WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / drm / vc4 / vc4_v3d.c
blob73d63d72575b0ae998903a144ff1c820dcd1ff1d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014 The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
8 #include <linux/clk.h>
9 #include <linux/component.h>
10 #include <linux/platform_device.h>
11 #include <linux/pm_runtime.h>
13 #include <drm/drm_irq.h>
15 #include "vc4_drv.h"
16 #include "vc4_regs.h"
18 static const struct debugfs_reg32 v3d_regs[] = {
19 VC4_REG32(V3D_IDENT0),
20 VC4_REG32(V3D_IDENT1),
21 VC4_REG32(V3D_IDENT2),
22 VC4_REG32(V3D_SCRATCH),
23 VC4_REG32(V3D_L2CACTL),
24 VC4_REG32(V3D_SLCACTL),
25 VC4_REG32(V3D_INTCTL),
26 VC4_REG32(V3D_INTENA),
27 VC4_REG32(V3D_INTDIS),
28 VC4_REG32(V3D_CT0CS),
29 VC4_REG32(V3D_CT1CS),
30 VC4_REG32(V3D_CT0EA),
31 VC4_REG32(V3D_CT1EA),
32 VC4_REG32(V3D_CT0CA),
33 VC4_REG32(V3D_CT1CA),
34 VC4_REG32(V3D_CT00RA0),
35 VC4_REG32(V3D_CT01RA0),
36 VC4_REG32(V3D_CT0LC),
37 VC4_REG32(V3D_CT1LC),
38 VC4_REG32(V3D_CT0PC),
39 VC4_REG32(V3D_CT1PC),
40 VC4_REG32(V3D_PCS),
41 VC4_REG32(V3D_BFC),
42 VC4_REG32(V3D_RFC),
43 VC4_REG32(V3D_BPCA),
44 VC4_REG32(V3D_BPCS),
45 VC4_REG32(V3D_BPOA),
46 VC4_REG32(V3D_BPOS),
47 VC4_REG32(V3D_BXCF),
48 VC4_REG32(V3D_SQRSV0),
49 VC4_REG32(V3D_SQRSV1),
50 VC4_REG32(V3D_SQCNTL),
51 VC4_REG32(V3D_SRQPC),
52 VC4_REG32(V3D_SRQUA),
53 VC4_REG32(V3D_SRQUL),
54 VC4_REG32(V3D_SRQCS),
55 VC4_REG32(V3D_VPACNTL),
56 VC4_REG32(V3D_VPMBASE),
57 VC4_REG32(V3D_PCTRC),
58 VC4_REG32(V3D_PCTRE),
59 VC4_REG32(V3D_PCTR(0)),
60 VC4_REG32(V3D_PCTRS(0)),
61 VC4_REG32(V3D_PCTR(1)),
62 VC4_REG32(V3D_PCTRS(1)),
63 VC4_REG32(V3D_PCTR(2)),
64 VC4_REG32(V3D_PCTRS(2)),
65 VC4_REG32(V3D_PCTR(3)),
66 VC4_REG32(V3D_PCTRS(3)),
67 VC4_REG32(V3D_PCTR(4)),
68 VC4_REG32(V3D_PCTRS(4)),
69 VC4_REG32(V3D_PCTR(5)),
70 VC4_REG32(V3D_PCTRS(5)),
71 VC4_REG32(V3D_PCTR(6)),
72 VC4_REG32(V3D_PCTRS(6)),
73 VC4_REG32(V3D_PCTR(7)),
74 VC4_REG32(V3D_PCTRS(7)),
75 VC4_REG32(V3D_PCTR(8)),
76 VC4_REG32(V3D_PCTRS(8)),
77 VC4_REG32(V3D_PCTR(9)),
78 VC4_REG32(V3D_PCTRS(9)),
79 VC4_REG32(V3D_PCTR(10)),
80 VC4_REG32(V3D_PCTRS(10)),
81 VC4_REG32(V3D_PCTR(11)),
82 VC4_REG32(V3D_PCTRS(11)),
83 VC4_REG32(V3D_PCTR(12)),
84 VC4_REG32(V3D_PCTRS(12)),
85 VC4_REG32(V3D_PCTR(13)),
86 VC4_REG32(V3D_PCTRS(13)),
87 VC4_REG32(V3D_PCTR(14)),
88 VC4_REG32(V3D_PCTRS(14)),
89 VC4_REG32(V3D_PCTR(15)),
90 VC4_REG32(V3D_PCTRS(15)),
91 VC4_REG32(V3D_DBGE),
92 VC4_REG32(V3D_FDBGO),
93 VC4_REG32(V3D_FDBGB),
94 VC4_REG32(V3D_FDBGR),
95 VC4_REG32(V3D_FDBGS),
96 VC4_REG32(V3D_ERRSTAT),
99 static int vc4_v3d_debugfs_ident(struct seq_file *m, void *unused)
101 struct drm_info_node *node = (struct drm_info_node *)m->private;
102 struct drm_device *dev = node->minor->dev;
103 struct vc4_dev *vc4 = to_vc4_dev(dev);
104 int ret = vc4_v3d_pm_get(vc4);
106 if (ret == 0) {
107 uint32_t ident1 = V3D_READ(V3D_IDENT1);
108 uint32_t nslc = VC4_GET_FIELD(ident1, V3D_IDENT1_NSLC);
109 uint32_t tups = VC4_GET_FIELD(ident1, V3D_IDENT1_TUPS);
110 uint32_t qups = VC4_GET_FIELD(ident1, V3D_IDENT1_QUPS);
112 seq_printf(m, "Revision: %d\n",
113 VC4_GET_FIELD(ident1, V3D_IDENT1_REV));
114 seq_printf(m, "Slices: %d\n", nslc);
115 seq_printf(m, "TMUs: %d\n", nslc * tups);
116 seq_printf(m, "QPUs: %d\n", nslc * qups);
117 seq_printf(m, "Semaphores: %d\n",
118 VC4_GET_FIELD(ident1, V3D_IDENT1_NSEM));
119 vc4_v3d_pm_put(vc4);
122 return 0;
126 * Wraps pm_runtime_get_sync() in a refcount, so that we can reliably
127 * get the pm_runtime refcount to 0 in vc4_reset().
130 vc4_v3d_pm_get(struct vc4_dev *vc4)
132 mutex_lock(&vc4->power_lock);
133 if (vc4->power_refcount++ == 0) {
134 int ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
136 if (ret < 0) {
137 vc4->power_refcount--;
138 mutex_unlock(&vc4->power_lock);
139 return ret;
142 mutex_unlock(&vc4->power_lock);
144 return 0;
147 void
148 vc4_v3d_pm_put(struct vc4_dev *vc4)
150 mutex_lock(&vc4->power_lock);
151 if (--vc4->power_refcount == 0) {
152 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
153 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
155 mutex_unlock(&vc4->power_lock);
158 static void vc4_v3d_init_hw(struct drm_device *dev)
160 struct vc4_dev *vc4 = to_vc4_dev(dev);
162 /* Take all the memory that would have been reserved for user
163 * QPU programs, since we don't have an interface for running
164 * them, anyway.
166 V3D_WRITE(V3D_VPMBASE, 0);
169 int vc4_v3d_get_bin_slot(struct vc4_dev *vc4)
171 struct drm_device *dev = &vc4->base;
172 unsigned long irqflags;
173 int slot;
174 uint64_t seqno = 0;
175 struct vc4_exec_info *exec;
177 try_again:
178 spin_lock_irqsave(&vc4->job_lock, irqflags);
179 slot = ffs(~vc4->bin_alloc_used);
180 if (slot != 0) {
181 /* Switch from ffs() bit index to a 0-based index. */
182 slot--;
183 vc4->bin_alloc_used |= BIT(slot);
184 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
185 return slot;
188 /* Couldn't find an open slot. Wait for render to complete
189 * and try again.
191 exec = vc4_last_render_job(vc4);
192 if (exec)
193 seqno = exec->seqno;
194 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
196 if (seqno) {
197 int ret = vc4_wait_for_seqno(dev, seqno, ~0ull, true);
199 if (ret == 0)
200 goto try_again;
202 return ret;
205 return -ENOMEM;
209 * bin_bo_alloc() - allocates the memory that will be used for
210 * tile binning.
212 * The binner has a limitation that the addresses in the tile state
213 * buffer that point into the tile alloc buffer or binner overflow
214 * memory only have 28 bits (256MB), and the top 4 on the bus for
215 * tile alloc references end up coming from the tile state buffer's
216 * address.
218 * To work around this, we allocate a single large buffer while V3D is
219 * in use, make sure that it has the top 4 bits constant across its
220 * entire extent, and then put the tile state, tile alloc, and binner
221 * overflow memory inside that buffer.
223 * This creates a limitation where we may not be able to execute a job
224 * if it doesn't fit within the buffer that we allocated up front.
225 * However, it turns out that 16MB is "enough for anybody", and
226 * real-world applications run into allocation failures from the
227 * overall CMA pool before they make scenes complicated enough to run
228 * out of bin space.
230 static int bin_bo_alloc(struct vc4_dev *vc4)
232 struct vc4_v3d *v3d = vc4->v3d;
233 uint32_t size = 16 * 1024 * 1024;
234 int ret = 0;
235 struct list_head list;
237 if (!v3d)
238 return -ENODEV;
240 /* We may need to try allocating more than once to get a BO
241 * that doesn't cross 256MB. Track the ones we've allocated
242 * that failed so far, so that we can free them when we've got
243 * one that succeeded (if we freed them right away, our next
244 * allocation would probably be the same chunk of memory).
246 INIT_LIST_HEAD(&list);
248 while (true) {
249 struct vc4_bo *bo = vc4_bo_create(&vc4->base, size, true,
250 VC4_BO_TYPE_BIN);
252 if (IS_ERR(bo)) {
253 ret = PTR_ERR(bo);
255 dev_err(&v3d->pdev->dev,
256 "Failed to allocate memory for tile binning: "
257 "%d. You may need to enable CMA or give it "
258 "more memory.",
259 ret);
260 break;
263 /* Check if this BO won't trigger the addressing bug. */
264 if ((bo->base.paddr & 0xf0000000) ==
265 ((bo->base.paddr + bo->base.base.size - 1) & 0xf0000000)) {
266 vc4->bin_bo = bo;
268 /* Set up for allocating 512KB chunks of
269 * binner memory. The biggest allocation we
270 * need to do is for the initial tile alloc +
271 * tile state buffer. We can render to a
272 * maximum of ((2048*2048) / (32*32) = 4096
273 * tiles in a frame (until we do floating
274 * point rendering, at which point it would be
275 * 8192). Tile state is 48b/tile (rounded to
276 * a page), and tile alloc is 32b/tile
277 * (rounded to a page), plus a page of extra,
278 * for a total of 320kb for our worst-case.
279 * We choose 512kb so that it divides evenly
280 * into our 16MB, and the rest of the 512kb
281 * will be used as storage for the overflow
282 * from the initial 32b CL per bin.
284 vc4->bin_alloc_size = 512 * 1024;
285 vc4->bin_alloc_used = 0;
286 vc4->bin_alloc_overflow = 0;
287 WARN_ON_ONCE(sizeof(vc4->bin_alloc_used) * 8 !=
288 bo->base.base.size / vc4->bin_alloc_size);
290 kref_init(&vc4->bin_bo_kref);
292 /* Enable the out-of-memory interrupt to set our
293 * newly-allocated binner BO, potentially from an
294 * already-pending-but-masked interrupt.
296 V3D_WRITE(V3D_INTENA, V3D_INT_OUTOMEM);
298 break;
301 /* Put it on the list to free later, and try again. */
302 list_add(&bo->unref_head, &list);
305 /* Free all the BOs we allocated but didn't choose. */
306 while (!list_empty(&list)) {
307 struct vc4_bo *bo = list_last_entry(&list,
308 struct vc4_bo, unref_head);
310 list_del(&bo->unref_head);
311 drm_gem_object_put(&bo->base.base);
314 return ret;
317 int vc4_v3d_bin_bo_get(struct vc4_dev *vc4, bool *used)
319 int ret = 0;
321 mutex_lock(&vc4->bin_bo_lock);
323 if (used && *used)
324 goto complete;
326 if (vc4->bin_bo)
327 kref_get(&vc4->bin_bo_kref);
328 else
329 ret = bin_bo_alloc(vc4);
331 if (ret == 0 && used)
332 *used = true;
334 complete:
335 mutex_unlock(&vc4->bin_bo_lock);
337 return ret;
340 static void bin_bo_release(struct kref *ref)
342 struct vc4_dev *vc4 = container_of(ref, struct vc4_dev, bin_bo_kref);
344 if (WARN_ON_ONCE(!vc4->bin_bo))
345 return;
347 drm_gem_object_put(&vc4->bin_bo->base.base);
348 vc4->bin_bo = NULL;
351 void vc4_v3d_bin_bo_put(struct vc4_dev *vc4)
353 mutex_lock(&vc4->bin_bo_lock);
354 kref_put(&vc4->bin_bo_kref, bin_bo_release);
355 mutex_unlock(&vc4->bin_bo_lock);
358 #ifdef CONFIG_PM
359 static int vc4_v3d_runtime_suspend(struct device *dev)
361 struct vc4_v3d *v3d = dev_get_drvdata(dev);
362 struct vc4_dev *vc4 = v3d->vc4;
364 vc4_irq_uninstall(&vc4->base);
366 clk_disable_unprepare(v3d->clk);
368 return 0;
371 static int vc4_v3d_runtime_resume(struct device *dev)
373 struct vc4_v3d *v3d = dev_get_drvdata(dev);
374 struct vc4_dev *vc4 = v3d->vc4;
375 int ret;
377 ret = clk_prepare_enable(v3d->clk);
378 if (ret != 0)
379 return ret;
381 vc4_v3d_init_hw(&vc4->base);
383 /* We disabled the IRQ as part of vc4_irq_uninstall in suspend. */
384 enable_irq(vc4->base.irq);
385 vc4_irq_postinstall(&vc4->base);
387 return 0;
389 #endif
391 static int vc4_v3d_bind(struct device *dev, struct device *master, void *data)
393 struct platform_device *pdev = to_platform_device(dev);
394 struct drm_device *drm = dev_get_drvdata(master);
395 struct vc4_dev *vc4 = to_vc4_dev(drm);
396 struct vc4_v3d *v3d = NULL;
397 int ret;
399 v3d = devm_kzalloc(&pdev->dev, sizeof(*v3d), GFP_KERNEL);
400 if (!v3d)
401 return -ENOMEM;
403 dev_set_drvdata(dev, v3d);
405 v3d->pdev = pdev;
407 v3d->regs = vc4_ioremap_regs(pdev, 0);
408 if (IS_ERR(v3d->regs))
409 return PTR_ERR(v3d->regs);
410 v3d->regset.base = v3d->regs;
411 v3d->regset.regs = v3d_regs;
412 v3d->regset.nregs = ARRAY_SIZE(v3d_regs);
414 vc4->v3d = v3d;
415 v3d->vc4 = vc4;
417 v3d->clk = devm_clk_get(dev, NULL);
418 if (IS_ERR(v3d->clk)) {
419 int ret = PTR_ERR(v3d->clk);
421 if (ret == -ENOENT) {
422 /* bcm2835 didn't have a clock reference in the DT. */
423 ret = 0;
424 v3d->clk = NULL;
425 } else {
426 if (ret != -EPROBE_DEFER)
427 dev_err(dev, "Failed to get V3D clock: %d\n",
428 ret);
429 return ret;
433 if (V3D_READ(V3D_IDENT0) != V3D_EXPECTED_IDENT0) {
434 DRM_ERROR("V3D_IDENT0 read 0x%08x instead of 0x%08x\n",
435 V3D_READ(V3D_IDENT0), V3D_EXPECTED_IDENT0);
436 return -EINVAL;
439 ret = clk_prepare_enable(v3d->clk);
440 if (ret != 0)
441 return ret;
443 /* Reset the binner overflow address/size at setup, to be sure
444 * we don't reuse an old one.
446 V3D_WRITE(V3D_BPOA, 0);
447 V3D_WRITE(V3D_BPOS, 0);
449 vc4_v3d_init_hw(drm);
451 ret = drm_irq_install(drm, platform_get_irq(pdev, 0));
452 if (ret) {
453 DRM_ERROR("Failed to install IRQ handler\n");
454 return ret;
457 pm_runtime_set_active(dev);
458 pm_runtime_use_autosuspend(dev);
459 pm_runtime_set_autosuspend_delay(dev, 40); /* a little over 2 frames. */
460 pm_runtime_enable(dev);
462 vc4_debugfs_add_file(drm, "v3d_ident", vc4_v3d_debugfs_ident, NULL);
463 vc4_debugfs_add_regset32(drm, "v3d_regs", &v3d->regset);
465 return 0;
468 static void vc4_v3d_unbind(struct device *dev, struct device *master,
469 void *data)
471 struct drm_device *drm = dev_get_drvdata(master);
472 struct vc4_dev *vc4 = to_vc4_dev(drm);
474 pm_runtime_disable(dev);
476 drm_irq_uninstall(drm);
478 /* Disable the binner's overflow memory address, so the next
479 * driver probe (if any) doesn't try to reuse our old
480 * allocation.
482 V3D_WRITE(V3D_BPOA, 0);
483 V3D_WRITE(V3D_BPOS, 0);
485 vc4->v3d = NULL;
488 static const struct dev_pm_ops vc4_v3d_pm_ops = {
489 SET_RUNTIME_PM_OPS(vc4_v3d_runtime_suspend, vc4_v3d_runtime_resume, NULL)
492 static const struct component_ops vc4_v3d_ops = {
493 .bind = vc4_v3d_bind,
494 .unbind = vc4_v3d_unbind,
497 static int vc4_v3d_dev_probe(struct platform_device *pdev)
499 return component_add(&pdev->dev, &vc4_v3d_ops);
502 static int vc4_v3d_dev_remove(struct platform_device *pdev)
504 component_del(&pdev->dev, &vc4_v3d_ops);
505 return 0;
508 const struct of_device_id vc4_v3d_dt_match[] = {
509 { .compatible = "brcm,bcm2835-v3d" },
510 { .compatible = "brcm,cygnus-v3d" },
511 { .compatible = "brcm,vc4-v3d" },
515 struct platform_driver vc4_v3d_driver = {
516 .probe = vc4_v3d_dev_probe,
517 .remove = vc4_v3d_dev_remove,
518 .driver = {
519 .name = "vc4_v3d",
520 .of_match_table = vc4_v3d_dt_match,
521 .pm = &vc4_v3d_pm_ops,