WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / vc4 / vc4_plane.c
blob6b39cc2ca18d0953bebf8b4c3d0aeacf74d500cb
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
6 /**
7 * DOC: VC4 plane module
9 * Each DRM plane is a layer of pixels being scanned out by the HVS.
11 * At atomic modeset check time, we compute the HVS display element
12 * state that would be necessary for displaying the plane (giving us a
13 * chance to figure out if a plane configuration is invalid), then at
14 * atomic flush time the CRTC will ask us to write our element state
15 * into the region of the HVS that it has allocated for us.
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_atomic_uapi.h>
21 #include <drm/drm_fb_cma_helper.h>
22 #include <drm/drm_fourcc.h>
23 #include <drm/drm_gem_framebuffer_helper.h>
24 #include <drm/drm_plane_helper.h>
26 #include "uapi/drm/vc4_drm.h"
28 #include "vc4_drv.h"
29 #include "vc4_regs.h"
31 static const struct hvs_format {
32 u32 drm; /* DRM_FORMAT_* */
33 u32 hvs; /* HVS_FORMAT_* */
34 u32 pixel_order;
35 u32 pixel_order_hvs5;
36 } hvs_formats[] = {
38 .drm = DRM_FORMAT_XRGB8888,
39 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
40 .pixel_order = HVS_PIXEL_ORDER_ABGR,
41 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
44 .drm = DRM_FORMAT_ARGB8888,
45 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46 .pixel_order = HVS_PIXEL_ORDER_ABGR,
47 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
50 .drm = DRM_FORMAT_ABGR8888,
51 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
52 .pixel_order = HVS_PIXEL_ORDER_ARGB,
53 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
56 .drm = DRM_FORMAT_XBGR8888,
57 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
58 .pixel_order = HVS_PIXEL_ORDER_ARGB,
59 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
62 .drm = DRM_FORMAT_RGB565,
63 .hvs = HVS_PIXEL_FORMAT_RGB565,
64 .pixel_order = HVS_PIXEL_ORDER_XRGB,
67 .drm = DRM_FORMAT_BGR565,
68 .hvs = HVS_PIXEL_FORMAT_RGB565,
69 .pixel_order = HVS_PIXEL_ORDER_XBGR,
72 .drm = DRM_FORMAT_ARGB1555,
73 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
74 .pixel_order = HVS_PIXEL_ORDER_ABGR,
77 .drm = DRM_FORMAT_XRGB1555,
78 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
79 .pixel_order = HVS_PIXEL_ORDER_ABGR,
82 .drm = DRM_FORMAT_RGB888,
83 .hvs = HVS_PIXEL_FORMAT_RGB888,
84 .pixel_order = HVS_PIXEL_ORDER_XRGB,
87 .drm = DRM_FORMAT_BGR888,
88 .hvs = HVS_PIXEL_FORMAT_RGB888,
89 .pixel_order = HVS_PIXEL_ORDER_XBGR,
92 .drm = DRM_FORMAT_YUV422,
93 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
94 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
97 .drm = DRM_FORMAT_YVU422,
98 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
99 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
102 .drm = DRM_FORMAT_YUV420,
103 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
104 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
107 .drm = DRM_FORMAT_YVU420,
108 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
109 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
112 .drm = DRM_FORMAT_NV12,
113 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
114 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
117 .drm = DRM_FORMAT_NV21,
118 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
119 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
122 .drm = DRM_FORMAT_NV16,
123 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
124 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
127 .drm = DRM_FORMAT_NV61,
128 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
129 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
133 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
135 unsigned i;
137 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
138 if (hvs_formats[i].drm == drm_format)
139 return &hvs_formats[i];
142 return NULL;
145 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
147 if (dst == src)
148 return VC4_SCALING_NONE;
149 if (3 * dst >= 2 * src)
150 return VC4_SCALING_PPF;
151 else
152 return VC4_SCALING_TPZ;
155 static bool plane_enabled(struct drm_plane_state *state)
157 return state->fb && !WARN_ON(!state->crtc);
160 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
162 struct vc4_plane_state *vc4_state;
164 if (WARN_ON(!plane->state))
165 return NULL;
167 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
168 if (!vc4_state)
169 return NULL;
171 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
172 vc4_state->dlist_initialized = 0;
174 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
176 if (vc4_state->dlist) {
177 vc4_state->dlist = kmemdup(vc4_state->dlist,
178 vc4_state->dlist_count * 4,
179 GFP_KERNEL);
180 if (!vc4_state->dlist) {
181 kfree(vc4_state);
182 return NULL;
184 vc4_state->dlist_size = vc4_state->dlist_count;
187 return &vc4_state->base;
190 static void vc4_plane_destroy_state(struct drm_plane *plane,
191 struct drm_plane_state *state)
193 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
194 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
196 if (drm_mm_node_allocated(&vc4_state->lbm)) {
197 unsigned long irqflags;
199 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
200 drm_mm_remove_node(&vc4_state->lbm);
201 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
204 kfree(vc4_state->dlist);
205 __drm_atomic_helper_plane_destroy_state(&vc4_state->base);
206 kfree(state);
209 /* Called during init to allocate the plane's atomic state. */
210 static void vc4_plane_reset(struct drm_plane *plane)
212 struct vc4_plane_state *vc4_state;
214 WARN_ON(plane->state);
216 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
217 if (!vc4_state)
218 return;
220 __drm_atomic_helper_plane_reset(plane, &vc4_state->base);
223 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
225 if (vc4_state->dlist_count == vc4_state->dlist_size) {
226 u32 new_size = max(4u, vc4_state->dlist_count * 2);
227 u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
229 if (!new_dlist)
230 return;
231 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
233 kfree(vc4_state->dlist);
234 vc4_state->dlist = new_dlist;
235 vc4_state->dlist_size = new_size;
238 vc4_state->dlist[vc4_state->dlist_count++] = val;
241 /* Returns the scl0/scl1 field based on whether the dimensions need to
242 * be up/down/non-scaled.
244 * This is a replication of a table from the spec.
246 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
248 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
250 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
251 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
252 return SCALER_CTL0_SCL_H_PPF_V_PPF;
253 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
254 return SCALER_CTL0_SCL_H_TPZ_V_PPF;
255 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
256 return SCALER_CTL0_SCL_H_PPF_V_TPZ;
257 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
258 return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
259 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
260 return SCALER_CTL0_SCL_H_PPF_V_NONE;
261 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
262 return SCALER_CTL0_SCL_H_NONE_V_PPF;
263 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
264 return SCALER_CTL0_SCL_H_NONE_V_TPZ;
265 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
266 return SCALER_CTL0_SCL_H_TPZ_V_NONE;
267 default:
268 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
269 /* The unity case is independently handled by
270 * SCALER_CTL0_UNITY.
272 return 0;
276 static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
278 struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
279 unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
280 struct drm_crtc_state *crtc_state;
282 crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
283 pstate->crtc);
285 vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
286 if (!left && !right && !top && !bottom)
287 return 0;
289 if (left + right >= crtc_state->mode.hdisplay ||
290 top + bottom >= crtc_state->mode.vdisplay)
291 return -EINVAL;
293 adjhdisplay = crtc_state->mode.hdisplay - (left + right);
294 vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
295 adjhdisplay,
296 crtc_state->mode.hdisplay);
297 vc4_pstate->crtc_x += left;
298 if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
299 vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
301 adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
302 vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
303 adjvdisplay,
304 crtc_state->mode.vdisplay);
305 vc4_pstate->crtc_y += top;
306 if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
307 vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
309 vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
310 adjhdisplay,
311 crtc_state->mode.hdisplay);
312 vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
313 adjvdisplay,
314 crtc_state->mode.vdisplay);
316 if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
317 return -EINVAL;
319 return 0;
322 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
324 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
325 struct drm_framebuffer *fb = state->fb;
326 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
327 u32 subpixel_src_mask = (1 << 16) - 1;
328 int num_planes = fb->format->num_planes;
329 struct drm_crtc_state *crtc_state;
330 u32 h_subsample = fb->format->hsub;
331 u32 v_subsample = fb->format->vsub;
332 int i, ret;
334 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
335 state->crtc);
336 if (!crtc_state) {
337 DRM_DEBUG_KMS("Invalid crtc state\n");
338 return -EINVAL;
341 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
342 INT_MAX, true, true);
343 if (ret)
344 return ret;
346 for (i = 0; i < num_planes; i++)
347 vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
349 /* We don't support subpixel source positioning for scaling. */
350 if ((state->src.x1 & subpixel_src_mask) ||
351 (state->src.x2 & subpixel_src_mask) ||
352 (state->src.y1 & subpixel_src_mask) ||
353 (state->src.y2 & subpixel_src_mask)) {
354 return -EINVAL;
357 vc4_state->src_x = state->src.x1 >> 16;
358 vc4_state->src_y = state->src.y1 >> 16;
359 vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
360 vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
362 vc4_state->crtc_x = state->dst.x1;
363 vc4_state->crtc_y = state->dst.y1;
364 vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
365 vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
367 ret = vc4_plane_margins_adj(state);
368 if (ret)
369 return ret;
371 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
372 vc4_state->crtc_w);
373 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
374 vc4_state->crtc_h);
376 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
377 vc4_state->y_scaling[0] == VC4_SCALING_NONE);
379 if (num_planes > 1) {
380 vc4_state->is_yuv = true;
382 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
383 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
385 vc4_state->x_scaling[1] =
386 vc4_get_scaling_mode(vc4_state->src_w[1],
387 vc4_state->crtc_w);
388 vc4_state->y_scaling[1] =
389 vc4_get_scaling_mode(vc4_state->src_h[1],
390 vc4_state->crtc_h);
392 /* YUV conversion requires that horizontal scaling be enabled
393 * on the UV plane even if vc4_get_scaling_mode() returned
394 * VC4_SCALING_NONE (which can happen when the down-scaling
395 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
396 * case.
398 if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
399 vc4_state->x_scaling[1] = VC4_SCALING_PPF;
400 } else {
401 vc4_state->is_yuv = false;
402 vc4_state->x_scaling[1] = VC4_SCALING_NONE;
403 vc4_state->y_scaling[1] = VC4_SCALING_NONE;
406 return 0;
409 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
411 u32 scale, recip;
413 scale = (1 << 16) * src / dst;
415 /* The specs note that while the reciprocal would be defined
416 * as (1<<32)/scale, ~0 is close enough.
418 recip = ~0 / scale;
420 vc4_dlist_write(vc4_state,
421 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
422 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
423 vc4_dlist_write(vc4_state,
424 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
427 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
429 u32 scale = (1 << 16) * src / dst;
431 vc4_dlist_write(vc4_state,
432 SCALER_PPF_AGC |
433 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
434 VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
437 static u32 vc4_lbm_size(struct drm_plane_state *state)
439 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
440 u32 pix_per_line;
441 u32 lbm;
443 /* LBM is not needed when there's no vertical scaling. */
444 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
445 vc4_state->y_scaling[1] == VC4_SCALING_NONE)
446 return 0;
449 * This can be further optimized in the RGB/YUV444 case if the PPF
450 * decimation factor is between 0.5 and 1.0 by using crtc_w.
452 * It's not an issue though, since in that case since src_w[0] is going
453 * to be greater than or equal to crtc_w.
455 if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
456 pix_per_line = vc4_state->crtc_w;
457 else
458 pix_per_line = vc4_state->src_w[0];
460 if (!vc4_state->is_yuv) {
461 if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
462 lbm = pix_per_line * 8;
463 else {
464 /* In special cases, this multiplier might be 12. */
465 lbm = pix_per_line * 16;
467 } else {
468 /* There are cases for this going down to a multiplier
469 * of 2, but according to the firmware source, the
470 * table in the docs is somewhat wrong.
472 lbm = pix_per_line * 16;
475 lbm = roundup(lbm, 32);
477 return lbm;
480 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
481 int channel)
483 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
485 /* Ch0 H-PPF Word 0: Scaling Parameters */
486 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
487 vc4_write_ppf(vc4_state,
488 vc4_state->src_w[channel], vc4_state->crtc_w);
491 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
492 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
493 vc4_write_ppf(vc4_state,
494 vc4_state->src_h[channel], vc4_state->crtc_h);
495 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
498 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
499 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
500 vc4_write_tpz(vc4_state,
501 vc4_state->src_w[channel], vc4_state->crtc_w);
504 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
505 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
506 vc4_write_tpz(vc4_state,
507 vc4_state->src_h[channel], vc4_state->crtc_h);
508 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
512 static void vc4_plane_calc_load(struct drm_plane_state *state)
514 unsigned int hvs_load_shift, vrefresh, i;
515 struct drm_framebuffer *fb = state->fb;
516 struct vc4_plane_state *vc4_state;
517 struct drm_crtc_state *crtc_state;
518 unsigned int vscale_factor;
519 struct vc4_dev *vc4;
521 vc4 = to_vc4_dev(state->plane->dev);
522 if (!vc4->load_tracker_available)
523 return;
525 vc4_state = to_vc4_plane_state(state);
526 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
527 state->crtc);
528 vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
530 /* The HVS is able to process 2 pixels/cycle when scaling the source,
531 * 4 pixels/cycle otherwise.
532 * Alpha blending step seems to be pipelined and it's always operating
533 * at 4 pixels/cycle, so the limiting aspect here seems to be the
534 * scaler block.
535 * HVS load is expressed in clk-cycles/sec (AKA Hz).
537 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
538 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
539 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
540 vc4_state->y_scaling[1] != VC4_SCALING_NONE)
541 hvs_load_shift = 1;
542 else
543 hvs_load_shift = 2;
545 vc4_state->membus_load = 0;
546 vc4_state->hvs_load = 0;
547 for (i = 0; i < fb->format->num_planes; i++) {
548 /* Even if the bandwidth/plane required for a single frame is
550 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
552 * when downscaling, we have to read more pixels per line in
553 * the time frame reserved for a single line, so the bandwidth
554 * demand can be punctually higher. To account for that, we
555 * calculate the down-scaling factor and multiply the plane
556 * load by this number. We're likely over-estimating the read
557 * demand, but that's better than under-estimating it.
559 vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
560 vc4_state->crtc_h);
561 vc4_state->membus_load += vc4_state->src_w[i] *
562 vc4_state->src_h[i] * vscale_factor *
563 fb->format->cpp[i];
564 vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
567 vc4_state->hvs_load *= vrefresh;
568 vc4_state->hvs_load >>= hvs_load_shift;
569 vc4_state->membus_load *= vrefresh;
572 static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
574 struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
575 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
576 unsigned long irqflags;
577 u32 lbm_size;
579 lbm_size = vc4_lbm_size(state);
580 if (!lbm_size)
581 return 0;
583 if (WARN_ON(!vc4_state->lbm_offset))
584 return -EINVAL;
586 /* Allocate the LBM memory that the HVS will use for temporary
587 * storage due to our scaling/format conversion.
589 if (!drm_mm_node_allocated(&vc4_state->lbm)) {
590 int ret;
592 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
593 ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
594 &vc4_state->lbm,
595 lbm_size,
596 vc4->hvs->hvs5 ? 64 : 32,
597 0, 0);
598 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
600 if (ret)
601 return ret;
602 } else {
603 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
606 vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
608 return 0;
611 /* Writes out a full display list for an active plane to the plane's
612 * private dlist state.
614 static int vc4_plane_mode_set(struct drm_plane *plane,
615 struct drm_plane_state *state)
617 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
618 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
619 struct drm_framebuffer *fb = state->fb;
620 u32 ctl0_offset = vc4_state->dlist_count;
621 const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
622 u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
623 int num_planes = fb->format->num_planes;
624 u32 h_subsample = fb->format->hsub;
625 u32 v_subsample = fb->format->vsub;
626 bool mix_plane_alpha;
627 bool covers_screen;
628 u32 scl0, scl1, pitch0;
629 u32 tiling, src_y;
630 u32 hvs_format = format->hvs;
631 unsigned int rotation;
632 int ret, i;
634 if (vc4_state->dlist_initialized)
635 return 0;
637 ret = vc4_plane_setup_clipping_and_scaling(state);
638 if (ret)
639 return ret;
641 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
642 * and 4:4:4, scl1 should be set to scl0 so both channels of
643 * the scaler do the same thing. For YUV, the Y plane needs
644 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
645 * the scl fields here.
647 if (num_planes == 1) {
648 scl0 = vc4_get_scl_field(state, 0);
649 scl1 = scl0;
650 } else {
651 scl0 = vc4_get_scl_field(state, 1);
652 scl1 = vc4_get_scl_field(state, 0);
655 rotation = drm_rotation_simplify(state->rotation,
656 DRM_MODE_ROTATE_0 |
657 DRM_MODE_REFLECT_X |
658 DRM_MODE_REFLECT_Y);
660 /* We must point to the last line when Y reflection is enabled. */
661 src_y = vc4_state->src_y;
662 if (rotation & DRM_MODE_REFLECT_Y)
663 src_y += vc4_state->src_h[0] - 1;
665 switch (base_format_mod) {
666 case DRM_FORMAT_MOD_LINEAR:
667 tiling = SCALER_CTL0_TILING_LINEAR;
668 pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
670 /* Adjust the base pointer to the first pixel to be scanned
671 * out.
673 for (i = 0; i < num_planes; i++) {
674 vc4_state->offsets[i] += src_y /
675 (i ? v_subsample : 1) *
676 fb->pitches[i];
678 vc4_state->offsets[i] += vc4_state->src_x /
679 (i ? h_subsample : 1) *
680 fb->format->cpp[i];
683 break;
685 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
686 u32 tile_size_shift = 12; /* T tiles are 4kb */
687 /* Whole-tile offsets, mostly for setting the pitch. */
688 u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
689 u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
690 u32 tile_w_mask = (1 << tile_w_shift) - 1;
691 /* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
692 * the height (in pixels) of a 4k tile.
694 u32 tile_h_mask = (2 << tile_h_shift) - 1;
695 /* For T-tiled, the FB pitch is "how many bytes from one row to
696 * the next, such that
698 * pitch * tile_h == tile_size * tiles_per_row
700 u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
701 u32 tiles_l = vc4_state->src_x >> tile_w_shift;
702 u32 tiles_r = tiles_w - tiles_l;
703 u32 tiles_t = src_y >> tile_h_shift;
704 /* Intra-tile offsets, which modify the base address (the
705 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
706 * base address).
708 u32 tile_y = (src_y >> 4) & 1;
709 u32 subtile_y = (src_y >> 2) & 3;
710 u32 utile_y = src_y & 3;
711 u32 x_off = vc4_state->src_x & tile_w_mask;
712 u32 y_off = src_y & tile_h_mask;
714 /* When Y reflection is requested we must set the
715 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
716 * after the initial one should be fetched in descending order,
717 * which makes sense since we start from the last line and go
718 * backward.
719 * Don't know why we need y_off = max_y_off - y_off, but it's
720 * definitely required (I guess it's also related to the "going
721 * backward" situation).
723 if (rotation & DRM_MODE_REFLECT_Y) {
724 y_off = tile_h_mask - y_off;
725 pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
726 } else {
727 pitch0 = 0;
730 tiling = SCALER_CTL0_TILING_256B_OR_T;
731 pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
732 VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
733 VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
734 VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
735 vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
736 vc4_state->offsets[0] += subtile_y << 8;
737 vc4_state->offsets[0] += utile_y << 4;
739 /* Rows of tiles alternate left-to-right and right-to-left. */
740 if (tiles_t & 1) {
741 pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
742 vc4_state->offsets[0] += (tiles_w - tiles_l) <<
743 tile_size_shift;
744 vc4_state->offsets[0] -= (1 + !tile_y) << 10;
745 } else {
746 vc4_state->offsets[0] += tiles_l << tile_size_shift;
747 vc4_state->offsets[0] += tile_y << 10;
750 break;
753 case DRM_FORMAT_MOD_BROADCOM_SAND64:
754 case DRM_FORMAT_MOD_BROADCOM_SAND128:
755 case DRM_FORMAT_MOD_BROADCOM_SAND256: {
756 uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
757 u32 tile_w, tile, x_off, pix_per_tile;
759 hvs_format = HVS_PIXEL_FORMAT_H264;
761 switch (base_format_mod) {
762 case DRM_FORMAT_MOD_BROADCOM_SAND64:
763 tiling = SCALER_CTL0_TILING_64B;
764 tile_w = 64;
765 break;
766 case DRM_FORMAT_MOD_BROADCOM_SAND128:
767 tiling = SCALER_CTL0_TILING_128B;
768 tile_w = 128;
769 break;
770 case DRM_FORMAT_MOD_BROADCOM_SAND256:
771 tiling = SCALER_CTL0_TILING_256B_OR_T;
772 tile_w = 256;
773 break;
774 default:
775 break;
778 if (param > SCALER_TILE_HEIGHT_MASK) {
779 DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
780 return -EINVAL;
783 pix_per_tile = tile_w / fb->format->cpp[0];
784 tile = vc4_state->src_x / pix_per_tile;
785 x_off = vc4_state->src_x % pix_per_tile;
787 /* Adjust the base pointer to the first pixel to be scanned
788 * out.
790 for (i = 0; i < num_planes; i++) {
791 vc4_state->offsets[i] += param * tile_w * tile;
792 vc4_state->offsets[i] += src_y /
793 (i ? v_subsample : 1) *
794 tile_w;
795 vc4_state->offsets[i] += x_off /
796 (i ? h_subsample : 1) *
797 fb->format->cpp[i];
800 pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
801 break;
804 default:
805 DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
806 (long long)fb->modifier);
807 return -EINVAL;
810 /* Don't waste cycles mixing with plane alpha if the set alpha
811 * is opaque or there is no per-pixel alpha information.
812 * In any case we use the alpha property value as the fixed alpha.
814 mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
815 fb->format->has_alpha;
817 if (!vc4->hvs->hvs5) {
818 /* Control word */
819 vc4_dlist_write(vc4_state,
820 SCALER_CTL0_VALID |
821 (rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
822 (rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
823 VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
824 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
825 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
826 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
827 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
828 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
829 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
831 /* Position Word 0: Image Positions and Alpha Value */
832 vc4_state->pos0_offset = vc4_state->dlist_count;
833 vc4_dlist_write(vc4_state,
834 VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
835 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
836 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
838 /* Position Word 1: Scaled Image Dimensions. */
839 if (!vc4_state->is_unity) {
840 vc4_dlist_write(vc4_state,
841 VC4_SET_FIELD(vc4_state->crtc_w,
842 SCALER_POS1_SCL_WIDTH) |
843 VC4_SET_FIELD(vc4_state->crtc_h,
844 SCALER_POS1_SCL_HEIGHT));
847 /* Position Word 2: Source Image Size, Alpha */
848 vc4_state->pos2_offset = vc4_state->dlist_count;
849 vc4_dlist_write(vc4_state,
850 VC4_SET_FIELD(fb->format->has_alpha ?
851 SCALER_POS2_ALPHA_MODE_PIPELINE :
852 SCALER_POS2_ALPHA_MODE_FIXED,
853 SCALER_POS2_ALPHA_MODE) |
854 (mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
855 (fb->format->has_alpha ?
856 SCALER_POS2_ALPHA_PREMULT : 0) |
857 VC4_SET_FIELD(vc4_state->src_w[0],
858 SCALER_POS2_WIDTH) |
859 VC4_SET_FIELD(vc4_state->src_h[0],
860 SCALER_POS2_HEIGHT));
862 /* Position Word 3: Context. Written by the HVS. */
863 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
865 } else {
866 u32 hvs_pixel_order = format->pixel_order;
868 if (format->pixel_order_hvs5)
869 hvs_pixel_order = format->pixel_order_hvs5;
871 /* Control word */
872 vc4_dlist_write(vc4_state,
873 SCALER_CTL0_VALID |
874 (hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
875 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
876 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
877 (vc4_state->is_unity ?
878 SCALER5_CTL0_UNITY : 0) |
879 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
880 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
881 SCALER5_CTL0_ALPHA_EXPAND |
882 SCALER5_CTL0_RGB_EXPAND);
884 /* Position Word 0: Image Positions and Alpha Value */
885 vc4_state->pos0_offset = vc4_state->dlist_count;
886 vc4_dlist_write(vc4_state,
887 (rotation & DRM_MODE_REFLECT_Y ?
888 SCALER5_POS0_VFLIP : 0) |
889 VC4_SET_FIELD(vc4_state->crtc_x,
890 SCALER_POS0_START_X) |
891 (rotation & DRM_MODE_REFLECT_X ?
892 SCALER5_POS0_HFLIP : 0) |
893 VC4_SET_FIELD(vc4_state->crtc_y,
894 SCALER5_POS0_START_Y)
897 /* Control Word 2 */
898 vc4_dlist_write(vc4_state,
899 VC4_SET_FIELD(state->alpha >> 4,
900 SCALER5_CTL2_ALPHA) |
901 (fb->format->has_alpha ?
902 SCALER5_CTL2_ALPHA_PREMULT : 0) |
903 (mix_plane_alpha ?
904 SCALER5_CTL2_ALPHA_MIX : 0) |
905 VC4_SET_FIELD(fb->format->has_alpha ?
906 SCALER5_CTL2_ALPHA_MODE_PIPELINE :
907 SCALER5_CTL2_ALPHA_MODE_FIXED,
908 SCALER5_CTL2_ALPHA_MODE)
911 /* Position Word 1: Scaled Image Dimensions. */
912 if (!vc4_state->is_unity) {
913 vc4_dlist_write(vc4_state,
914 VC4_SET_FIELD(vc4_state->crtc_w,
915 SCALER_POS1_SCL_WIDTH) |
916 VC4_SET_FIELD(vc4_state->crtc_h,
917 SCALER_POS1_SCL_HEIGHT));
920 /* Position Word 2: Source Image Size */
921 vc4_state->pos2_offset = vc4_state->dlist_count;
922 vc4_dlist_write(vc4_state,
923 VC4_SET_FIELD(vc4_state->src_w[0],
924 SCALER5_POS2_WIDTH) |
925 VC4_SET_FIELD(vc4_state->src_h[0],
926 SCALER5_POS2_HEIGHT));
928 /* Position Word 3: Context. Written by the HVS. */
929 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
933 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
935 * The pointers may be any byte address.
937 vc4_state->ptr0_offset = vc4_state->dlist_count;
938 for (i = 0; i < num_planes; i++)
939 vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
941 /* Pointer Context Word 0/1/2: Written by the HVS */
942 for (i = 0; i < num_planes; i++)
943 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
945 /* Pitch word 0 */
946 vc4_dlist_write(vc4_state, pitch0);
948 /* Pitch word 1/2 */
949 for (i = 1; i < num_planes; i++) {
950 if (hvs_format != HVS_PIXEL_FORMAT_H264) {
951 vc4_dlist_write(vc4_state,
952 VC4_SET_FIELD(fb->pitches[i],
953 SCALER_SRC_PITCH));
954 } else {
955 vc4_dlist_write(vc4_state, pitch0);
959 /* Colorspace conversion words */
960 if (vc4_state->is_yuv) {
961 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
962 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
963 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
966 vc4_state->lbm_offset = 0;
968 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
969 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
970 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
971 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
972 /* Reserve a slot for the LBM Base Address. The real value will
973 * be set when calling vc4_plane_allocate_lbm().
975 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
976 vc4_state->y_scaling[1] != VC4_SCALING_NONE)
977 vc4_state->lbm_offset = vc4_state->dlist_count++;
979 if (num_planes > 1) {
980 /* Emit Cb/Cr as channel 0 and Y as channel
981 * 1. This matches how we set up scl0/scl1
982 * above.
984 vc4_write_scaling_parameters(state, 1);
986 vc4_write_scaling_parameters(state, 0);
988 /* If any PPF setup was done, then all the kernel
989 * pointers get uploaded.
991 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
992 vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
993 vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
994 vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
995 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
996 SCALER_PPF_KERNEL_OFFSET);
998 /* HPPF plane 0 */
999 vc4_dlist_write(vc4_state, kernel);
1000 /* VPPF plane 0 */
1001 vc4_dlist_write(vc4_state, kernel);
1002 /* HPPF plane 1 */
1003 vc4_dlist_write(vc4_state, kernel);
1004 /* VPPF plane 1 */
1005 vc4_dlist_write(vc4_state, kernel);
1009 vc4_state->dlist[ctl0_offset] |=
1010 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1012 /* crtc_* are already clipped coordinates. */
1013 covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1014 vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1015 vc4_state->crtc_h == state->crtc->mode.vdisplay;
1016 /* Background fill might be necessary when the plane has per-pixel
1017 * alpha content or a non-opaque plane alpha and could blend from the
1018 * background or does not cover the entire screen.
1020 vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1021 state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1023 /* Flag the dlist as initialized to avoid checking it twice in case
1024 * the async update check already called vc4_plane_mode_set() and
1025 * decided to fallback to sync update because async update was not
1026 * possible.
1028 vc4_state->dlist_initialized = 1;
1030 vc4_plane_calc_load(state);
1032 return 0;
1035 /* If a modeset involves changing the setup of a plane, the atomic
1036 * infrastructure will call this to validate a proposed plane setup.
1037 * However, if a plane isn't getting updated, this (and the
1038 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
1039 * compute the dlist here and have all active plane dlists get updated
1040 * in the CRTC's flush.
1042 static int vc4_plane_atomic_check(struct drm_plane *plane,
1043 struct drm_plane_state *state)
1045 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
1046 int ret;
1048 vc4_state->dlist_count = 0;
1050 if (!plane_enabled(state))
1051 return 0;
1053 ret = vc4_plane_mode_set(plane, state);
1054 if (ret)
1055 return ret;
1057 return vc4_plane_allocate_lbm(state);
1060 static void vc4_plane_atomic_update(struct drm_plane *plane,
1061 struct drm_plane_state *old_state)
1063 /* No contents here. Since we don't know where in the CRTC's
1064 * dlist we should be stored, our dlist is uploaded to the
1065 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1066 * time.
1070 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1072 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1073 int i;
1075 vc4_state->hw_dlist = dlist;
1077 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
1078 for (i = 0; i < vc4_state->dlist_count; i++)
1079 writel(vc4_state->dlist[i], &dlist[i]);
1081 return vc4_state->dlist_count;
1084 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1086 const struct vc4_plane_state *vc4_state =
1087 container_of(state, typeof(*vc4_state), base);
1089 return vc4_state->dlist_count;
1092 /* Updates the plane to immediately (well, once the FIFO needs
1093 * refilling) scan out from at a new framebuffer.
1095 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1097 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1098 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
1099 uint32_t addr;
1101 /* We're skipping the address adjustment for negative origin,
1102 * because this is only called on the primary plane.
1104 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1105 addr = bo->paddr + fb->offsets[0];
1107 /* Write the new address into the hardware immediately. The
1108 * scanout will start from this address as soon as the FIFO
1109 * needs to refill with pixels.
1111 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1113 /* Also update the CPU-side dlist copy, so that any later
1114 * atomic updates that don't do a new modeset on our plane
1115 * also use our updated address.
1117 vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1120 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1121 struct drm_plane_state *state)
1123 struct vc4_plane_state *vc4_state, *new_vc4_state;
1125 swap(plane->state->fb, state->fb);
1126 plane->state->crtc_x = state->crtc_x;
1127 plane->state->crtc_y = state->crtc_y;
1128 plane->state->crtc_w = state->crtc_w;
1129 plane->state->crtc_h = state->crtc_h;
1130 plane->state->src_x = state->src_x;
1131 plane->state->src_y = state->src_y;
1132 plane->state->src_w = state->src_w;
1133 plane->state->src_h = state->src_h;
1134 plane->state->src_h = state->src_h;
1135 plane->state->alpha = state->alpha;
1136 plane->state->pixel_blend_mode = state->pixel_blend_mode;
1137 plane->state->rotation = state->rotation;
1138 plane->state->zpos = state->zpos;
1139 plane->state->normalized_zpos = state->normalized_zpos;
1140 plane->state->color_encoding = state->color_encoding;
1141 plane->state->color_range = state->color_range;
1142 plane->state->src = state->src;
1143 plane->state->dst = state->dst;
1144 plane->state->visible = state->visible;
1146 new_vc4_state = to_vc4_plane_state(state);
1147 vc4_state = to_vc4_plane_state(plane->state);
1149 vc4_state->crtc_x = new_vc4_state->crtc_x;
1150 vc4_state->crtc_y = new_vc4_state->crtc_y;
1151 vc4_state->crtc_h = new_vc4_state->crtc_h;
1152 vc4_state->crtc_w = new_vc4_state->crtc_w;
1153 vc4_state->src_x = new_vc4_state->src_x;
1154 vc4_state->src_y = new_vc4_state->src_y;
1155 memcpy(vc4_state->src_w, new_vc4_state->src_w,
1156 sizeof(vc4_state->src_w));
1157 memcpy(vc4_state->src_h, new_vc4_state->src_h,
1158 sizeof(vc4_state->src_h));
1159 memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1160 sizeof(vc4_state->x_scaling));
1161 memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1162 sizeof(vc4_state->y_scaling));
1163 vc4_state->is_unity = new_vc4_state->is_unity;
1164 vc4_state->is_yuv = new_vc4_state->is_yuv;
1165 memcpy(vc4_state->offsets, new_vc4_state->offsets,
1166 sizeof(vc4_state->offsets));
1167 vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1169 /* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1170 vc4_state->dlist[vc4_state->pos0_offset] =
1171 new_vc4_state->dlist[vc4_state->pos0_offset];
1172 vc4_state->dlist[vc4_state->pos2_offset] =
1173 new_vc4_state->dlist[vc4_state->pos2_offset];
1174 vc4_state->dlist[vc4_state->ptr0_offset] =
1175 new_vc4_state->dlist[vc4_state->ptr0_offset];
1177 /* Note that we can't just call vc4_plane_write_dlist()
1178 * because that would smash the context data that the HVS is
1179 * currently using.
1181 writel(vc4_state->dlist[vc4_state->pos0_offset],
1182 &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1183 writel(vc4_state->dlist[vc4_state->pos2_offset],
1184 &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1185 writel(vc4_state->dlist[vc4_state->ptr0_offset],
1186 &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1189 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1190 struct drm_plane_state *state)
1192 struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1193 int ret;
1194 u32 i;
1196 ret = vc4_plane_mode_set(plane, state);
1197 if (ret)
1198 return ret;
1200 old_vc4_state = to_vc4_plane_state(plane->state);
1201 new_vc4_state = to_vc4_plane_state(state);
1202 if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1203 old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1204 old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1205 old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1206 vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1207 return -EINVAL;
1209 /* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1210 * if anything else has changed, fallback to a sync update.
1212 for (i = 0; i < new_vc4_state->dlist_count; i++) {
1213 if (i == new_vc4_state->pos0_offset ||
1214 i == new_vc4_state->pos2_offset ||
1215 i == new_vc4_state->ptr0_offset ||
1216 (new_vc4_state->lbm_offset &&
1217 i == new_vc4_state->lbm_offset))
1218 continue;
1220 if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1221 return -EINVAL;
1224 return 0;
1227 static int vc4_prepare_fb(struct drm_plane *plane,
1228 struct drm_plane_state *state)
1230 struct vc4_bo *bo;
1231 int ret;
1233 if (!state->fb)
1234 return 0;
1236 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1238 drm_gem_fb_prepare_fb(plane, state);
1240 if (plane->state->fb == state->fb)
1241 return 0;
1243 ret = vc4_bo_inc_usecnt(bo);
1244 if (ret)
1245 return ret;
1247 return 0;
1250 static void vc4_cleanup_fb(struct drm_plane *plane,
1251 struct drm_plane_state *state)
1253 struct vc4_bo *bo;
1255 if (plane->state->fb == state->fb || !state->fb)
1256 return;
1258 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1259 vc4_bo_dec_usecnt(bo);
1262 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1263 .atomic_check = vc4_plane_atomic_check,
1264 .atomic_update = vc4_plane_atomic_update,
1265 .prepare_fb = vc4_prepare_fb,
1266 .cleanup_fb = vc4_cleanup_fb,
1267 .atomic_async_check = vc4_plane_atomic_async_check,
1268 .atomic_async_update = vc4_plane_atomic_async_update,
1271 static void vc4_plane_destroy(struct drm_plane *plane)
1273 drm_plane_cleanup(plane);
1276 static bool vc4_format_mod_supported(struct drm_plane *plane,
1277 uint32_t format,
1278 uint64_t modifier)
1280 /* Support T_TILING for RGB formats only. */
1281 switch (format) {
1282 case DRM_FORMAT_XRGB8888:
1283 case DRM_FORMAT_ARGB8888:
1284 case DRM_FORMAT_ABGR8888:
1285 case DRM_FORMAT_XBGR8888:
1286 case DRM_FORMAT_RGB565:
1287 case DRM_FORMAT_BGR565:
1288 case DRM_FORMAT_ARGB1555:
1289 case DRM_FORMAT_XRGB1555:
1290 switch (fourcc_mod_broadcom_mod(modifier)) {
1291 case DRM_FORMAT_MOD_LINEAR:
1292 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1293 return true;
1294 default:
1295 return false;
1297 case DRM_FORMAT_NV12:
1298 case DRM_FORMAT_NV21:
1299 switch (fourcc_mod_broadcom_mod(modifier)) {
1300 case DRM_FORMAT_MOD_LINEAR:
1301 case DRM_FORMAT_MOD_BROADCOM_SAND64:
1302 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1303 case DRM_FORMAT_MOD_BROADCOM_SAND256:
1304 return true;
1305 default:
1306 return false;
1308 case DRM_FORMAT_RGBX1010102:
1309 case DRM_FORMAT_BGRX1010102:
1310 case DRM_FORMAT_RGBA1010102:
1311 case DRM_FORMAT_BGRA1010102:
1312 case DRM_FORMAT_YUV422:
1313 case DRM_FORMAT_YVU422:
1314 case DRM_FORMAT_YUV420:
1315 case DRM_FORMAT_YVU420:
1316 case DRM_FORMAT_NV16:
1317 case DRM_FORMAT_NV61:
1318 default:
1319 return (modifier == DRM_FORMAT_MOD_LINEAR);
1323 static const struct drm_plane_funcs vc4_plane_funcs = {
1324 .update_plane = drm_atomic_helper_update_plane,
1325 .disable_plane = drm_atomic_helper_disable_plane,
1326 .destroy = vc4_plane_destroy,
1327 .set_property = NULL,
1328 .reset = vc4_plane_reset,
1329 .atomic_duplicate_state = vc4_plane_duplicate_state,
1330 .atomic_destroy_state = vc4_plane_destroy_state,
1331 .format_mod_supported = vc4_format_mod_supported,
1334 struct drm_plane *vc4_plane_init(struct drm_device *dev,
1335 enum drm_plane_type type)
1337 struct drm_plane *plane = NULL;
1338 struct vc4_plane *vc4_plane;
1339 u32 formats[ARRAY_SIZE(hvs_formats)];
1340 int ret = 0;
1341 unsigned i;
1342 static const uint64_t modifiers[] = {
1343 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1344 DRM_FORMAT_MOD_BROADCOM_SAND128,
1345 DRM_FORMAT_MOD_BROADCOM_SAND64,
1346 DRM_FORMAT_MOD_BROADCOM_SAND256,
1347 DRM_FORMAT_MOD_LINEAR,
1348 DRM_FORMAT_MOD_INVALID
1351 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1352 GFP_KERNEL);
1353 if (!vc4_plane)
1354 return ERR_PTR(-ENOMEM);
1356 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1357 formats[i] = hvs_formats[i].drm;
1359 plane = &vc4_plane->base;
1360 ret = drm_universal_plane_init(dev, plane, 0,
1361 &vc4_plane_funcs,
1362 formats, ARRAY_SIZE(formats),
1363 modifiers, type, NULL);
1364 if (ret)
1365 return ERR_PTR(ret);
1367 drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1369 drm_plane_create_alpha_property(plane);
1370 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1371 DRM_MODE_ROTATE_0 |
1372 DRM_MODE_ROTATE_180 |
1373 DRM_MODE_REFLECT_X |
1374 DRM_MODE_REFLECT_Y);
1376 return plane;
1379 int vc4_plane_create_additional_planes(struct drm_device *drm)
1381 struct drm_plane *cursor_plane;
1382 struct drm_crtc *crtc;
1383 unsigned int i;
1385 /* Set up some arbitrary number of planes. We're not limited
1386 * by a set number of physical registers, just the space in
1387 * the HVS (16k) and how small an plane can be (28 bytes).
1388 * However, each plane we set up takes up some memory, and
1389 * increases the cost of looping over planes, which atomic
1390 * modesetting does quite a bit. As a result, we pick a
1391 * modest number of planes to expose, that should hopefully
1392 * still cover any sane usecase.
1394 for (i = 0; i < 16; i++) {
1395 struct drm_plane *plane =
1396 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1398 if (IS_ERR(plane))
1399 continue;
1401 plane->possible_crtcs =
1402 GENMASK(drm->mode_config.num_crtc - 1, 0);
1405 drm_for_each_crtc(crtc, drm) {
1406 /* Set up the legacy cursor after overlay initialization,
1407 * since we overlay planes on the CRTC in the order they were
1408 * initialized.
1410 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1411 if (!IS_ERR(cursor_plane)) {
1412 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1413 crtc->cursor = cursor_plane;
1417 return 0;