u32 rb_cntl;
160 if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
161 (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
162 radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
164 /* dma0 */
165 rb_cntl = RREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET);
166 rb_cntl &= ~DMA_RB_ENABLE;
167 WREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET, rb_cntl);
169 /* dma1 */
170 rb_cntl = RREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET);
171 rb_cntl &= ~DMA_RB_ENABLE;
172 WREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET, rb_cntl);
174 rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false;
175 rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false;
179 * cayman_dma_resume - setup and start the async dma engines
181 * @rdev: radeon_device pointer
183 * Set up the DMA ring buffers and enable them. (cayman-SI).
184 * Returns 0 for success, error for failure.
186 int cayman_dma_resume(struct radeon_device *rdev)
188 struct radeon_ring *ring;
189 u32 rb_cntl, dma_cntl, ib_cntl;
190 u32 rb_bufsz;
191 u32 reg_offset, wb_offset;
192 int i, r;
194 for (i = 0; i < 2; i++) {
195 if (i == 0) {
196 ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
197 reg_offset = DMA0_REGISTER_OFFSET;
198 wb_offset = R600_WB_DMA_RPTR_OFFSET;
199 } else {
200 ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
201 reg_offset = DMA1_REGISTER_OFFSET;
202 wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET;
205 WREG32(DMA_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0);
206 WREG32(DMA_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0);
208 /* Set ring buffer size in dwords */
209 rb_bufsz = order_base_2(ring->ring_size / 4);
210 rb_cntl = rb_bufsz << 1;
211 #ifdef __BIG_ENDIAN
212 rb_cntl |= DMA_RB_SWAP_ENABLE | DMA_RPTR_WRITEBACK_SWAP_ENABLE;
213 #endif
214 WREG32(DMA_RB_CNTL + reg_offset, rb_cntl);
216 /* Initialize the ring buffer's read and write pointers */
217 WREG32(DMA_RB_RPTR + reg_offset, 0);
218 WREG32(DMA_RB_WPTR + reg_offset, 0);
220 /* set the wb address whether it's enabled or not */
221 WREG32(DMA_RB_RPTR_ADDR_HI + reg_offset,
222 upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFF);
223 WREG32(DMA_RB_RPTR_ADDR_LO + reg_offset,
224 ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC));
226 if (rdev->wb.enabled)
227 rb_cntl |= DMA_RPTR_WRITEBACK_ENABLE;
229 WREG32(DMA_RB_BASE + reg_offset, ring->gpu_addr >> 8);
231 /* enable DMA IBs */
232 ib_cntl = DMA_IB_ENABLE | CMD_VMID_FORCE;
233 #ifdef __BIG_ENDIAN
234 ib_cntl |= DMA_IB_SWAP_ENABLE;
235 #endif
236 WREG32(DMA_IB_CNTL + reg_offset, ib_cntl);
238 dma_cntl = RREG32(DMA_CNTL + reg_offset);
239 dma_cntl &= ~CTXEMPTY_INT_ENABLE;
240 WREG32(DMA_CNTL + reg_offset, dma_cntl);
242 ring->wptr = 0;
243 WREG32(DMA_RB_WPTR + reg_offset, ring->wptr << 2);
245 WREG32(DMA_RB_CNTL + reg_offset, rb_cntl | DMA_RB_ENABLE);
247 ring->ready = true;
249 r = radeon_ring_test(rdev, ring->idx, ring);
250 if (r) {
251 ring->ready = false;
252 return r;
256 if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
257 (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
258 radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);
260 return 0;
264 * cayman_dma_fini - tear down the async dma engines
266 * @rdev: radeon_device pointer
268 * Stop the async dma engines and free the rings (cayman-SI).
270 void cayman_dma_fini(struct radeon_device *rdev)
272 cayman_dma_stop(rdev);
273 radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]);
274 radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]);
278 * cayman_dma_is_lockup - Check if the DMA engine is locked up
280 * @rdev: radeon_device pointer
281 * @ring: radeon_ring structure holding ring information
283 * Check if the async DMA engine is locked up.
284 * Returns true if the engine appears to be locked up, false if not.
286 bool cayman_dma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
288 u32 reset_mask = cayman_gpu_check_soft_reset(rdev);
289 u32 mask;
291 if (ring->idx == R600_RING_TYPE_DMA_INDEX)
292 mask = RADEON_RESET_DMA;
293 else
294 mask = RADEON_RESET_DMA1;
296 if (!(reset_mask & mask)) {
297 radeon_ring_lockup_update(rdev, ring);
298 return false;
300 return radeon_ring_test_lockup(rdev, ring);
304 * cayman_dma_vm_copy_pages - update PTEs by copying them from the GART
306 * @rdev: radeon_device pointer
307 * @ib: indirect buffer to fill with commands
308 * @pe: addr of the page entry
309 * @src: src addr where to copy from
310 * @count: number of page entries to update
312 * Update PTEs by copying them from the GART using the DMA (cayman/TN).
314 void cayman_dma_vm_copy_pages(struct radeon_device *rdev,
315 struct radeon_ib *ib,
316 uint64_t pe, uint64_t src,
317 unsigned count)
319 unsigned ndw;
321 while (count) {
322 ndw = count * 2;
323 if (ndw > 0xFFFFE)
324 ndw = 0xFFFFE;
326 ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_COPY,
327 0, 0, ndw);
328 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
329 ib->ptr[ib->length_dw++] = lower_32_bits(src);
330 ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff;
331 ib->ptr[ib->length_dw++] = upper_32_bits(src) & 0xff;
333 pe += ndw * 4;
334 src += ndw * 4;
335 count -= ndw / 2;
340 * cayman_dma_vm_write_pages - update PTEs by writing them manually
342 * @rdev: radeon_device pointer
343 * @ib: indirect buffer to fill with commands
344 * @pe: addr of the page entry
345 * @addr: dst addr to write into pe
346 * @count: number of page entries to update
347 * @incr: increase next addr by incr bytes
348 * @flags: hw access flags
350 * Update PTEs by writing them manually using the DMA (cayman/TN).
352 void cayman_dma_vm_write_pages(struct radeon_device *rdev,
353 struct radeon_ib *ib,
354 uint64_t pe,
355 uint64_t addr, unsigned count,
356 uint32_t incr, uint32_t flags)
358 uint64_t value;
359 unsigned ndw;
361 while (count) {
362 ndw = count * 2;
363 if (ndw > 0xFFFFE)
364 ndw = 0xFFFFE;
366 /* for non-physically contiguous pages (system) */
367 ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_WRITE,
368 0, 0, ndw);
369 ib->ptr[ib->length_dw++] = pe;
370 ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff;
371 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
372 if (flags & R600_PTE_SYSTEM) {
373 value = radeon_vm_map_gart(rdev, addr);
374 } else if (flags & R600_PTE_VALID) {
375 value = addr;
376 } else {
377 value = 0;
379 addr += incr;
380 value |= flags;
381 ib->ptr[ib->length_dw++] = value;
382 ib->ptr[ib->length_dw++] = upper_32_bits(value);
388 * cayman_dma_vm_set_pages - update the page tables using the DMA
390 * @rdev: radeon_device pointer
391 * @ib: indirect buffer to fill with commands
392 * @pe: addr of the page entry
393 * @addr: dst addr to write into pe
394 * @count: number of page entries to update
395 * @incr: increase next addr by incr bytes
396 * @flags: hw access flags
398 * Update the page tables using the DMA (cayman/TN).
400 void cayman_dma_vm_set_pages(struct radeon_device *rdev,
401 struct radeon_ib *ib,
402 uint64_t pe,
403 uint64_t addr, unsigned count,
404 uint32_t incr, uint32_t flags)
406 uint64_t value;
407 unsigned ndw;
409 while (count) {
410 ndw = count * 2;
411 if (ndw > 0xFFFFE)
412 ndw = 0xFFFFE;
414 if (flags & R600_PTE_VALID)
415 value = addr;
416 else
417 value = 0;
419 /* for physically contiguous pages (vram) */
420 ib->ptr[ib->length_dw++] = DMA_PTE_PDE_PACKET(ndw);
421 ib->ptr[ib->length_dw++] = pe; /* dst addr */
422 ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff;
423 ib->ptr[ib->length_dw++] = flags; /* mask */
424 ib->ptr[ib->length_dw++] = 0;
425 ib->ptr[ib->length_dw++] = value; /* value */
426 ib->ptr[ib->length_dw++] = upper_32_bits(value);
427 ib->ptr[ib->length_dw++] = incr; /* increment size */
428 ib->ptr[ib->length_dw++] = 0;
430 pe += ndw * 4;
431 addr += (ndw / 2) * incr;
432 count -= ndw / 2;
437 * cayman_dma_vm_pad_ib - pad the IB to the required number of dw
439 * @ib: indirect buffer to fill with padding
442 void cayman_dma_vm_pad_ib(struct radeon_ib *ib)
444 while (ib->length_dw & 0x7)
445 ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0);
448 void cayman_dma_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring,
449 unsigned vm_id, uint64_t pd_addr)
451 radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0));
452 radeon_ring_write(ring, (0xf << 16) | ((VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2));
453 radeon_ring_write(ring, pd_addr >> 12);
455 /* flush hdp cache */
456 radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0));
457 radeon_ring_write(ring, (0xf << 16) | (HDP_MEM_COHERENCY_FLUSH_CNTL >> 2));
458 radeon_ring_write(ring, 1);
460 /* bits 0-7 are the VM contexts0-7 */
461 radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0));
462 radeon_ring_write(ring, (0xf << 16) | (VM_INVALIDATE_REQUEST >> 2));
463 radeon_ring_write(ring, 1 << vm_id);
465 /* wait for invalidate to complete */
466 radeon_ring_write(ring, DMA_SRBM_READ_PACKET);
467 radeon_ring_write(ring, (0xff << 20) | (VM_INVALIDATE_REQUEST >> 2));
468 radeon_ring_write(ring, 0); /* mask */
469 radeon_ring_write(ring, 0); /* value */