1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
10 * translation, scaling, colorspace conversion, and compositing of
11 * pixels stored in framebuffers into a FIFO of pixels going out to
12 * the Pixel Valve (CRTC). It operates at the system clock rate (the
13 * system audio clock gate, specifically), which is much higher than
14 * the pixel clock rate.
16 * There is a single global HVS, with multiple output FIFOs that can
17 * be consumed by the PVs. This file just manages the resources for
18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_vblank.h>
33 static const struct debugfs_reg32 hvs_regs
[] = {
34 VC4_REG32(SCALER_DISPCTRL
),
35 VC4_REG32(SCALER_DISPSTAT
),
36 VC4_REG32(SCALER_DISPID
),
37 VC4_REG32(SCALER_DISPECTRL
),
38 VC4_REG32(SCALER_DISPPROF
),
39 VC4_REG32(SCALER_DISPDITHER
),
40 VC4_REG32(SCALER_DISPEOLN
),
41 VC4_REG32(SCALER_DISPLIST0
),
42 VC4_REG32(SCALER_DISPLIST1
),
43 VC4_REG32(SCALER_DISPLIST2
),
44 VC4_REG32(SCALER_DISPLSTAT
),
45 VC4_REG32(SCALER_DISPLACT0
),
46 VC4_REG32(SCALER_DISPLACT1
),
47 VC4_REG32(SCALER_DISPLACT2
),
48 VC4_REG32(SCALER_DISPCTRL0
),
49 VC4_REG32(SCALER_DISPBKGND0
),
50 VC4_REG32(SCALER_DISPSTAT0
),
51 VC4_REG32(SCALER_DISPBASE0
),
52 VC4_REG32(SCALER_DISPCTRL1
),
53 VC4_REG32(SCALER_DISPBKGND1
),
54 VC4_REG32(SCALER_DISPSTAT1
),
55 VC4_REG32(SCALER_DISPBASE1
),
56 VC4_REG32(SCALER_DISPCTRL2
),
57 VC4_REG32(SCALER_DISPBKGND2
),
58 VC4_REG32(SCALER_DISPSTAT2
),
59 VC4_REG32(SCALER_DISPBASE2
),
60 VC4_REG32(SCALER_DISPALPHA2
),
61 VC4_REG32(SCALER_OLEDOFFS
),
62 VC4_REG32(SCALER_OLEDCOEF0
),
63 VC4_REG32(SCALER_OLEDCOEF1
),
64 VC4_REG32(SCALER_OLEDCOEF2
),
67 void vc4_hvs_dump_state(struct drm_device
*dev
)
69 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
70 struct drm_printer p
= drm_info_printer(&vc4
->hvs
->pdev
->dev
);
73 drm_print_regset32(&p
, &vc4
->hvs
->regset
);
75 DRM_INFO("HVS ctx:\n");
76 for (i
= 0; i
< 64; i
+= 4) {
77 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
78 i
* 4, i
< HVS_BOOTLOADER_DLIST_END
? "B" : "D",
79 readl((u32 __iomem
*)vc4
->hvs
->dlist
+ i
+ 0),
80 readl((u32 __iomem
*)vc4
->hvs
->dlist
+ i
+ 1),
81 readl((u32 __iomem
*)vc4
->hvs
->dlist
+ i
+ 2),
82 readl((u32 __iomem
*)vc4
->hvs
->dlist
+ i
+ 3));
86 static int vc4_hvs_debugfs_underrun(struct seq_file
*m
, void *data
)
88 struct drm_info_node
*node
= m
->private;
89 struct drm_device
*dev
= node
->minor
->dev
;
90 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
91 struct drm_printer p
= drm_seq_file_printer(m
);
93 drm_printf(&p
, "%d\n", atomic_read(&vc4
->underrun
));
98 /* The filter kernel is composed of dwords each containing 3 9-bit
99 * signed integers packed next to each other.
101 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
102 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \
103 ((((c0) & 0x1ff) << 0) | \
104 (((c1) & 0x1ff) << 9) | \
105 (((c2) & 0x1ff) << 18))
107 /* The whole filter kernel is arranged as the coefficients 0-16 going
108 * up, then a pad, then 17-31 going down and reversed within the
109 * dwords. This means that a linear phase kernel (where it's
110 * symmetrical at the boundary between 15 and 16) has the last 5
111 * dwords matching the first 5, but reversed.
113 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
114 c9, c10, c11, c12, c13, c14, c15) \
115 {VC4_PPF_FILTER_WORD(c0, c1, c2), \
116 VC4_PPF_FILTER_WORD(c3, c4, c5), \
117 VC4_PPF_FILTER_WORD(c6, c7, c8), \
118 VC4_PPF_FILTER_WORD(c9, c10, c11), \
119 VC4_PPF_FILTER_WORD(c12, c13, c14), \
120 VC4_PPF_FILTER_WORD(c15, c15, 0)}
122 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
123 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
125 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
126 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
128 static const u32 mitchell_netravali_1_3_1_3_kernel
[] =
129 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
130 50, 82, 119, 155, 187, 213, 227);
132 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs
*hvs
,
133 struct drm_mm_node
*space
,
137 u32 __iomem
*dst_kernel
;
139 ret
= drm_mm_insert_node(&hvs
->dlist_mm
, space
, VC4_KERNEL_DWORDS
);
141 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
146 dst_kernel
= hvs
->dlist
+ space
->start
;
148 for (i
= 0; i
< VC4_KERNEL_DWORDS
; i
++) {
149 if (i
< VC4_LINEAR_PHASE_KERNEL_DWORDS
)
150 writel(kernel
[i
], &dst_kernel
[i
]);
152 writel(kernel
[VC4_KERNEL_DWORDS
- i
- 1],
160 static void vc4_hvs_lut_load(struct drm_crtc
*crtc
)
162 struct drm_device
*dev
= crtc
->dev
;
163 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
164 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
165 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
168 /* The LUT memory is laid out with each HVS channel in order,
169 * each of which takes 256 writes for R, 256 for G, then 256
172 HVS_WRITE(SCALER_GAMADDR
,
173 SCALER_GAMADDR_AUTOINC
|
174 (vc4_state
->assigned_channel
* 3 * crtc
->gamma_size
));
176 for (i
= 0; i
< crtc
->gamma_size
; i
++)
177 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_r
[i
]);
178 for (i
= 0; i
< crtc
->gamma_size
; i
++)
179 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_g
[i
]);
180 for (i
= 0; i
< crtc
->gamma_size
; i
++)
181 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_b
[i
]);
184 static void vc4_hvs_update_gamma_lut(struct drm_crtc
*crtc
)
186 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
187 struct drm_color_lut
*lut
= crtc
->state
->gamma_lut
->data
;
188 u32 length
= drm_color_lut_size(crtc
->state
->gamma_lut
);
191 for (i
= 0; i
< length
; i
++) {
192 vc4_crtc
->lut_r
[i
] = drm_color_lut_extract(lut
[i
].red
, 8);
193 vc4_crtc
->lut_g
[i
] = drm_color_lut_extract(lut
[i
].green
, 8);
194 vc4_crtc
->lut_b
[i
] = drm_color_lut_extract(lut
[i
].blue
, 8);
197 vc4_hvs_lut_load(crtc
);
200 int vc4_hvs_get_fifo_from_output(struct drm_device
*dev
, unsigned int output
)
202 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
217 reg
= HVS_READ(SCALER_DISPECTRL
);
218 ret
= FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK
, reg
);
225 reg
= HVS_READ(SCALER_DISPCTRL
);
226 ret
= FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK
, reg
);
233 reg
= HVS_READ(SCALER_DISPEOLN
);
234 ret
= FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK
, reg
);
241 reg
= HVS_READ(SCALER_DISPDITHER
);
242 ret
= FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK
, reg
);
253 static int vc4_hvs_init_channel(struct vc4_dev
*vc4
, struct drm_crtc
*crtc
,
254 struct drm_display_mode
*mode
, bool oneshot
)
256 struct vc4_crtc_state
*vc4_crtc_state
= to_vc4_crtc_state(crtc
->state
);
257 unsigned int chan
= vc4_crtc_state
->assigned_channel
;
258 bool interlace
= mode
->flags
& DRM_MODE_FLAG_INTERLACE
;
262 HVS_WRITE(SCALER_DISPCTRLX(chan
), 0);
263 HVS_WRITE(SCALER_DISPCTRLX(chan
), SCALER_DISPCTRLX_RESET
);
264 HVS_WRITE(SCALER_DISPCTRLX(chan
), 0);
266 /* Turn on the scaler, which will wait for vstart to start
268 * When feeding the transposer, we should operate in oneshot
271 dispctrl
= SCALER_DISPCTRLX_ENABLE
;
274 dispctrl
|= VC4_SET_FIELD(mode
->hdisplay
,
275 SCALER_DISPCTRLX_WIDTH
) |
276 VC4_SET_FIELD(mode
->vdisplay
,
277 SCALER_DISPCTRLX_HEIGHT
) |
278 (oneshot
? SCALER_DISPCTRLX_ONESHOT
: 0);
280 dispctrl
|= VC4_SET_FIELD(mode
->hdisplay
,
281 SCALER5_DISPCTRLX_WIDTH
) |
282 VC4_SET_FIELD(mode
->vdisplay
,
283 SCALER5_DISPCTRLX_HEIGHT
) |
284 (oneshot
? SCALER5_DISPCTRLX_ONESHOT
: 0);
286 HVS_WRITE(SCALER_DISPCTRLX(chan
), dispctrl
);
288 dispbkgndx
= HVS_READ(SCALER_DISPBKGNDX(chan
));
289 dispbkgndx
&= ~SCALER_DISPBKGND_GAMMA
;
290 dispbkgndx
&= ~SCALER_DISPBKGND_INTERLACE
;
292 HVS_WRITE(SCALER_DISPBKGNDX(chan
), dispbkgndx
|
293 SCALER_DISPBKGND_AUTOHS
|
294 ((!vc4
->hvs
->hvs5
) ? SCALER_DISPBKGND_GAMMA
: 0) |
295 (interlace
? SCALER_DISPBKGND_INTERLACE
: 0));
297 /* Reload the LUT, since the SRAMs would have been disabled if
298 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
300 vc4_hvs_lut_load(crtc
);
305 void vc4_hvs_stop_channel(struct drm_device
*dev
, unsigned int chan
)
307 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
309 if (HVS_READ(SCALER_DISPCTRLX(chan
)) & SCALER_DISPCTRLX_ENABLE
)
312 HVS_WRITE(SCALER_DISPCTRLX(chan
),
313 HVS_READ(SCALER_DISPCTRLX(chan
)) | SCALER_DISPCTRLX_RESET
);
314 HVS_WRITE(SCALER_DISPCTRLX(chan
),
315 HVS_READ(SCALER_DISPCTRLX(chan
)) & ~SCALER_DISPCTRLX_ENABLE
);
317 /* Once we leave, the scaler should be disabled and its fifo empty. */
318 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan
)) & SCALER_DISPCTRLX_RESET
);
320 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan
)),
321 SCALER_DISPSTATX_MODE
) !=
322 SCALER_DISPSTATX_MODE_DISABLED
);
324 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan
)) &
325 (SCALER_DISPSTATX_FULL
| SCALER_DISPSTATX_EMPTY
)) !=
326 SCALER_DISPSTATX_EMPTY
);
329 int vc4_hvs_atomic_check(struct drm_crtc
*crtc
,
330 struct drm_crtc_state
*state
)
332 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
333 struct drm_device
*dev
= crtc
->dev
;
334 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
335 struct drm_plane
*plane
;
337 const struct drm_plane_state
*plane_state
;
341 /* The pixelvalve can only feed one encoder (and encoders are
342 * 1:1 with connectors.)
344 if (hweight32(state
->connector_mask
) > 1)
347 drm_atomic_crtc_state_for_each_plane_state(plane
, plane_state
, state
)
348 dlist_count
+= vc4_plane_dlist_size(plane_state
);
350 dlist_count
++; /* Account for SCALER_CTL0_END. */
352 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, flags
);
353 ret
= drm_mm_insert_node(&vc4
->hvs
->dlist_mm
, &vc4_state
->mm
,
355 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, flags
);
362 static void vc4_hvs_update_dlist(struct drm_crtc
*crtc
)
364 struct drm_device
*dev
= crtc
->dev
;
365 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
366 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
367 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
369 if (crtc
->state
->event
) {
372 crtc
->state
->event
->pipe
= drm_crtc_index(crtc
);
374 WARN_ON(drm_crtc_vblank_get(crtc
) != 0);
376 spin_lock_irqsave(&dev
->event_lock
, flags
);
378 if (!vc4_state
->feed_txp
|| vc4_state
->txp_armed
) {
379 vc4_crtc
->event
= crtc
->state
->event
;
380 crtc
->state
->event
= NULL
;
383 HVS_WRITE(SCALER_DISPLISTX(vc4_state
->assigned_channel
),
384 vc4_state
->mm
.start
);
386 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
388 HVS_WRITE(SCALER_DISPLISTX(vc4_state
->assigned_channel
),
389 vc4_state
->mm
.start
);
393 void vc4_hvs_atomic_enable(struct drm_crtc
*crtc
,
394 struct drm_crtc_state
*old_state
)
396 struct drm_device
*dev
= crtc
->dev
;
397 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
398 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
399 struct drm_display_mode
*mode
= &crtc
->state
->adjusted_mode
;
400 bool oneshot
= vc4_state
->feed_txp
;
402 vc4_hvs_update_dlist(crtc
);
403 vc4_hvs_init_channel(vc4
, crtc
, mode
, oneshot
);
406 void vc4_hvs_atomic_disable(struct drm_crtc
*crtc
,
407 struct drm_crtc_state
*old_state
)
409 struct drm_device
*dev
= crtc
->dev
;
410 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(old_state
);
411 unsigned int chan
= vc4_state
->assigned_channel
;
413 vc4_hvs_stop_channel(dev
, chan
);
416 void vc4_hvs_atomic_flush(struct drm_crtc
*crtc
,
417 struct drm_atomic_state
*state
)
419 struct drm_crtc_state
*old_state
= drm_atomic_get_old_crtc_state(state
,
421 struct drm_device
*dev
= crtc
->dev
;
422 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
423 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
424 struct drm_plane
*plane
;
425 struct vc4_plane_state
*vc4_plane_state
;
426 bool debug_dump_regs
= false;
427 bool enable_bg_fill
= false;
428 u32 __iomem
*dlist_start
= vc4
->hvs
->dlist
+ vc4_state
->mm
.start
;
429 u32 __iomem
*dlist_next
= dlist_start
;
431 if (debug_dump_regs
) {
432 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc
));
433 vc4_hvs_dump_state(dev
);
436 /* Copy all the active planes' dlist contents to the hardware dlist. */
437 drm_atomic_crtc_for_each_plane(plane
, crtc
) {
438 /* Is this the first active plane? */
439 if (dlist_next
== dlist_start
) {
440 /* We need to enable background fill when a plane
441 * could be alpha blending from the background, i.e.
442 * where no other plane is underneath. It suffices to
443 * consider the first active plane here since we set
444 * needs_bg_fill such that either the first plane
445 * already needs it or all planes on top blend from
446 * the first or a lower plane.
448 vc4_plane_state
= to_vc4_plane_state(plane
->state
);
449 enable_bg_fill
= vc4_plane_state
->needs_bg_fill
;
452 dlist_next
+= vc4_plane_write_dlist(plane
, dlist_next
);
455 writel(SCALER_CTL0_END
, dlist_next
);
458 WARN_ON_ONCE(dlist_next
- dlist_start
!= vc4_state
->mm
.size
);
461 /* This sets a black background color fill, as is the case
462 * with other DRM drivers.
464 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state
->assigned_channel
),
465 HVS_READ(SCALER_DISPBKGNDX(vc4_state
->assigned_channel
)) |
466 SCALER_DISPBKGND_FILL
);
468 /* Only update DISPLIST if the CRTC was already running and is not
470 * vc4_crtc_enable() takes care of updating the dlist just after
471 * re-enabling VBLANK interrupts and before enabling the engine.
472 * If the CRTC is being disabled, there's no point in updating this
475 if (crtc
->state
->active
&& old_state
->active
)
476 vc4_hvs_update_dlist(crtc
);
478 if (crtc
->state
->color_mgmt_changed
) {
479 u32 dispbkgndx
= HVS_READ(SCALER_DISPBKGNDX(vc4_state
->assigned_channel
));
481 if (crtc
->state
->gamma_lut
) {
482 vc4_hvs_update_gamma_lut(crtc
);
483 dispbkgndx
|= SCALER_DISPBKGND_GAMMA
;
485 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
486 * in hardware, which is the same as a linear lut that
487 * DRM expects us to use in absence of a user lut.
489 dispbkgndx
&= ~SCALER_DISPBKGND_GAMMA
;
491 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state
->assigned_channel
), dispbkgndx
);
494 if (debug_dump_regs
) {
495 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc
));
496 vc4_hvs_dump_state(dev
);
500 void vc4_hvs_mask_underrun(struct drm_device
*dev
, int channel
)
502 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
503 u32 dispctrl
= HVS_READ(SCALER_DISPCTRL
);
505 dispctrl
&= ~SCALER_DISPCTRL_DSPEISLUR(channel
);
507 HVS_WRITE(SCALER_DISPCTRL
, dispctrl
);
510 void vc4_hvs_unmask_underrun(struct drm_device
*dev
, int channel
)
512 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
513 u32 dispctrl
= HVS_READ(SCALER_DISPCTRL
);
515 dispctrl
|= SCALER_DISPCTRL_DSPEISLUR(channel
);
517 HVS_WRITE(SCALER_DISPSTAT
,
518 SCALER_DISPSTAT_EUFLOW(channel
));
519 HVS_WRITE(SCALER_DISPCTRL
, dispctrl
);
522 static void vc4_hvs_report_underrun(struct drm_device
*dev
)
524 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
526 atomic_inc(&vc4
->underrun
);
527 DRM_DEV_ERROR(dev
->dev
, "HVS underrun\n");
530 static irqreturn_t
vc4_hvs_irq_handler(int irq
, void *data
)
532 struct drm_device
*dev
= data
;
533 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
534 irqreturn_t irqret
= IRQ_NONE
;
539 status
= HVS_READ(SCALER_DISPSTAT
);
540 control
= HVS_READ(SCALER_DISPCTRL
);
542 for (channel
= 0; channel
< SCALER_CHANNELS_COUNT
; channel
++) {
543 /* Interrupt masking is not always honored, so check it here. */
544 if (status
& SCALER_DISPSTAT_EUFLOW(channel
) &&
545 control
& SCALER_DISPCTRL_DSPEISLUR(channel
)) {
546 vc4_hvs_mask_underrun(dev
, channel
);
547 vc4_hvs_report_underrun(dev
);
549 irqret
= IRQ_HANDLED
;
553 /* Clear every per-channel interrupt flag. */
554 HVS_WRITE(SCALER_DISPSTAT
, SCALER_DISPSTAT_IRQMASK(0) |
555 SCALER_DISPSTAT_IRQMASK(1) |
556 SCALER_DISPSTAT_IRQMASK(2));
561 static int vc4_hvs_bind(struct device
*dev
, struct device
*master
, void *data
)
563 struct platform_device
*pdev
= to_platform_device(dev
);
564 struct drm_device
*drm
= dev_get_drvdata(master
);
565 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
566 struct vc4_hvs
*hvs
= NULL
;
570 hvs
= devm_kzalloc(&pdev
->dev
, sizeof(*hvs
), GFP_KERNEL
);
576 if (of_device_is_compatible(pdev
->dev
.of_node
, "brcm,bcm2711-hvs"))
579 hvs
->regs
= vc4_ioremap_regs(pdev
, 0);
580 if (IS_ERR(hvs
->regs
))
581 return PTR_ERR(hvs
->regs
);
583 hvs
->regset
.base
= hvs
->regs
;
584 hvs
->regset
.regs
= hvs_regs
;
585 hvs
->regset
.nregs
= ARRAY_SIZE(hvs_regs
);
588 hvs
->core_clk
= devm_clk_get(&pdev
->dev
, NULL
);
589 if (IS_ERR(hvs
->core_clk
)) {
590 dev_err(&pdev
->dev
, "Couldn't get core clock\n");
591 return PTR_ERR(hvs
->core_clk
);
594 ret
= clk_prepare_enable(hvs
->core_clk
);
596 dev_err(&pdev
->dev
, "Couldn't enable the core clock\n");
602 hvs
->dlist
= hvs
->regs
+ SCALER_DLIST_START
;
604 hvs
->dlist
= hvs
->regs
+ SCALER5_DLIST_START
;
606 spin_lock_init(&hvs
->mm_lock
);
608 /* Set up the HVS display list memory manager. We never
609 * overwrite the setup from the bootloader (just 128b out of
610 * our 16K), since we don't want to scramble the screen when
611 * transitioning from the firmware's boot setup to runtime.
613 drm_mm_init(&hvs
->dlist_mm
,
614 HVS_BOOTLOADER_DLIST_END
,
615 (SCALER_DLIST_SIZE
>> 2) - HVS_BOOTLOADER_DLIST_END
);
617 /* Set up the HVS LBM memory manager. We could have some more
618 * complicated data structure that allowed reuse of LBM areas
619 * between planes when they don't overlap on the screen, but
620 * for now we just allocate globally.
624 drm_mm_init(&hvs
->lbm_mm
, 0, 96 * 1024);
627 drm_mm_init(&hvs
->lbm_mm
, 0, 70 * 2 * 1024);
629 /* Upload filter kernels. We only have the one for now, so we
630 * keep it around for the lifetime of the driver.
632 ret
= vc4_hvs_upload_linear_kernel(hvs
,
633 &hvs
->mitchell_netravali_filter
,
634 mitchell_netravali_1_3_1_3_kernel
);
640 dispctrl
= HVS_READ(SCALER_DISPCTRL
);
642 dispctrl
|= SCALER_DISPCTRL_ENABLE
;
643 dispctrl
|= SCALER_DISPCTRL_DISPEIRQ(0) |
644 SCALER_DISPCTRL_DISPEIRQ(1) |
645 SCALER_DISPCTRL_DISPEIRQ(2);
647 /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
650 dispctrl
&= ~SCALER_DISPCTRL_DSP3_MUX_MASK
;
651 dispctrl
&= ~(SCALER_DISPCTRL_DMAEIRQ
|
652 SCALER_DISPCTRL_SLVWREIRQ
|
653 SCALER_DISPCTRL_SLVRDEIRQ
|
654 SCALER_DISPCTRL_DSPEIEOF(0) |
655 SCALER_DISPCTRL_DSPEIEOF(1) |
656 SCALER_DISPCTRL_DSPEIEOF(2) |
657 SCALER_DISPCTRL_DSPEIEOLN(0) |
658 SCALER_DISPCTRL_DSPEIEOLN(1) |
659 SCALER_DISPCTRL_DSPEIEOLN(2) |
660 SCALER_DISPCTRL_DSPEISLUR(0) |
661 SCALER_DISPCTRL_DSPEISLUR(1) |
662 SCALER_DISPCTRL_DSPEISLUR(2) |
663 SCALER_DISPCTRL_SCLEIRQ
);
664 dispctrl
|= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX
);
666 HVS_WRITE(SCALER_DISPCTRL
, dispctrl
);
668 ret
= devm_request_irq(dev
, platform_get_irq(pdev
, 0),
669 vc4_hvs_irq_handler
, 0, "vc4 hvs", drm
);
673 vc4_debugfs_add_regset32(drm
, "hvs_regs", &hvs
->regset
);
674 vc4_debugfs_add_file(drm
, "hvs_underrun", vc4_hvs_debugfs_underrun
,
680 static void vc4_hvs_unbind(struct device
*dev
, struct device
*master
,
683 struct drm_device
*drm
= dev_get_drvdata(master
);
684 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
685 struct vc4_hvs
*hvs
= vc4
->hvs
;
687 if (drm_mm_node_allocated(&vc4
->hvs
->mitchell_netravali_filter
))
688 drm_mm_remove_node(&vc4
->hvs
->mitchell_netravali_filter
);
690 drm_mm_takedown(&vc4
->hvs
->dlist_mm
);
691 drm_mm_takedown(&vc4
->hvs
->lbm_mm
);
693 clk_disable_unprepare(hvs
->core_clk
);
698 static const struct component_ops vc4_hvs_ops
= {
699 .bind
= vc4_hvs_bind
,
700 .unbind
= vc4_hvs_unbind
,
703 static int vc4_hvs_dev_probe(struct platform_device
*pdev
)
705 return component_add(&pdev
->dev
, &vc4_hvs_ops
);
708 static int vc4_hvs_dev_remove(struct platform_device
*pdev
)
710 component_del(&pdev
->dev
, &vc4_hvs_ops
);
714 static const struct of_device_id vc4_hvs_dt_match
[] = {
715 { .compatible
= "brcm,bcm2711-hvs" },
716 { .compatible
= "brcm,bcm2835-hvs" },
720 struct platform_driver vc4_hvs_driver
= {
721 .probe
= vc4_hvs_dev_probe
,
722 .remove
= vc4_hvs_dev_remove
,
725 .of_match_table
= vc4_hvs_dt_match
,