WIP FPC-III support
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-npcm7xx.c
blob2ad166355ec9b06b9528bc35018f77a28b6b87b0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Nuvoton NPCM7xx I2C Controller driver
5 * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6 */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
23 enum i2c_mode {
24 I2C_MASTER,
25 I2C_SLAVE,
29 * External I2C Interface driver xfer indication values, which indicate status
30 * of the bus.
32 enum i2c_state_ind {
33 I2C_NO_STATUS_IND = 0,
34 I2C_SLAVE_RCV_IND,
35 I2C_SLAVE_XMIT_IND,
36 I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 I2C_SLAVE_RESTART_IND,
38 I2C_SLAVE_DONE_IND,
39 I2C_MASTER_DONE_IND,
40 I2C_NACK_IND,
41 I2C_BUS_ERR_IND,
42 I2C_WAKE_UP_IND,
43 I2C_BLOCK_BYTES_ERR_IND,
44 I2C_SLAVE_RCV_MISSING_DATA_IND,
48 * Operation type values (used to define the operation currently running)
49 * module is interrupt driven, on each interrupt the current operation is
50 * checked to see if the module is currently reading or writing.
52 enum i2c_oper {
53 I2C_NO_OPER = 0,
54 I2C_WRITE_OPER,
55 I2C_READ_OPER,
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 I2C_BANK_0 = 0,
61 I2C_BANK_1,
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 I2C_DISABLE = 0,
67 I2C_IDLE,
68 I2C_MASTER_START,
69 I2C_SLAVE_MATCH,
70 I2C_OPER_STARTED,
71 I2C_STOP_PENDING,
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 I2C_SLAVE_ADDR1 = 0,
78 I2C_SLAVE_ADDR2,
79 I2C_SLAVE_ADDR3,
80 I2C_SLAVE_ADDR4,
81 I2C_SLAVE_ADDR5,
82 I2C_SLAVE_ADDR6,
83 I2C_SLAVE_ADDR7,
84 I2C_SLAVE_ADDR8,
85 I2C_SLAVE_ADDR9,
86 I2C_SLAVE_ADDR10,
87 I2C_GC_ADDR,
88 I2C_ARP_ADDR,
90 #endif
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL 0xE4
94 #define NPCM_I2CSEGCTL_INIT_VAL 0x0333F000
96 /* Common regs */
97 #define NPCM_I2CSDA 0x00
98 #define NPCM_I2CST 0x02
99 #define NPCM_I2CCST 0x04
100 #define NPCM_I2CCTL1 0x06
101 #define NPCM_I2CADDR1 0x08
102 #define NPCM_I2CCTL2 0x0A
103 #define NPCM_I2CADDR2 0x0C
104 #define NPCM_I2CCTL3 0x0E
105 #define NPCM_I2CCST2 0x18
106 #define NPCM_I2CCST3 0x19
107 #define I2C_VER 0x1F
109 /*BANK0 regs*/
110 #define NPCM_I2CADDR3 0x10
111 #define NPCM_I2CADDR7 0x11
112 #define NPCM_I2CADDR4 0x12
113 #define NPCM_I2CADDR8 0x13
114 #define NPCM_I2CADDR5 0x14
115 #define NPCM_I2CADDR9 0x15
116 #define NPCM_I2CADDR6 0x16
117 #define NPCM_I2CADDR10 0x17
119 #if IS_ENABLED(CONFIG_I2C_SLAVE)
121 * npcm_i2caddr array:
122 * The module supports having multiple own slave addresses.
123 * Since the addr regs are sprinkled all over the address space,
124 * use this array to get the address or each register.
126 #define I2C_NUM_OWN_ADDR 10
127 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
128 NPCM_I2CADDR1, NPCM_I2CADDR2, NPCM_I2CADDR3, NPCM_I2CADDR4,
129 NPCM_I2CADDR5, NPCM_I2CADDR6, NPCM_I2CADDR7, NPCM_I2CADDR8,
130 NPCM_I2CADDR9, NPCM_I2CADDR10,
132 #endif
134 #define NPCM_I2CCTL4 0x1A
135 #define NPCM_I2CCTL5 0x1B
136 #define NPCM_I2CSCLLT 0x1C /* SCL Low Time */
137 #define NPCM_I2CFIF_CTL 0x1D /* FIFO Control */
138 #define NPCM_I2CSCLHT 0x1E /* SCL High Time */
140 /* BANK 1 regs */
141 #define NPCM_I2CFIF_CTS 0x10 /* Both FIFOs Control and Status */
142 #define NPCM_I2CTXF_CTL 0x12 /* Tx-FIFO Control */
143 #define NPCM_I2CT_OUT 0x14 /* Bus T.O. */
144 #define NPCM_I2CPEC 0x16 /* PEC Data */
145 #define NPCM_I2CTXF_STS 0x1A /* Tx-FIFO Status */
146 #define NPCM_I2CRXF_STS 0x1C /* Rx-FIFO Status */
147 #define NPCM_I2CRXF_CTL 0x1E /* Rx-FIFO Control */
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT BIT(0)
151 #define NPCM_I2CST_MASTER BIT(1)
152 #define NPCM_I2CST_NMATCH BIT(2)
153 #define NPCM_I2CST_STASTR BIT(3)
154 #define NPCM_I2CST_NEGACK BIT(4)
155 #define NPCM_I2CST_BER BIT(5)
156 #define NPCM_I2CST_SDAST BIT(6)
157 #define NPCM_I2CST_SLVSTP BIT(7)
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY BIT(0)
161 #define NPCM_I2CCST_BB BIT(1)
162 #define NPCM_I2CCST_MATCH BIT(2)
163 #define NPCM_I2CCST_GCMATCH BIT(3)
164 #define NPCM_I2CCST_TSDA BIT(4)
165 #define NPCM_I2CCST_TGSCL BIT(5)
166 #define NPCM_I2CCST_MATCHAF BIT(6)
167 #define NPCM_I2CCST_ARPMATCH BIT(7)
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START BIT(0)
171 #define NPCM_I2CCTL1_STOP BIT(1)
172 #define NPCM_I2CCTL1_INTEN BIT(2)
173 #define NPCM_I2CCTL1_EOBINTE BIT(3)
174 #define NPCM_I2CCTL1_ACK BIT(4)
175 #define NPCM_I2CCTL1_GCMEN BIT(5)
176 #define NPCM_I2CCTL1_NMINTE BIT(6)
177 #define NPCM_I2CCTL1_STASTRE BIT(7)
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS \
181 (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A GENMASK(6, 0)
185 #define NPCM_I2CADDR_SAEN BIT(7)
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE BIT(0)
189 #define I2CCTL2_SCLFRQ6_0 GENMASK(7, 1)
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7 GENMASK(1, 0)
193 #define I2CCTL3_ARPMEN BIT(2)
194 #define I2CCTL3_IDL_START BIT(3)
195 #define I2CCTL3_400K_MODE BIT(4)
196 #define I2CCTL3_BNK_SEL BIT(5)
197 #define I2CCTL3_SDA_LVL BIT(6)
198 #define I2CCTL3_SCL_LVL BIT(7)
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F BIT(5)
208 #define NPCM_I2CCST2_INTSTS BIT(7)
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY BIT(7)
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE BIT(7)
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT GENMASK(3, 0)
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR BIT(7)
229 /* NPCM_I2CTXF_CTL reg fields */
230 #define NPCM_I2CTXF_CTL_TX_THR GENMASK(4, 0)
231 #define NPCM_I2CTXF_CTL_THR_TXIE BIT(6)
233 /* NPCM_I2CT_OUT reg fields */
234 #define NPCM_I2CT_OUT_TO_CKDIV GENMASK(5, 0)
235 #define NPCM_I2CT_OUT_T_OUTIE BIT(6)
236 #define NPCM_I2CT_OUT_T_OUTST BIT(7)
238 /* NPCM_I2CTXF_STS reg fields */
239 #define NPCM_I2CTXF_STS_TX_BYTES GENMASK(4, 0)
240 #define NPCM_I2CTXF_STS_TX_THST BIT(6)
242 /* NPCM_I2CRXF_STS reg fields */
243 #define NPCM_I2CRXF_STS_RX_BYTES GENMASK(4, 0)
244 #define NPCM_I2CRXF_STS_RX_THST BIT(6)
246 /* NPCM_I2CFIF_CTL reg fields */
247 #define NPCM_I2CFIF_CTL_FIFO_EN BIT(4)
249 /* NPCM_I2CRXF_CTL reg fields */
250 #define NPCM_I2CRXF_CTL_RX_THR GENMASK(4, 0)
251 #define NPCM_I2CRXF_CTL_LAST_PEC BIT(5)
252 #define NPCM_I2CRXF_CTL_THR_RXIE BIT(6)
254 #define I2C_HW_FIFO_SIZE 16
256 /* I2C_VER reg fields */
257 #define I2C_VER_VERSION GENMASK(6, 0)
258 #define I2C_VER_FIFO_EN BIT(7)
260 /* stall/stuck timeout in us */
261 #define DEFAULT_STALL_COUNT 25
263 /* SCLFRQ field position */
264 #define SCLFRQ_0_TO_6 GENMASK(6, 0)
265 #define SCLFRQ_7_TO_8 GENMASK(8, 7)
267 /* supported clk settings. values in Hz. */
268 #define I2C_FREQ_MIN_HZ 10000
269 #define I2C_FREQ_MAX_HZ I2C_MAX_FAST_MODE_PLUS_FREQ
271 /* Status of one I2C module */
272 struct npcm_i2c {
273 struct i2c_adapter adap;
274 struct device *dev;
275 unsigned char __iomem *reg;
276 spinlock_t lock; /* IRQ synchronization */
277 struct completion cmd_complete;
278 int cmd_err;
279 struct i2c_msg *msgs;
280 int msgs_num;
281 int num;
282 u32 apb_clk;
283 struct i2c_bus_recovery_info rinfo;
284 enum i2c_state state;
285 enum i2c_oper operation;
286 enum i2c_mode master_or_slave;
287 enum i2c_state_ind stop_ind;
288 u8 dest_addr;
289 u8 *rd_buf;
290 u16 rd_size;
291 u16 rd_ind;
292 u8 *wr_buf;
293 u16 wr_size;
294 u16 wr_ind;
295 bool fifo_use;
296 u16 PEC_mask; /* PEC bit mask per slave address */
297 bool PEC_use;
298 bool read_block_use;
299 unsigned long int_time_stamp;
300 unsigned long bus_freq; /* in Hz */
301 #if IS_ENABLED(CONFIG_I2C_SLAVE)
302 u8 own_slave_addr;
303 struct i2c_client *slave;
304 int slv_rd_size;
305 int slv_rd_ind;
306 int slv_wr_size;
307 int slv_wr_ind;
308 u8 slv_rd_buf[I2C_HW_FIFO_SIZE];
309 u8 slv_wr_buf[I2C_HW_FIFO_SIZE];
310 #endif
311 struct dentry *debugfs; /* debugfs device directory */
312 u64 ber_cnt;
313 u64 rec_succ_cnt;
314 u64 rec_fail_cnt;
315 u64 nack_cnt;
316 u64 timeout_cnt;
319 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
320 enum i2c_bank bank)
322 u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
324 if (bank == I2C_BANK_0)
325 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
326 else
327 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
328 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
331 static void npcm_i2c_init_params(struct npcm_i2c *bus)
333 bus->stop_ind = I2C_NO_STATUS_IND;
334 bus->rd_size = 0;
335 bus->wr_size = 0;
336 bus->rd_ind = 0;
337 bus->wr_ind = 0;
338 bus->read_block_use = false;
339 bus->int_time_stamp = 0;
340 bus->PEC_use = false;
341 bus->PEC_mask = 0;
342 #if IS_ENABLED(CONFIG_I2C_SLAVE)
343 if (bus->slave)
344 bus->master_or_slave = I2C_SLAVE;
345 #endif
348 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
350 iowrite8(data, bus->reg + NPCM_I2CSDA);
353 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
355 return ioread8(bus->reg + NPCM_I2CSDA);
358 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
360 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
362 return !!(I2CCTL3_SCL_LVL & ioread32(bus->reg + NPCM_I2CCTL3));
365 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
367 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
369 return !!(I2CCTL3_SDA_LVL & ioread32(bus->reg + NPCM_I2CCTL3));
372 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
374 if (bus->operation == I2C_READ_OPER)
375 return bus->rd_ind;
376 if (bus->operation == I2C_WRITE_OPER)
377 return bus->wr_ind;
378 return 0;
381 /* quick protocol (just address) */
382 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
384 return bus->wr_size == 0 && bus->rd_size == 0;
387 static void npcm_i2c_disable(struct npcm_i2c *bus)
389 u8 i2cctl2;
391 #if IS_ENABLED(CONFIG_I2C_SLAVE)
392 int i;
394 /* select bank 0 for I2C addresses */
395 npcm_i2c_select_bank(bus, I2C_BANK_0);
397 /* Slave addresses removal */
398 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR; i++)
399 iowrite8(0, bus->reg + npcm_i2caddr[i]);
401 npcm_i2c_select_bank(bus, I2C_BANK_1);
402 #endif
403 /* Disable module */
404 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
405 i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
406 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
408 bus->state = I2C_DISABLE;
411 static void npcm_i2c_enable(struct npcm_i2c *bus)
413 u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
415 i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
416 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
417 bus->state = I2C_IDLE;
420 /* enable\disable end of busy (EOB) interrupts */
421 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
423 u8 val;
425 /* Clear EO_BUSY pending bit: */
426 val = ioread8(bus->reg + NPCM_I2CCST3);
427 val = val | NPCM_I2CCST3_EO_BUSY;
428 iowrite8(val, bus->reg + NPCM_I2CCST3);
430 val = ioread8(bus->reg + NPCM_I2CCTL1);
431 val &= ~NPCM_I2CCTL1_RWS;
432 if (enable)
433 val |= NPCM_I2CCTL1_EOBINTE;
434 else
435 val &= ~NPCM_I2CCTL1_EOBINTE;
436 iowrite8(val, bus->reg + NPCM_I2CCTL1);
439 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
441 u8 tx_fifo_sts;
443 tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
444 /* check if TX FIFO is not empty */
445 if ((tx_fifo_sts & NPCM_I2CTXF_STS_TX_BYTES) == 0)
446 return false;
448 /* check if TX FIFO status bit is set: */
449 return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
452 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
454 u8 rx_fifo_sts;
456 rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
457 /* check if RX FIFO is not empty: */
458 if ((rx_fifo_sts & NPCM_I2CRXF_STS_RX_BYTES) == 0)
459 return false;
461 /* check if rx fifo full status is set: */
462 return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
465 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
467 u8 val;
469 val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
470 val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
471 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
474 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
476 u8 val;
478 val = ioread8(bus->reg + NPCM_I2CTXF_STS);
479 val = val | NPCM_I2CTXF_STS_TX_THST;
480 iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
483 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
485 u8 val;
487 val = ioread8(bus->reg + NPCM_I2CRXF_STS);
488 val = val | NPCM_I2CRXF_STS_RX_THST;
489 iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
492 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
494 u8 val;
496 val = ioread8(bus->reg + NPCM_I2CCTL1);
497 val &= ~NPCM_I2CCTL1_RWS;
498 if (enable)
499 val |= NPCM_I2CCTL1_INTEN;
500 else
501 val &= ~NPCM_I2CCTL1_INTEN;
502 iowrite8(val, bus->reg + NPCM_I2CCTL1);
505 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
507 u8 val;
509 val = ioread8(bus->reg + NPCM_I2CCTL1);
510 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
511 val |= NPCM_I2CCTL1_START;
512 iowrite8(val, bus->reg + NPCM_I2CCTL1);
515 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
517 u8 val;
520 * override HW issue: I2C may fail to supply stop condition in Master
521 * Write operation.
522 * Need to delay at least 5 us from the last int, before issueing a stop
524 udelay(10); /* function called from interrupt, can't sleep */
525 val = ioread8(bus->reg + NPCM_I2CCTL1);
526 val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
527 val |= NPCM_I2CCTL1_STOP;
528 iowrite8(val, bus->reg + NPCM_I2CCTL1);
530 if (!bus->fifo_use)
531 return;
533 npcm_i2c_select_bank(bus, I2C_BANK_1);
535 if (bus->operation == I2C_READ_OPER)
536 npcm_i2c_clear_rx_fifo(bus);
537 else
538 npcm_i2c_clear_tx_fifo(bus);
539 npcm_i2c_clear_fifo_int(bus);
540 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
543 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
545 u8 val;
547 val = ioread8(bus->reg + NPCM_I2CCTL1);
548 val &= ~NPCM_I2CCTL1_RWS;
549 if (stall)
550 val |= NPCM_I2CCTL1_STASTRE;
551 else
552 val &= ~NPCM_I2CCTL1_STASTRE;
553 iowrite8(val, bus->reg + NPCM_I2CCTL1);
556 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
558 u8 val;
560 val = ioread8(bus->reg + NPCM_I2CCTL1);
561 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
562 val |= NPCM_I2CCTL1_ACK;
563 iowrite8(val, bus->reg + NPCM_I2CCTL1);
566 #if IS_ENABLED(CONFIG_I2C_SLAVE)
567 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
569 u8 i2cctl1;
571 /* enable interrupt on slave match: */
572 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
573 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
574 if (enable)
575 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
576 else
577 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
578 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
581 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
582 u8 addr, bool enable)
584 u8 i2cctl1;
585 u8 i2cctl3;
586 u8 sa_reg;
588 sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
589 if (addr_type == I2C_GC_ADDR) {
590 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
591 if (enable)
592 i2cctl1 |= NPCM_I2CCTL1_GCMEN;
593 else
594 i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
595 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
596 return 0;
598 if (addr_type == I2C_ARP_ADDR) {
599 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
600 if (enable)
601 i2cctl3 |= I2CCTL3_ARPMEN;
602 else
603 i2cctl3 &= ~I2CCTL3_ARPMEN;
604 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
605 return 0;
607 if (addr_type >= I2C_ARP_ADDR)
608 return -EFAULT;
609 /* select bank 0 for address 3 to 10 */
610 if (addr_type > I2C_SLAVE_ADDR2)
611 npcm_i2c_select_bank(bus, I2C_BANK_0);
612 /* Set and enable the address */
613 iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
614 npcm_i2c_slave_int_enable(bus, enable);
615 if (addr_type > I2C_SLAVE_ADDR2)
616 npcm_i2c_select_bank(bus, I2C_BANK_1);
617 return 0;
619 #endif
621 static void npcm_i2c_reset(struct npcm_i2c *bus)
624 * Save I2CCTL1 relevant bits. It is being cleared when the module
625 * is disabled.
627 u8 i2cctl1;
628 #if IS_ENABLED(CONFIG_I2C_SLAVE)
629 u8 addr;
630 #endif
632 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
634 npcm_i2c_disable(bus);
635 npcm_i2c_enable(bus);
637 /* Restore NPCM_I2CCTL1 Status */
638 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
639 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
641 /* Clear BB (BUS BUSY) bit */
642 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
643 iowrite8(0xFF, bus->reg + NPCM_I2CST);
645 /* Clear EOB bit */
646 iowrite8(NPCM_I2CCST3_EO_BUSY, bus->reg + NPCM_I2CCST3);
648 /* Clear all fifo bits: */
649 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
651 #if IS_ENABLED(CONFIG_I2C_SLAVE)
652 if (bus->slave) {
653 addr = bus->slave->addr;
654 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
656 #endif
658 bus->state = I2C_IDLE;
661 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
663 return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
666 static void npcm_i2c_callback(struct npcm_i2c *bus,
667 enum i2c_state_ind op_status, u16 info)
669 struct i2c_msg *msgs;
670 int msgs_num;
672 msgs = bus->msgs;
673 msgs_num = bus->msgs_num;
675 * check that transaction was not timed-out, and msgs still
676 * holds a valid value.
678 if (!msgs)
679 return;
681 if (completion_done(&bus->cmd_complete))
682 return;
684 switch (op_status) {
685 case I2C_MASTER_DONE_IND:
686 bus->cmd_err = bus->msgs_num;
687 fallthrough;
688 case I2C_BLOCK_BYTES_ERR_IND:
689 /* Master tx finished and all transmit bytes were sent */
690 if (bus->msgs) {
691 if (msgs[0].flags & I2C_M_RD)
692 msgs[0].len = info;
693 else if (msgs_num == 2 &&
694 msgs[1].flags & I2C_M_RD)
695 msgs[1].len = info;
697 if (completion_done(&bus->cmd_complete) == false)
698 complete(&bus->cmd_complete);
699 break;
701 case I2C_NACK_IND:
702 /* MASTER transmit got a NACK before tx all bytes */
703 bus->cmd_err = -ENXIO;
704 if (bus->master_or_slave == I2C_MASTER)
705 complete(&bus->cmd_complete);
707 break;
708 case I2C_BUS_ERR_IND:
709 /* Bus error */
710 bus->cmd_err = -EAGAIN;
711 if (bus->master_or_slave == I2C_MASTER)
712 complete(&bus->cmd_complete);
714 break;
715 case I2C_WAKE_UP_IND:
716 /* I2C wake up */
717 break;
718 default:
719 break;
722 bus->operation = I2C_NO_OPER;
723 #if IS_ENABLED(CONFIG_I2C_SLAVE)
724 if (bus->slave)
725 bus->master_or_slave = I2C_SLAVE;
726 #endif
729 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
731 if (bus->operation == I2C_WRITE_OPER)
732 return FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
733 ioread8(bus->reg + NPCM_I2CTXF_STS));
734 if (bus->operation == I2C_READ_OPER)
735 return FIELD_GET(NPCM_I2CRXF_STS_RX_BYTES,
736 ioread8(bus->reg + NPCM_I2CRXF_STS));
737 return 0;
740 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
742 u8 size_free_fifo;
745 * Fill the FIFO, while the FIFO is not full and there are more bytes
746 * to write
748 size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
749 while (max_bytes-- && size_free_fifo) {
750 if (bus->wr_ind < bus->wr_size)
751 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
752 else
753 npcm_i2c_wr_byte(bus, 0xFF);
754 size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
759 * npcm_i2c_set_fifo:
760 * configure the FIFO before using it. If nread is -1 RX FIFO will not be
761 * configured. same for nwrite
763 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
765 u8 rxf_ctl = 0;
767 if (!bus->fifo_use)
768 return;
769 npcm_i2c_select_bank(bus, I2C_BANK_1);
770 npcm_i2c_clear_tx_fifo(bus);
771 npcm_i2c_clear_rx_fifo(bus);
773 /* configure RX FIFO */
774 if (nread > 0) {
775 rxf_ctl = min_t(int, nread, I2C_HW_FIFO_SIZE);
777 /* set LAST bit. if LAST is set next FIFO packet is nacked */
778 if (nread <= I2C_HW_FIFO_SIZE)
779 rxf_ctl |= NPCM_I2CRXF_CTL_LAST_PEC;
782 * if we are about to read the first byte in blk rd mode,
783 * don't NACK it. If slave returns zero size HW can't NACK
784 * it immidiattly, it will read extra byte and then NACK.
786 if (bus->rd_ind == 0 && bus->read_block_use) {
787 /* set fifo to read one byte, no last: */
788 rxf_ctl = 1;
791 /* set fifo size: */
792 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
795 /* configure TX FIFO */
796 if (nwrite > 0) {
797 if (nwrite > I2C_HW_FIFO_SIZE)
798 /* data to send is more then FIFO size. */
799 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CTXF_CTL);
800 else
801 iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
803 npcm_i2c_clear_tx_fifo(bus);
807 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
809 u8 data;
811 while (bytes_in_fifo--) {
812 data = npcm_i2c_rd_byte(bus);
813 if (bus->rd_ind < bus->rd_size)
814 bus->rd_buf[bus->rd_ind++] = data;
818 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
820 u8 val;
822 /* Clear NEGACK, STASTR and BER bits */
823 val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
824 iowrite8(val, bus->reg + NPCM_I2CST);
827 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
829 /* Only current master is allowed to issue a stop condition */
830 if (!npcm_i2c_is_master(bus))
831 return;
833 npcm_i2c_eob_int(bus, true);
834 npcm_i2c_master_stop(bus);
835 npcm_i2c_clear_master_status(bus);
838 #if IS_ENABLED(CONFIG_I2C_SLAVE)
839 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
841 u8 slave_add;
843 /* select bank 0 for address 3 to 10 */
844 if (addr_type > I2C_SLAVE_ADDR2)
845 npcm_i2c_select_bank(bus, I2C_BANK_0);
847 slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
849 if (addr_type > I2C_SLAVE_ADDR2)
850 npcm_i2c_select_bank(bus, I2C_BANK_1);
852 return slave_add;
855 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
857 int i;
859 /* Set the enable bit */
860 slave_add |= 0x80;
861 npcm_i2c_select_bank(bus, I2C_BANK_0);
862 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR; i++) {
863 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
864 iowrite8(0, bus->reg + npcm_i2caddr[i]);
866 npcm_i2c_select_bank(bus, I2C_BANK_1);
867 return 0;
870 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
873 * Fill the FIFO, while the FIFO is not full and there are more bytes
874 * to write
876 npcm_i2c_clear_fifo_int(bus);
877 npcm_i2c_clear_tx_fifo(bus);
878 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
879 while (max_bytes-- && I2C_HW_FIFO_SIZE != npcm_i2c_fifo_usage(bus)) {
880 if (bus->slv_wr_size <= 0)
881 break;
882 bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
883 npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
884 bus->slv_wr_ind++;
885 bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
886 bus->slv_wr_size--;
890 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
892 u8 data;
894 if (!bus->slave)
895 return;
897 while (bytes_in_fifo--) {
898 data = npcm_i2c_rd_byte(bus);
900 bus->slv_rd_ind = bus->slv_rd_ind % I2C_HW_FIFO_SIZE;
901 bus->slv_rd_buf[bus->slv_rd_ind] = data;
902 bus->slv_rd_ind++;
904 /* 1st byte is length in block protocol: */
905 if (bus->slv_rd_ind == 1 && bus->read_block_use)
906 bus->slv_rd_size = data + bus->PEC_use + 1;
910 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
912 int i;
913 u8 value;
914 int ind;
915 int ret = bus->slv_wr_ind;
917 /* fill a cyclic buffer */
918 for (i = 0; i < I2C_HW_FIFO_SIZE; i++) {
919 if (bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
920 break;
921 i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
922 ind = (bus->slv_wr_ind + bus->slv_wr_size) % I2C_HW_FIFO_SIZE;
923 bus->slv_wr_buf[ind] = value;
924 bus->slv_wr_size++;
925 i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
927 return I2C_HW_FIFO_SIZE - ret;
930 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
932 int i;
934 for (i = 0; i < bus->slv_rd_ind; i++)
935 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
936 &bus->slv_rd_buf[i]);
938 * once we send bytes up, need to reset the counter of the wr buf
939 * got data from master (new offset in device), ignore wr fifo:
941 if (bus->slv_rd_ind) {
942 bus->slv_wr_size = 0;
943 bus->slv_wr_ind = 0;
946 bus->slv_rd_ind = 0;
947 bus->slv_rd_size = bus->adap.quirks->max_read_len;
949 npcm_i2c_clear_fifo_int(bus);
950 npcm_i2c_clear_rx_fifo(bus);
953 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
954 u8 *read_data)
956 bus->state = I2C_OPER_STARTED;
957 bus->operation = I2C_READ_OPER;
958 bus->slv_rd_size = nread;
959 bus->slv_rd_ind = 0;
961 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
962 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
963 npcm_i2c_clear_tx_fifo(bus);
964 npcm_i2c_clear_rx_fifo(bus);
967 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
968 u8 *write_data)
970 if (nwrite == 0)
971 return;
973 bus->state = I2C_OPER_STARTED;
974 bus->operation = I2C_WRITE_OPER;
976 /* get the next buffer */
977 npcm_i2c_slave_get_wr_buf(bus);
978 npcm_i2c_write_fifo_slave(bus, nwrite);
982 * npcm_i2c_slave_wr_buf_sync:
983 * currently slave IF only supports single byte operations.
984 * in order to utilyze the npcm HW FIFO, the driver will ask for 16 bytes
985 * at a time, pack them in buffer, and then transmit them all together
986 * to the FIFO and onward to the bus.
987 * NACK on read will be once reached to bus->adap->quirks->max_read_len.
988 * sending a NACK wherever the backend requests for it is not supported.
989 * the next two functions allow reading to local buffer before writing it all
990 * to the HW FIFO.
992 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
994 int left_in_fifo;
996 left_in_fifo = FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
997 ioread8(bus->reg + NPCM_I2CTXF_STS));
999 /* fifo already full: */
1000 if (left_in_fifo >= I2C_HW_FIFO_SIZE ||
1001 bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
1002 return;
1004 /* update the wr fifo index back to the untransmitted bytes: */
1005 bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1006 bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1008 if (bus->slv_wr_ind < 0)
1009 bus->slv_wr_ind += I2C_HW_FIFO_SIZE;
1012 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1014 if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1016 * Slave got an address match with direction bit 1 so it should
1017 * transmit data. Write till the master will NACK
1019 bus->operation = I2C_WRITE_OPER;
1020 npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1021 bus->slv_wr_buf);
1022 } else {
1024 * Slave got an address match with direction bit 0 so it should
1025 * receive data.
1026 * this module does not support saying no to bytes.
1027 * it will always ACK.
1029 bus->operation = I2C_READ_OPER;
1030 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1031 bus->stop_ind = I2C_SLAVE_RCV_IND;
1032 npcm_i2c_slave_send_rd_buf(bus);
1033 npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1034 bus->slv_rd_buf);
1038 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1040 u8 val;
1041 irqreturn_t ret = IRQ_NONE;
1042 u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1044 /* Slave: A NACK has occurred */
1045 if (NPCM_I2CST_NEGACK & i2cst) {
1046 bus->stop_ind = I2C_NACK_IND;
1047 npcm_i2c_slave_wr_buf_sync(bus);
1048 if (bus->fifo_use)
1049 /* clear the FIFO */
1050 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1051 bus->reg + NPCM_I2CFIF_CTS);
1053 /* In slave write, NACK is OK, otherwise it is a problem */
1054 bus->stop_ind = I2C_NO_STATUS_IND;
1055 bus->operation = I2C_NO_OPER;
1056 bus->own_slave_addr = 0xFF;
1059 * Slave has to wait for STOP to decide this is the end
1060 * of the transaction. tx is not yet considered as done
1062 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1064 ret = IRQ_HANDLED;
1067 /* Slave mode: a Bus Error (BER) has been identified */
1068 if (NPCM_I2CST_BER & i2cst) {
1070 * Check whether bus arbitration or Start or Stop during data
1071 * xfer bus arbitration problem should not result in recovery
1073 bus->stop_ind = I2C_BUS_ERR_IND;
1075 /* wait for bus busy before clear fifo */
1076 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1078 bus->state = I2C_IDLE;
1081 * in BER case we might get 2 interrupts: one for slave one for
1082 * master ( for a channel which is master\slave switching)
1084 if (completion_done(&bus->cmd_complete) == false) {
1085 bus->cmd_err = -EIO;
1086 complete(&bus->cmd_complete);
1088 bus->own_slave_addr = 0xFF;
1089 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1090 ret = IRQ_HANDLED;
1093 /* A Slave Stop Condition has been identified */
1094 if (NPCM_I2CST_SLVSTP & i2cst) {
1095 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1097 bus->stop_ind = I2C_SLAVE_DONE_IND;
1099 if (bus->operation == I2C_READ_OPER)
1100 npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1102 /* if the buffer is empty nothing will be sent */
1103 npcm_i2c_slave_send_rd_buf(bus);
1105 /* Slave done transmitting or receiving */
1106 bus->stop_ind = I2C_NO_STATUS_IND;
1109 * Note, just because we got here, it doesn't mean we through
1110 * away the wr buffer.
1111 * we keep it until the next received offset.
1113 bus->operation = I2C_NO_OPER;
1114 bus->own_slave_addr = 0xFF;
1115 i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1116 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1117 if (bus->fifo_use) {
1118 npcm_i2c_clear_fifo_int(bus);
1119 npcm_i2c_clear_rx_fifo(bus);
1120 npcm_i2c_clear_tx_fifo(bus);
1122 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1123 bus->reg + NPCM_I2CFIF_CTS);
1125 bus->state = I2C_IDLE;
1126 ret = IRQ_HANDLED;
1129 /* restart condition occurred and Rx-FIFO was not empty */
1130 if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1131 ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1132 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1133 bus->master_or_slave = I2C_SLAVE;
1134 if (bus->operation == I2C_READ_OPER)
1135 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1136 bus->operation = I2C_WRITE_OPER;
1137 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1138 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1139 NPCM_I2CFIF_CTS_RXF_TXE;
1140 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1141 npcm_i2c_slave_rd_wr(bus);
1142 ret = IRQ_HANDLED;
1145 /* A Slave Address Match has been identified */
1146 if (NPCM_I2CST_NMATCH & i2cst) {
1147 u8 info = 0;
1149 /* Address match automatically implies slave mode */
1150 bus->master_or_slave = I2C_SLAVE;
1151 npcm_i2c_clear_fifo_int(bus);
1152 npcm_i2c_clear_rx_fifo(bus);
1153 npcm_i2c_clear_tx_fifo(bus);
1154 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1155 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
1156 if (NPCM_I2CST_XMIT & i2cst) {
1157 bus->operation = I2C_WRITE_OPER;
1158 } else {
1159 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1160 &info);
1161 bus->operation = I2C_READ_OPER;
1163 if (bus->own_slave_addr == 0xFF) {
1164 /* Check which type of address match */
1165 val = ioread8(bus->reg + NPCM_I2CCST);
1166 if (NPCM_I2CCST_MATCH & val) {
1167 u16 addr;
1168 enum i2c_addr eaddr;
1169 u8 i2ccst2;
1170 u8 i2ccst3;
1172 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1173 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1176 * the i2c module can response to 10 own SA.
1177 * check which one was addressed by the master.
1178 * repond to the first one.
1180 addr = ((i2ccst3 & 0x07) << 7) |
1181 (i2ccst2 & 0x7F);
1182 info = ffs(addr);
1183 eaddr = (enum i2c_addr)info;
1184 addr = npcm_i2c_get_slave_addr(bus, eaddr);
1185 addr &= 0x7F;
1186 bus->own_slave_addr = addr;
1187 if (bus->PEC_mask & BIT(info))
1188 bus->PEC_use = true;
1189 else
1190 bus->PEC_use = false;
1191 } else {
1192 if (NPCM_I2CCST_GCMATCH & val)
1193 bus->own_slave_addr = 0;
1194 if (NPCM_I2CCST_ARPMATCH & val)
1195 bus->own_slave_addr = 0x61;
1197 } else {
1199 * Slave match can happen in two options:
1200 * 1. Start, SA, read (slave read without further ado)
1201 * 2. Start, SA, read, data, restart, SA, read, ...
1202 * (slave read in fragmented mode)
1203 * 3. Start, SA, write, data, restart, SA, read, ..
1204 * (regular write-read mode)
1206 if ((bus->state == I2C_OPER_STARTED &&
1207 bus->operation == I2C_READ_OPER &&
1208 bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1209 bus->stop_ind == I2C_SLAVE_RCV_IND) {
1210 /* slave tx after slave rx w/o STOP */
1211 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1215 if (NPCM_I2CST_XMIT & i2cst)
1216 bus->stop_ind = I2C_SLAVE_XMIT_IND;
1217 else
1218 bus->stop_ind = I2C_SLAVE_RCV_IND;
1219 bus->state = I2C_SLAVE_MATCH;
1220 npcm_i2c_slave_rd_wr(bus);
1221 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1222 ret = IRQ_HANDLED;
1225 /* Slave SDA status is set - tx or rx */
1226 if ((NPCM_I2CST_SDAST & i2cst) ||
1227 (bus->fifo_use &&
1228 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1229 npcm_i2c_slave_rd_wr(bus);
1230 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1231 ret = IRQ_HANDLED;
1232 } /* SDAST */
1234 return ret;
1237 static int npcm_i2c_reg_slave(struct i2c_client *client)
1239 unsigned long lock_flags;
1240 struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1242 bus->slave = client;
1244 if (!bus->slave)
1245 return -EINVAL;
1247 if (client->flags & I2C_CLIENT_TEN)
1248 return -EAFNOSUPPORT;
1250 spin_lock_irqsave(&bus->lock, lock_flags);
1252 npcm_i2c_init_params(bus);
1253 bus->slv_rd_size = 0;
1254 bus->slv_wr_size = 0;
1255 bus->slv_rd_ind = 0;
1256 bus->slv_wr_ind = 0;
1257 if (client->flags & I2C_CLIENT_PEC)
1258 bus->PEC_use = true;
1260 dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1261 client->addr, bus->PEC_use);
1263 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1264 npcm_i2c_clear_fifo_int(bus);
1265 npcm_i2c_clear_rx_fifo(bus);
1266 npcm_i2c_clear_tx_fifo(bus);
1267 npcm_i2c_slave_int_enable(bus, true);
1269 spin_unlock_irqrestore(&bus->lock, lock_flags);
1270 return 0;
1273 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1275 struct npcm_i2c *bus = client->adapter->algo_data;
1276 unsigned long lock_flags;
1278 spin_lock_irqsave(&bus->lock, lock_flags);
1279 if (!bus->slave) {
1280 spin_unlock_irqrestore(&bus->lock, lock_flags);
1281 return -EINVAL;
1283 npcm_i2c_slave_int_enable(bus, false);
1284 npcm_i2c_remove_slave_addr(bus, client->addr);
1285 bus->slave = NULL;
1286 spin_unlock_irqrestore(&bus->lock, lock_flags);
1287 return 0;
1289 #endif /* CONFIG_I2C_SLAVE */
1291 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1293 int rcount;
1294 int fifo_bytes;
1295 enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1297 fifo_bytes = npcm_i2c_fifo_usage(bus);
1298 rcount = bus->rd_size - bus->rd_ind;
1301 * In order not to change the RX_TRH during transaction (we found that
1302 * this might be problematic if it takes too much time to read the FIFO)
1303 * we read the data in the following way. If the number of bytes to
1304 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1305 * and in the next int we read rest of the data.
1307 if (rcount < (2 * I2C_HW_FIFO_SIZE) && rcount > I2C_HW_FIFO_SIZE)
1308 fifo_bytes = rcount - I2C_HW_FIFO_SIZE;
1310 if (rcount <= fifo_bytes) {
1311 /* last bytes are about to be read - end of tx */
1312 bus->state = I2C_STOP_PENDING;
1313 bus->stop_ind = ind;
1314 npcm_i2c_eob_int(bus, true);
1315 /* Stop should be set before reading last byte. */
1316 npcm_i2c_master_stop(bus);
1317 npcm_i2c_read_fifo(bus, fifo_bytes);
1318 } else {
1319 npcm_i2c_read_fifo(bus, fifo_bytes);
1320 rcount = bus->rd_size - bus->rd_ind;
1321 npcm_i2c_set_fifo(bus, rcount, -1);
1325 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1327 u16 wcount;
1329 if (bus->fifo_use)
1330 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1332 /* Master write operation - last byte handling */
1333 if (bus->wr_ind == bus->wr_size) {
1334 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1336 * No more bytes to send (to add to the FIFO),
1337 * however the FIFO is not empty yet. It is
1338 * still in the middle of tx. Currently there's nothing
1339 * to do except for waiting to the end of the tx
1340 * We will get an int when the FIFO will get empty.
1342 return;
1344 if (bus->rd_size == 0) {
1345 /* all bytes have been written, in wr only operation */
1346 npcm_i2c_eob_int(bus, true);
1347 bus->state = I2C_STOP_PENDING;
1348 bus->stop_ind = I2C_MASTER_DONE_IND;
1349 npcm_i2c_master_stop(bus);
1350 /* Clear SDA Status bit (by writing dummy byte) */
1351 npcm_i2c_wr_byte(bus, 0xFF);
1353 } else {
1354 /* last write-byte written on previous int - restart */
1355 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1356 /* Generate repeated start upon next write to SDA */
1357 npcm_i2c_master_start(bus);
1360 * Receiving one byte only - stall after successful
1361 * completion of send address byte. If we NACK here, and
1362 * slave doesn't ACK the address, we might
1363 * unintentionally NACK the next multi-byte read.
1365 if (bus->rd_size == 1)
1366 npcm_i2c_stall_after_start(bus, true);
1368 /* Next int will occur on read */
1369 bus->operation = I2C_READ_OPER;
1370 /* send the slave address in read direction */
1371 npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1373 } else {
1374 /* write next byte not last byte and not slave address */
1375 if (!bus->fifo_use || bus->wr_size == 1) {
1376 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1377 } else {
1378 wcount = bus->wr_size - bus->wr_ind;
1379 npcm_i2c_set_fifo(bus, -1, wcount);
1380 if (wcount)
1381 npcm_i2c_write_to_fifo_master(bus, wcount);
1386 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1388 u16 block_extra_bytes_size;
1389 u8 data;
1391 /* added bytes to the packet: */
1392 block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1395 * Perform master read, distinguishing between last byte and the rest of
1396 * the bytes. The last byte should be read when the clock is stopped
1398 if (bus->rd_ind == 0) { /* first byte handling: */
1399 if (bus->read_block_use) {
1400 /* first byte in block protocol is the size: */
1401 data = npcm_i2c_rd_byte(bus);
1402 data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1403 bus->rd_size = data + block_extra_bytes_size;
1404 bus->rd_buf[bus->rd_ind++] = data;
1406 /* clear RX FIFO interrupt status: */
1407 if (bus->fifo_use) {
1408 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1409 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1410 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1413 npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1414 npcm_i2c_stall_after_start(bus, false);
1415 } else {
1416 npcm_i2c_clear_tx_fifo(bus);
1417 npcm_i2c_master_fifo_read(bus);
1419 } else {
1420 if (bus->rd_size == block_extra_bytes_size &&
1421 bus->read_block_use) {
1422 bus->state = I2C_STOP_PENDING;
1423 bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1424 bus->cmd_err = -EIO;
1425 npcm_i2c_eob_int(bus, true);
1426 npcm_i2c_master_stop(bus);
1427 npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1428 } else {
1429 npcm_i2c_master_fifo_read(bus);
1434 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1436 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1437 npcm_i2c_nack(bus);
1438 bus->stop_ind = I2C_BUS_ERR_IND;
1439 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1442 /* A NACK has occurred */
1443 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1445 u8 val;
1447 if (bus->nack_cnt < ULLONG_MAX)
1448 bus->nack_cnt++;
1450 if (bus->fifo_use) {
1452 * if there are still untransmitted bytes in TX FIFO
1453 * reduce them from wr_ind
1455 if (bus->operation == I2C_WRITE_OPER)
1456 bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1458 /* clear the FIFO */
1459 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1462 /* In master write operation, got unexpected NACK */
1463 bus->stop_ind = I2C_NACK_IND;
1464 /* Only current master is allowed to issue Stop Condition */
1465 if (npcm_i2c_is_master(bus)) {
1466 /* stopping in the middle */
1467 npcm_i2c_eob_int(bus, false);
1468 npcm_i2c_master_stop(bus);
1471 * The bus is released from stall only after the SW clears
1472 * NEGACK bit. Then a Stop condition is sent.
1474 npcm_i2c_clear_master_status(bus);
1475 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1476 !(val & NPCM_I2CCST_BUSY), 10, 200);
1478 bus->state = I2C_IDLE;
1481 * In Master mode, NACK should be cleared only after STOP.
1482 * In such case, the bus is released from stall only after the
1483 * software clears NACK bit. Then a Stop condition is sent.
1485 npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1488 /* Master mode: a Bus Error has been identified */
1489 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1491 if (bus->ber_cnt < ULLONG_MAX)
1492 bus->ber_cnt++;
1493 bus->stop_ind = I2C_BUS_ERR_IND;
1494 if (npcm_i2c_is_master(bus)) {
1495 npcm_i2c_master_abort(bus);
1496 } else {
1497 npcm_i2c_clear_master_status(bus);
1499 /* Clear BB (BUS BUSY) bit */
1500 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1502 bus->cmd_err = -EAGAIN;
1503 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1505 bus->state = I2C_IDLE;
1508 /* EOB: a master End Of Busy (meaning STOP completed) */
1509 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1511 npcm_i2c_eob_int(bus, false);
1512 bus->state = I2C_IDLE;
1513 npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1516 /* Address sent and requested stall occurred (Master mode) */
1517 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1519 if (npcm_i2c_is_quick(bus)) {
1520 bus->state = I2C_STOP_PENDING;
1521 bus->stop_ind = I2C_MASTER_DONE_IND;
1522 npcm_i2c_eob_int(bus, true);
1523 npcm_i2c_master_stop(bus);
1524 } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1526 * Receiving one byte only - set NACK after ensuring
1527 * slave ACKed the address byte.
1529 npcm_i2c_nack(bus);
1532 /* Reset stall-after-address-byte */
1533 npcm_i2c_stall_after_start(bus, false);
1535 /* Clear stall only after setting STOP */
1536 iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1539 /* SDA status is set - TX or RX, master */
1540 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1542 u8 fif_cts;
1544 if (!npcm_i2c_is_master(bus))
1545 return;
1547 if (bus->state == I2C_IDLE) {
1548 bus->stop_ind = I2C_WAKE_UP_IND;
1550 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1552 * Need to stall after successful
1553 * completion of sending address byte
1555 npcm_i2c_stall_after_start(bus, true);
1556 else
1557 npcm_i2c_stall_after_start(bus, false);
1560 * Receiving one byte only - stall after successful completion
1561 * of sending address byte If we NACK here, and slave doesn't
1562 * ACK the address, we might unintentionally NACK the next
1563 * multi-byte read
1565 if (bus->wr_size == 0 && bus->rd_size == 1)
1566 npcm_i2c_stall_after_start(bus, true);
1568 /* Initiate I2C master tx */
1570 /* select bank 1 for FIFO regs */
1571 npcm_i2c_select_bank(bus, I2C_BANK_1);
1573 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1574 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1576 /* clear FIFO and relevant status bits. */
1577 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1578 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1580 /* re-enable */
1581 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1582 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1585 * Configure the FIFO threshold:
1586 * according to the needed # of bytes to read.
1587 * Note: due to HW limitation can't config the rx fifo before it
1588 * got and ACK on the restart. LAST bit will not be reset unless
1589 * RX completed. It will stay set on the next tx.
1591 if (bus->wr_size)
1592 npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1593 else
1594 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1596 bus->state = I2C_OPER_STARTED;
1598 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1599 npcm_i2c_wr_byte(bus, bus->dest_addr);
1600 else
1601 npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1602 /* SDA interrupt, after start\restart */
1603 } else {
1604 if (NPCM_I2CST_XMIT & i2cst) {
1605 bus->operation = I2C_WRITE_OPER;
1606 npcm_i2c_irq_master_handler_write(bus);
1607 } else {
1608 bus->operation = I2C_READ_OPER;
1609 npcm_i2c_irq_master_handler_read(bus);
1614 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1616 u8 i2cst;
1617 int ret = -EIO;
1619 i2cst = ioread8(bus->reg + NPCM_I2CST);
1621 if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1622 npcm_i2c_irq_handle_nmatch(bus);
1623 return 0;
1625 /* A NACK has occurred */
1626 if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1627 npcm_i2c_irq_handle_nack(bus);
1628 return 0;
1631 /* Master mode: a Bus Error has been identified */
1632 if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1633 npcm_i2c_irq_handle_ber(bus);
1634 return 0;
1637 /* EOB: a master End Of Busy (meaning STOP completed) */
1638 if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1639 ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1640 (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1641 ioread8(bus->reg + NPCM_I2CCST3)))) {
1642 npcm_i2c_irq_handle_eob(bus);
1643 return 0;
1646 /* Address sent and requested stall occurred (Master mode) */
1647 if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1648 npcm_i2c_irq_handle_stall_after_start(bus);
1649 ret = 0;
1652 /* SDA status is set - TX or RX, master */
1653 if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1654 (bus->fifo_use &&
1655 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1656 npcm_i2c_irq_handle_sda(bus, i2cst);
1657 ret = 0;
1660 return ret;
1663 /* recovery using TGCLK functionality of the module */
1664 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1666 u8 val;
1667 u8 fif_cts;
1668 bool done = false;
1669 int status = -ENOTRECOVERABLE;
1670 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1671 /* Allow 3 bytes (27 toggles) to be read from the slave: */
1672 int iter = 27;
1674 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1675 dev_dbg(bus->dev, "bus%d recovery skipped, bus not stuck",
1676 bus->num);
1677 npcm_i2c_reset(bus);
1678 return status;
1681 npcm_i2c_int_enable(bus, false);
1682 npcm_i2c_disable(bus);
1683 npcm_i2c_enable(bus);
1684 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1685 npcm_i2c_clear_tx_fifo(bus);
1686 npcm_i2c_clear_rx_fifo(bus);
1687 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1688 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1689 npcm_i2c_stall_after_start(bus, false);
1691 /* select bank 1 for FIFO regs */
1692 npcm_i2c_select_bank(bus, I2C_BANK_1);
1694 /* clear FIFO and relevant status bits. */
1695 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1696 fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1697 fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1698 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1699 npcm_i2c_set_fifo(bus, -1, 0);
1701 /* Repeat the following sequence until SDA is released */
1702 do {
1703 /* Issue a single SCL toggle */
1704 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1705 usleep_range(20, 30);
1706 /* If SDA line is inactive (high), stop */
1707 if (npcm_i2c_get_SDA(_adap)) {
1708 done = true;
1709 status = 0;
1711 } while (!done && iter--);
1713 /* If SDA line is released: send start-addr-stop, to re-sync. */
1714 if (npcm_i2c_get_SDA(_adap)) {
1715 /* Send an address byte in write direction: */
1716 npcm_i2c_wr_byte(bus, bus->dest_addr);
1717 npcm_i2c_master_start(bus);
1718 /* Wait until START condition is sent */
1719 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1720 20, 200);
1721 /* If START condition was sent */
1722 if (npcm_i2c_is_master(bus) > 0) {
1723 usleep_range(20, 30);
1724 npcm_i2c_master_stop(bus);
1725 usleep_range(200, 500);
1728 npcm_i2c_reset(bus);
1729 npcm_i2c_int_enable(bus, true);
1731 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1732 status = 0;
1733 else
1734 status = -ENOTRECOVERABLE;
1735 if (status) {
1736 if (bus->rec_fail_cnt < ULLONG_MAX)
1737 bus->rec_fail_cnt++;
1738 } else {
1739 if (bus->rec_succ_cnt < ULLONG_MAX)
1740 bus->rec_succ_cnt++;
1742 return status;
1745 /* recovery using bit banging functionality of the module */
1746 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1748 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1749 struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1751 rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1754 * npcm i2c HW allows direct reading of SCL and SDA.
1755 * However, it does not support setting SCL and SDA directly.
1756 * The recovery function can togle SCL when SDA is low (but not set)
1757 * Getter functions used internally, and can be used externaly.
1759 rinfo->get_scl = npcm_i2c_get_SCL;
1760 rinfo->get_sda = npcm_i2c_get_SDA;
1761 _adap->bus_recovery_info = rinfo;
1764 /* SCLFRQ min/max field values */
1765 #define SCLFRQ_MIN 10
1766 #define SCLFRQ_MAX 511
1767 #define clk_coef(freq, mul) DIV_ROUND_UP((freq) * (mul), 1000000)
1770 * npcm_i2c_init_clk: init HW timing parameters.
1771 * NPCM7XX i2c module timing parameters are depenent on module core clk (APB)
1772 * and bus frequency.
1773 * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are simetric.
1774 * 400kHz bus requires assymetric HT and LT. A different equation is recomended
1775 * by the HW designer, given core clock range (equations in comments below).
1778 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1780 u32 k1 = 0;
1781 u32 k2 = 0;
1782 u8 dbnct = 0;
1783 u32 sclfrq = 0;
1784 u8 hldt = 7;
1785 u8 fast_mode = 0;
1786 u32 src_clk_khz;
1787 u32 bus_freq_khz;
1789 src_clk_khz = bus->apb_clk / 1000;
1790 bus_freq_khz = bus_freq_hz / 1000;
1791 bus->bus_freq = bus_freq_hz;
1793 /* 100KHz and below: */
1794 if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1795 sclfrq = src_clk_khz / (bus_freq_khz * 4);
1797 if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1798 return -EDOM;
1800 if (src_clk_khz >= 40000)
1801 hldt = 17;
1802 else if (src_clk_khz >= 12500)
1803 hldt = 15;
1804 else
1805 hldt = 7;
1808 /* 400KHz: */
1809 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1810 sclfrq = 0;
1811 fast_mode = I2CCTL3_400K_MODE;
1813 if (src_clk_khz < 7500)
1814 /* 400KHZ cannot be supported for core clock < 7.5MHz */
1815 return -EDOM;
1817 else if (src_clk_khz >= 50000) {
1818 k1 = 80;
1819 k2 = 48;
1820 hldt = 12;
1821 dbnct = 7;
1824 /* Master or Slave with frequency > 25MHz */
1825 else if (src_clk_khz > 25000) {
1826 hldt = clk_coef(src_clk_khz, 300) + 7;
1827 k1 = clk_coef(src_clk_khz, 1600);
1828 k2 = clk_coef(src_clk_khz, 900);
1832 /* 1MHz: */
1833 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1834 sclfrq = 0;
1835 fast_mode = I2CCTL3_400K_MODE;
1837 /* 1MHZ cannot be supported for core clock < 24 MHz */
1838 if (src_clk_khz < 24000)
1839 return -EDOM;
1841 k1 = clk_coef(src_clk_khz, 620);
1842 k2 = clk_coef(src_clk_khz, 380);
1844 /* Core clk > 40 MHz */
1845 if (src_clk_khz > 40000) {
1847 * Set HLDT:
1848 * SDA hold time: (HLDT-7) * T(CLK) >= 120
1849 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1851 hldt = clk_coef(src_clk_khz, 120) + 7;
1852 } else {
1853 hldt = 7;
1854 dbnct = 2;
1858 /* Frequency larger than 1 MHz is not supported */
1859 else
1860 return -EINVAL;
1862 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1863 k1 = round_up(k1, 2);
1864 k2 = round_up(k2 + 1, 2);
1865 if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1866 k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1867 return -EDOM;
1870 /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1871 iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1872 bus->reg + NPCM_I2CCTL2);
1874 /* bits [8:7] are in I2CCTL3 reg */
1875 iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1876 bus->reg + NPCM_I2CCTL3);
1878 /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1879 npcm_i2c_select_bank(bus, I2C_BANK_0);
1881 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1883 * Set SCL Low/High Time:
1884 * k1 = 2 * SCLLT7-0 -> Low Time = k1 / 2
1885 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1887 iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1888 iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1890 iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1893 iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1895 /* Return to Bank 1, and stay there by default: */
1896 npcm_i2c_select_bank(bus, I2C_BANK_1);
1898 return 0;
1901 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1902 u32 bus_freq_hz)
1904 u8 val;
1905 int ret;
1907 /* Check whether module already enabled or frequency is out of bounds */
1908 if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1909 bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1910 return -EINVAL;
1912 npcm_i2c_disable(bus);
1914 /* Configure FIFO mode : */
1915 if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1916 bus->fifo_use = true;
1917 npcm_i2c_select_bank(bus, I2C_BANK_0);
1918 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1919 val |= NPCM_I2CFIF_CTL_FIFO_EN;
1920 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1921 npcm_i2c_select_bank(bus, I2C_BANK_1);
1922 } else {
1923 bus->fifo_use = false;
1926 /* Configure I2C module clock frequency */
1927 ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1928 if (ret) {
1929 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1930 return ret;
1933 /* Enable module (before configuring CTL1) */
1934 npcm_i2c_enable(bus);
1935 bus->state = I2C_IDLE;
1936 val = ioread8(bus->reg + NPCM_I2CCTL1);
1937 val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1938 iowrite8(val, bus->reg + NPCM_I2CCTL1);
1940 npcm_i2c_int_enable(bus, true);
1942 npcm_i2c_reset(bus);
1944 return 0;
1947 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1949 u32 clk_freq_hz;
1950 int ret;
1952 /* Initialize the internal data structures */
1953 bus->state = I2C_DISABLE;
1954 bus->master_or_slave = I2C_SLAVE;
1955 bus->int_time_stamp = 0;
1956 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1957 bus->slave = NULL;
1958 #endif
1960 ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1961 &clk_freq_hz);
1962 if (ret) {
1963 dev_info(&pdev->dev, "Could not read clock-frequency property");
1964 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
1967 ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
1968 if (ret) {
1969 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
1970 return ret;
1973 return 0;
1976 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
1978 struct npcm_i2c *bus = dev_id;
1980 if (npcm_i2c_is_master(bus))
1981 bus->master_or_slave = I2C_MASTER;
1983 if (bus->master_or_slave == I2C_MASTER) {
1984 bus->int_time_stamp = jiffies;
1985 if (!npcm_i2c_int_master_handler(bus))
1986 return IRQ_HANDLED;
1988 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1989 if (bus->slave) {
1990 bus->master_or_slave = I2C_SLAVE;
1991 return npcm_i2c_int_slave_handler(bus);
1993 #endif
1994 return IRQ_NONE;
1997 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
1998 u8 slave_addr, u16 nwrite, u16 nread,
1999 u8 *write_data, u8 *read_data,
2000 bool use_PEC, bool use_read_block)
2002 if (bus->state != I2C_IDLE) {
2003 bus->cmd_err = -EBUSY;
2004 return false;
2006 bus->dest_addr = slave_addr << 1;
2007 bus->wr_buf = write_data;
2008 bus->wr_size = nwrite;
2009 bus->wr_ind = 0;
2010 bus->rd_buf = read_data;
2011 bus->rd_size = nread;
2012 bus->rd_ind = 0;
2013 bus->PEC_use = 0;
2015 /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2016 if (nread)
2017 bus->PEC_use = use_PEC;
2019 bus->read_block_use = use_read_block;
2020 if (nread && !nwrite)
2021 bus->operation = I2C_READ_OPER;
2022 else
2023 bus->operation = I2C_WRITE_OPER;
2024 if (bus->fifo_use) {
2025 u8 i2cfif_cts;
2027 npcm_i2c_select_bank(bus, I2C_BANK_1);
2028 /* clear FIFO and relevant status bits. */
2029 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2030 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2031 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2032 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2035 bus->state = I2C_IDLE;
2036 npcm_i2c_stall_after_start(bus, true);
2037 npcm_i2c_master_start(bus);
2038 return true;
2041 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2042 int num)
2044 struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2045 struct i2c_msg *msg0, *msg1;
2046 unsigned long time_left, flags;
2047 u16 nwrite, nread;
2048 u8 *write_data, *read_data;
2049 u8 slave_addr;
2050 int timeout;
2051 int ret = 0;
2052 bool read_block = false;
2053 bool read_PEC = false;
2054 u8 bus_busy;
2055 unsigned long timeout_usec;
2057 if (bus->state == I2C_DISABLE) {
2058 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2059 return -EINVAL;
2062 msg0 = &msgs[0];
2063 slave_addr = msg0->addr;
2064 if (msg0->flags & I2C_M_RD) { /* read */
2065 nwrite = 0;
2066 write_data = NULL;
2067 read_data = msg0->buf;
2068 if (msg0->flags & I2C_M_RECV_LEN) {
2069 nread = 1;
2070 read_block = true;
2071 if (msg0->flags & I2C_CLIENT_PEC)
2072 read_PEC = true;
2073 } else {
2074 nread = msg0->len;
2076 } else { /* write */
2077 nwrite = msg0->len;
2078 write_data = msg0->buf;
2079 nread = 0;
2080 read_data = NULL;
2081 if (num == 2) {
2082 msg1 = &msgs[1];
2083 read_data = msg1->buf;
2084 if (msg1->flags & I2C_M_RECV_LEN) {
2085 nread = 1;
2086 read_block = true;
2087 if (msg1->flags & I2C_CLIENT_PEC)
2088 read_PEC = true;
2089 } else {
2090 nread = msg1->len;
2091 read_block = false;
2097 * Adaptive TimeOut: estimated time in usec + 100% margin:
2098 * 2: double the timeout for clock stretching case
2099 * 9: bits per transaction (including the ack/nack)
2101 timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2102 timeout = max(msecs_to_jiffies(35), usecs_to_jiffies(timeout_usec));
2103 if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2104 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2105 return -EINVAL;
2108 time_left = jiffies + msecs_to_jiffies(DEFAULT_STALL_COUNT) + 1;
2109 do {
2111 * we must clear slave address immediately when the bus is not
2112 * busy, so we spinlock it, but we don't keep the lock for the
2113 * entire while since it is too long.
2115 spin_lock_irqsave(&bus->lock, flags);
2116 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2117 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2118 if (!bus_busy && bus->slave)
2119 iowrite8((bus->slave->addr & 0x7F),
2120 bus->reg + NPCM_I2CADDR1);
2121 #endif
2122 spin_unlock_irqrestore(&bus->lock, flags);
2124 } while (time_is_after_jiffies(time_left) && bus_busy);
2126 if (bus_busy) {
2127 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2128 npcm_i2c_reset(bus);
2129 i2c_recover_bus(adap);
2130 return -EAGAIN;
2133 npcm_i2c_init_params(bus);
2134 bus->dest_addr = slave_addr;
2135 bus->msgs = msgs;
2136 bus->msgs_num = num;
2137 bus->cmd_err = 0;
2138 bus->read_block_use = read_block;
2140 reinit_completion(&bus->cmd_complete);
2141 if (!npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2142 write_data, read_data, read_PEC,
2143 read_block))
2144 ret = -EBUSY;
2146 if (ret != -EBUSY) {
2147 time_left = wait_for_completion_timeout(&bus->cmd_complete,
2148 timeout);
2150 if (time_left == 0) {
2151 if (bus->timeout_cnt < ULLONG_MAX)
2152 bus->timeout_cnt++;
2153 if (bus->master_or_slave == I2C_MASTER) {
2154 i2c_recover_bus(adap);
2155 bus->cmd_err = -EIO;
2156 bus->state = I2C_IDLE;
2160 ret = bus->cmd_err;
2162 /* if there was BER, check if need to recover the bus: */
2163 if (bus->cmd_err == -EAGAIN)
2164 ret = i2c_recover_bus(adap);
2167 * After any type of error, check if LAST bit is still set,
2168 * due to a HW issue.
2169 * It cannot be cleared without resetting the module.
2171 if (bus->cmd_err &&
2172 (NPCM_I2CRXF_CTL_LAST_PEC & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2173 npcm_i2c_reset(bus);
2175 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2176 /* reenable slave if it was enabled */
2177 if (bus->slave)
2178 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2179 bus->reg + NPCM_I2CADDR1);
2180 #endif
2181 return bus->cmd_err;
2184 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2186 return I2C_FUNC_I2C |
2187 I2C_FUNC_SMBUS_EMUL |
2188 I2C_FUNC_SMBUS_BLOCK_DATA |
2189 I2C_FUNC_SMBUS_PEC |
2190 I2C_FUNC_SLAVE;
2193 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2194 .max_read_len = 32768,
2195 .max_write_len = 32768,
2196 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2199 static const struct i2c_algorithm npcm_i2c_algo = {
2200 .master_xfer = npcm_i2c_master_xfer,
2201 .functionality = npcm_i2c_functionality,
2202 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2203 .reg_slave = npcm_i2c_reg_slave,
2204 .unreg_slave = npcm_i2c_unreg_slave,
2205 #endif
2208 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2209 static struct dentry *npcm_i2c_debugfs_dir;
2211 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2212 struct npcm_i2c *bus)
2214 struct dentry *d;
2216 if (!npcm_i2c_debugfs_dir)
2217 return;
2218 d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2219 if (IS_ERR_OR_NULL(d))
2220 return;
2221 debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2222 debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2223 debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2224 debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2225 debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2227 bus->debugfs = d;
2230 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2232 struct npcm_i2c *bus;
2233 struct i2c_adapter *adap;
2234 struct clk *i2c_clk;
2235 static struct regmap *gcr_regmap;
2236 static struct regmap *clk_regmap;
2237 int irq;
2238 int ret;
2240 bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2241 if (!bus)
2242 return -ENOMEM;
2244 bus->dev = &pdev->dev;
2246 bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2247 /* core clk must be acquired to calculate module timing settings */
2248 i2c_clk = devm_clk_get(&pdev->dev, NULL);
2249 if (IS_ERR(i2c_clk))
2250 return PTR_ERR(i2c_clk);
2251 bus->apb_clk = clk_get_rate(i2c_clk);
2253 gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2254 if (IS_ERR(gcr_regmap))
2255 return PTR_ERR(gcr_regmap);
2256 regmap_write(gcr_regmap, NPCM_I2CSEGCTL, NPCM_I2CSEGCTL_INIT_VAL);
2258 clk_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-clk");
2259 if (IS_ERR(clk_regmap))
2260 return PTR_ERR(clk_regmap);
2262 bus->reg = devm_platform_ioremap_resource(pdev, 0);
2263 if (IS_ERR(bus->reg))
2264 return PTR_ERR(bus->reg);
2266 spin_lock_init(&bus->lock);
2267 init_completion(&bus->cmd_complete);
2269 adap = &bus->adap;
2270 adap->owner = THIS_MODULE;
2271 adap->retries = 3;
2272 adap->timeout = HZ;
2273 adap->algo = &npcm_i2c_algo;
2274 adap->quirks = &npcm_i2c_quirks;
2275 adap->algo_data = bus;
2276 adap->dev.parent = &pdev->dev;
2277 adap->dev.of_node = pdev->dev.of_node;
2278 adap->nr = pdev->id;
2280 irq = platform_get_irq(pdev, 0);
2281 if (irq < 0)
2282 return irq;
2284 ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2285 dev_name(bus->dev), bus);
2286 if (ret)
2287 return ret;
2289 ret = __npcm_i2c_init(bus, pdev);
2290 if (ret)
2291 return ret;
2293 npcm_i2c_recovery_init(adap);
2295 i2c_set_adapdata(adap, bus);
2297 snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2298 bus->num);
2299 ret = i2c_add_numbered_adapter(&bus->adap);
2300 if (ret)
2301 return ret;
2303 platform_set_drvdata(pdev, bus);
2304 npcm_i2c_init_debugfs(pdev, bus);
2305 return 0;
2308 static int npcm_i2c_remove_bus(struct platform_device *pdev)
2310 unsigned long lock_flags;
2311 struct npcm_i2c *bus = platform_get_drvdata(pdev);
2313 debugfs_remove_recursive(bus->debugfs);
2314 spin_lock_irqsave(&bus->lock, lock_flags);
2315 npcm_i2c_disable(bus);
2316 spin_unlock_irqrestore(&bus->lock, lock_flags);
2317 i2c_del_adapter(&bus->adap);
2318 return 0;
2321 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2322 { .compatible = "nuvoton,npcm750-i2c", },
2325 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2327 static struct platform_driver npcm_i2c_bus_driver = {
2328 .probe = npcm_i2c_probe_bus,
2329 .remove = npcm_i2c_remove_bus,
2330 .driver = {
2331 .name = "nuvoton-i2c",
2332 .of_match_table = npcm_i2c_bus_of_table,
2336 static int __init npcm_i2c_init(void)
2338 npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2339 platform_driver_register(&npcm_i2c_bus_driver);
2340 return 0;
2342 module_init(npcm_i2c_init);
2344 static void __exit npcm_i2c_exit(void)
2346 platform_driver_unregister(&npcm_i2c_bus_driver);
2347 debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2349 module_exit(npcm_i2c_exit);
2351 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2352 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2353 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2354 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2355 MODULE_LICENSE("GPL v2");