WIP FPC-III support
[linux/fpc-iii.git] / drivers / i3c / master / mipi-i3c-hci / dma.c
blobaf873a9be0507b961261d17abe0f9ff4f5b84a6c
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3 * Copyright (c) 2020, MIPI Alliance, Inc.
5 * Author: Nicolas Pitre <npitre@baylibre.com>
7 * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
8 * v1.x of the spec and v2.0 will likely be split out.
9 */
11 #include <linux/bitfield.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/i3c/master.h>
16 #include <linux/io.h>
18 #include "hci.h"
19 #include "cmd.h"
20 #include "ibi.h"
24 * Software Parameter Values (somewhat arb itrary for now).
25 * Some of them could be determined at run time eventually.
28 #define XFER_RINGS 1 /* max: 8 */
29 #define XFER_RING_ENTRIES 16 /* max: 255 */
31 #define IBI_RINGS 1 /* max: 8 */
32 #define IBI_STATUS_RING_ENTRIES 32 /* max: 255 */
33 #define IBI_CHUNK_CACHELINES 1 /* max: 256 bytes equivalent */
34 #define IBI_CHUNK_POOL_SIZE 128 /* max: 1023 */
37 * Ring Header Preamble
40 #define rhs_reg_read(r) readl(hci->RHS_regs + (RHS_##r))
41 #define rhs_reg_write(r, v) writel(v, hci->RHS_regs + (RHS_##r))
43 #define RHS_CONTROL 0x00
44 #define PREAMBLE_SIZE GENMASK(31, 24) /* Preamble Section Size */
45 #define HEADER_SIZE GENMASK(23, 16) /* Ring Header Size */
46 #define MAX_HEADER_COUNT_CAP GENMASK(7, 4) /* HC Max Header Count */
47 #define MAX_HEADER_COUNT GENMASK(3, 0) /* Driver Max Header Count */
49 #define RHS_RHn_OFFSET(n) (0x04 + (n)*4)
52 * Ring Header (Per-Ring Bundle)
55 #define rh_reg_read(r) readl(rh->regs + (RH_##r))
56 #define rh_reg_write(r, v) writel(v, rh->regs + (RH_##r))
58 #define RH_CR_SETUP 0x00 /* Command/Response Ring */
59 #define CR_XFER_STRUCT_SIZE GENMASK(31, 24)
60 #define CR_RESP_STRUCT_SIZE GENMASK(23, 16)
61 #define CR_RING_SIZE GENMASK(8, 0)
63 #define RH_IBI_SETUP 0x04
64 #define IBI_STATUS_STRUCT_SIZE GENMASK(31, 24)
65 #define IBI_STATUS_RING_SIZE GENMASK(23, 16)
66 #define IBI_DATA_CHUNK_SIZE GENMASK(12, 10)
67 #define IBI_DATA_CHUNK_COUNT GENMASK(9, 0)
69 #define RH_CHUNK_CONTROL 0x08
71 #define RH_INTR_STATUS 0x10
72 #define RH_INTR_STATUS_ENABLE 0x14
73 #define RH_INTR_SIGNAL_ENABLE 0x18
74 #define RH_INTR_FORCE 0x1c
75 #define INTR_IBI_READY BIT(12)
76 #define INTR_TRANSFER_COMPLETION BIT(11)
77 #define INTR_RING_OP BIT(10)
78 #define INTR_TRANSFER_ERR BIT(9)
79 #define INTR_WARN_INS_STOP_MODE BIT(7)
80 #define INTR_IBI_RING_FULL BIT(6)
81 #define INTR_TRANSFER_ABORT BIT(5)
83 #define RH_RING_STATUS 0x20
84 #define RING_STATUS_LOCKED BIT(3)
85 #define RING_STATUS_ABORTED BIT(2)
86 #define RING_STATUS_RUNNING BIT(1)
87 #define RING_STATUS_ENABLED BIT(0)
89 #define RH_RING_CONTROL 0x24
90 #define RING_CTRL_ABORT BIT(2)
91 #define RING_CTRL_RUN_STOP BIT(1)
92 #define RING_CTRL_ENABLE BIT(0)
94 #define RH_RING_OPERATION1 0x28
95 #define RING_OP1_IBI_DEQ_PTR GENMASK(23, 16)
96 #define RING_OP1_CR_SW_DEQ_PTR GENMASK(15, 8)
97 #define RING_OP1_CR_ENQ_PTR GENMASK(7, 0)
99 #define RH_RING_OPERATION2 0x2c
100 #define RING_OP2_IBI_ENQ_PTR GENMASK(23, 16)
101 #define RING_OP2_CR_DEQ_PTR GENMASK(7, 0)
103 #define RH_CMD_RING_BASE_LO 0x30
104 #define RH_CMD_RING_BASE_HI 0x34
105 #define RH_RESP_RING_BASE_LO 0x38
106 #define RH_RESP_RING_BASE_HI 0x3c
107 #define RH_IBI_STATUS_RING_BASE_LO 0x40
108 #define RH_IBI_STATUS_RING_BASE_HI 0x44
109 #define RH_IBI_DATA_RING_BASE_LO 0x48
110 #define RH_IBI_DATA_RING_BASE_HI 0x4c
112 #define RH_CMD_RING_SG 0x50 /* Ring Scatter Gather Support */
113 #define RH_RESP_RING_SG 0x54
114 #define RH_IBI_STATUS_RING_SG 0x58
115 #define RH_IBI_DATA_RING_SG 0x5c
116 #define RING_SG_BLP BIT(31) /* Buffer Vs. List Pointer */
117 #define RING_SG_LIST_SIZE GENMASK(15, 0)
120 * Data Buffer Descriptor (in memory)
123 #define DATA_BUF_BLP BIT(31) /* Buffer Vs. List Pointer */
124 #define DATA_BUF_IOC BIT(30) /* Interrupt on Completion */
125 #define DATA_BUF_BLOCK_SIZE GENMASK(15, 0)
128 struct hci_rh_data {
129 void __iomem *regs;
130 void *xfer, *resp, *ibi_status, *ibi_data;
131 dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
132 unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
133 unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
134 unsigned int done_ptr, ibi_chunk_ptr;
135 struct hci_xfer **src_xfers;
136 spinlock_t lock;
137 struct completion op_done;
140 struct hci_rings_data {
141 unsigned int total;
142 struct hci_rh_data headers[];
145 struct hci_dma_dev_ibi_data {
146 struct i3c_generic_ibi_pool *pool;
147 unsigned int max_len;
150 static inline u32 lo32(dma_addr_t physaddr)
152 return physaddr;
155 static inline u32 hi32(dma_addr_t physaddr)
157 /* trickery to avoid compiler warnings on 32-bit build targets */
158 if (sizeof(dma_addr_t) > 4) {
159 u64 hi = physaddr;
160 return hi >> 32;
162 return 0;
165 static void hci_dma_cleanup(struct i3c_hci *hci)
167 struct hci_rings_data *rings = hci->io_data;
168 struct hci_rh_data *rh;
169 unsigned int i;
171 if (!rings)
172 return;
174 for (i = 0; i < rings->total; i++) {
175 rh = &rings->headers[i];
177 rh_reg_write(RING_CONTROL, 0);
178 rh_reg_write(CR_SETUP, 0);
179 rh_reg_write(IBI_SETUP, 0);
180 rh_reg_write(INTR_SIGNAL_ENABLE, 0);
182 if (rh->xfer)
183 dma_free_coherent(&hci->master.dev,
184 rh->xfer_struct_sz * rh->xfer_entries,
185 rh->xfer, rh->xfer_dma);
186 if (rh->resp)
187 dma_free_coherent(&hci->master.dev,
188 rh->resp_struct_sz * rh->xfer_entries,
189 rh->resp, rh->resp_dma);
190 kfree(rh->src_xfers);
191 if (rh->ibi_status)
192 dma_free_coherent(&hci->master.dev,
193 rh->ibi_status_sz * rh->ibi_status_entries,
194 rh->ibi_status, rh->ibi_status_dma);
195 if (rh->ibi_data_dma)
196 dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
197 rh->ibi_chunk_sz * rh->ibi_chunks_total,
198 DMA_FROM_DEVICE);
199 kfree(rh->ibi_data);
202 rhs_reg_write(CONTROL, 0);
204 kfree(rings);
205 hci->io_data = NULL;
208 static int hci_dma_init(struct i3c_hci *hci)
210 struct hci_rings_data *rings;
211 struct hci_rh_data *rh;
212 u32 regval;
213 unsigned int i, nr_rings, xfers_sz, resps_sz;
214 unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
215 int ret;
217 regval = rhs_reg_read(CONTROL);
218 nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
219 dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
220 if (unlikely(nr_rings > 8)) {
221 dev_err(&hci->master.dev, "number of rings should be <= 8\n");
222 nr_rings = 8;
224 if (nr_rings > XFER_RINGS)
225 nr_rings = XFER_RINGS;
226 rings = kzalloc(sizeof(*rings) + nr_rings * sizeof(*rh), GFP_KERNEL);
227 if (!rings)
228 return -ENOMEM;
229 hci->io_data = rings;
230 rings->total = nr_rings;
232 for (i = 0; i < rings->total; i++) {
233 u32 offset = rhs_reg_read(RHn_OFFSET(i));
235 dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
236 ret = -EINVAL;
237 if (!offset)
238 goto err_out;
239 rh = &rings->headers[i];
240 rh->regs = hci->base_regs + offset;
241 spin_lock_init(&rh->lock);
242 init_completion(&rh->op_done);
244 rh->xfer_entries = XFER_RING_ENTRIES;
246 regval = rh_reg_read(CR_SETUP);
247 rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
248 rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
249 DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
250 rh->xfer_struct_sz, rh->resp_struct_sz);
251 xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
252 resps_sz = rh->resp_struct_sz * rh->xfer_entries;
254 rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
255 &rh->xfer_dma, GFP_KERNEL);
256 rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
257 &rh->resp_dma, GFP_KERNEL);
258 rh->src_xfers =
259 kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
260 GFP_KERNEL);
261 ret = -ENOMEM;
262 if (!rh->xfer || !rh->resp || !rh->src_xfers)
263 goto err_out;
265 rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma));
266 rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma));
267 rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma));
268 rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma));
270 regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
271 rh_reg_write(CR_SETUP, regval);
273 rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
274 rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
275 INTR_TRANSFER_COMPLETION |
276 INTR_RING_OP |
277 INTR_TRANSFER_ERR |
278 INTR_WARN_INS_STOP_MODE |
279 INTR_IBI_RING_FULL |
280 INTR_TRANSFER_ABORT);
282 /* IBIs */
284 if (i >= IBI_RINGS)
285 goto ring_ready;
287 regval = rh_reg_read(IBI_SETUP);
288 rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
289 rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
290 rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;
292 rh->ibi_chunk_sz = dma_get_cache_alignment();
293 rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
294 BUG_ON(rh->ibi_chunk_sz > 256);
296 ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
297 ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;
299 rh->ibi_status =
300 dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
301 &rh->ibi_status_dma, GFP_KERNEL);
302 rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
303 ret = -ENOMEM;
304 if (!rh->ibi_status || !rh->ibi_data)
305 goto err_out;
306 rh->ibi_data_dma =
307 dma_map_single(&hci->master.dev, rh->ibi_data,
308 ibi_data_ring_sz, DMA_FROM_DEVICE);
309 if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
310 rh->ibi_data_dma = 0;
311 ret = -ENOMEM;
312 goto err_out;
315 regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
316 rh->ibi_status_entries) |
317 FIELD_PREP(IBI_DATA_CHUNK_SIZE,
318 ilog2(rh->ibi_chunk_sz) - 2) |
319 FIELD_PREP(IBI_DATA_CHUNK_COUNT,
320 rh->ibi_chunks_total);
321 rh_reg_write(IBI_SETUP, regval);
323 regval = rh_reg_read(INTR_SIGNAL_ENABLE);
324 regval |= INTR_IBI_READY;
325 rh_reg_write(INTR_SIGNAL_ENABLE, regval);
327 ring_ready:
328 rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
331 regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
332 rhs_reg_write(CONTROL, regval);
333 return 0;
335 err_out:
336 hci_dma_cleanup(hci);
337 return ret;
340 static void hci_dma_unmap_xfer(struct i3c_hci *hci,
341 struct hci_xfer *xfer_list, unsigned int n)
343 struct hci_xfer *xfer;
344 unsigned int i;
346 for (i = 0; i < n; i++) {
347 xfer = xfer_list + i;
348 dma_unmap_single(&hci->master.dev,
349 xfer->data_dma, xfer->data_len,
350 xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
354 static int hci_dma_queue_xfer(struct i3c_hci *hci,
355 struct hci_xfer *xfer_list, int n)
357 struct hci_rings_data *rings = hci->io_data;
358 struct hci_rh_data *rh;
359 unsigned int i, ring, enqueue_ptr;
360 u32 op1_val, op2_val;
362 /* For now we only use ring 0 */
363 ring = 0;
364 rh = &rings->headers[ring];
366 op1_val = rh_reg_read(RING_OPERATION1);
367 enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
368 for (i = 0; i < n; i++) {
369 struct hci_xfer *xfer = xfer_list + i;
370 u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;
372 /* store cmd descriptor */
373 *ring_data++ = xfer->cmd_desc[0];
374 *ring_data++ = xfer->cmd_desc[1];
375 if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
376 *ring_data++ = xfer->cmd_desc[2];
377 *ring_data++ = xfer->cmd_desc[3];
380 /* first word of Data Buffer Descriptor Structure */
381 if (!xfer->data)
382 xfer->data_len = 0;
383 *ring_data++ =
384 FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
385 ((i == n - 1) ? DATA_BUF_IOC : 0);
387 /* 2nd and 3rd words of Data Buffer Descriptor Structure */
388 if (xfer->data) {
389 xfer->data_dma =
390 dma_map_single(&hci->master.dev,
391 xfer->data,
392 xfer->data_len,
393 xfer->rnw ?
394 DMA_FROM_DEVICE :
395 DMA_TO_DEVICE);
396 if (dma_mapping_error(&hci->master.dev,
397 xfer->data_dma)) {
398 hci_dma_unmap_xfer(hci, xfer_list, i);
399 return -ENOMEM;
401 *ring_data++ = lo32(xfer->data_dma);
402 *ring_data++ = hi32(xfer->data_dma);
403 } else {
404 *ring_data++ = 0;
405 *ring_data++ = 0;
408 /* remember corresponding xfer struct */
409 rh->src_xfers[enqueue_ptr] = xfer;
410 /* remember corresponding ring/entry for this xfer structure */
411 xfer->ring_number = ring;
412 xfer->ring_entry = enqueue_ptr;
414 enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;
417 * We may update the hardware view of the enqueue pointer
418 * only if we didn't reach its dequeue pointer.
420 op2_val = rh_reg_read(RING_OPERATION2);
421 if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
422 /* the ring is full */
423 hci_dma_unmap_xfer(hci, xfer_list, i + 1);
424 return -EBUSY;
428 /* take care to update the hardware enqueue pointer atomically */
429 spin_lock_irq(&rh->lock);
430 op1_val = rh_reg_read(RING_OPERATION1);
431 op1_val &= ~RING_OP1_CR_ENQ_PTR;
432 op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
433 rh_reg_write(RING_OPERATION1, op1_val);
434 spin_unlock_irq(&rh->lock);
436 return 0;
439 static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
440 struct hci_xfer *xfer_list, int n)
442 struct hci_rings_data *rings = hci->io_data;
443 struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
444 unsigned int i;
445 bool did_unqueue = false;
447 /* stop the ring */
448 rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
449 if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
451 * We're deep in it if ever this condition is ever met.
452 * Hardware might still be writing to memory, etc.
453 * Better suspend the world than risking silent corruption.
455 dev_crit(&hci->master.dev, "unable to abort the ring\n");
456 BUG();
459 for (i = 0; i < n; i++) {
460 struct hci_xfer *xfer = xfer_list + i;
461 int idx = xfer->ring_entry;
464 * At the time the abort happened, the xfer might have
465 * completed already. If not then replace corresponding
466 * descriptor entries with a no-op.
468 if (idx >= 0) {
469 u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;
471 /* store no-op cmd descriptor */
472 *ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
473 *ring_data++ = 0;
474 if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
475 *ring_data++ = 0;
476 *ring_data++ = 0;
479 /* disassociate this xfer struct */
480 rh->src_xfers[idx] = NULL;
482 /* and unmap it */
483 hci_dma_unmap_xfer(hci, xfer, 1);
485 did_unqueue = true;
489 /* restart the ring */
490 rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
492 return did_unqueue;
495 static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
497 u32 op1_val, op2_val, resp, *ring_resp;
498 unsigned int tid, done_ptr = rh->done_ptr;
499 struct hci_xfer *xfer;
501 for (;;) {
502 op2_val = rh_reg_read(RING_OPERATION2);
503 if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
504 break;
506 ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
507 resp = *ring_resp;
508 tid = RESP_TID(resp);
509 DBG("resp = 0x%08x", resp);
511 xfer = rh->src_xfers[done_ptr];
512 if (!xfer) {
513 DBG("orphaned ring entry");
514 } else {
515 hci_dma_unmap_xfer(hci, xfer, 1);
516 xfer->ring_entry = -1;
517 xfer->response = resp;
518 if (tid != xfer->cmd_tid) {
519 dev_err(&hci->master.dev,
520 "response tid=%d when expecting %d\n",
521 tid, xfer->cmd_tid);
522 /* TODO: do something about it? */
524 if (xfer->completion)
525 complete(xfer->completion);
528 done_ptr = (done_ptr + 1) % rh->xfer_entries;
529 rh->done_ptr = done_ptr;
532 /* take care to update the software dequeue pointer atomically */
533 spin_lock(&rh->lock);
534 op1_val = rh_reg_read(RING_OPERATION1);
535 op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
536 op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
537 rh_reg_write(RING_OPERATION1, op1_val);
538 spin_unlock(&rh->lock);
541 static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
542 const struct i3c_ibi_setup *req)
544 struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
545 struct i3c_generic_ibi_pool *pool;
546 struct hci_dma_dev_ibi_data *dev_ibi;
548 dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
549 if (!dev_ibi)
550 return -ENOMEM;
551 pool = i3c_generic_ibi_alloc_pool(dev, req);
552 if (IS_ERR(pool)) {
553 kfree(dev_ibi);
554 return PTR_ERR(pool);
556 dev_ibi->pool = pool;
557 dev_ibi->max_len = req->max_payload_len;
558 dev_data->ibi_data = dev_ibi;
559 return 0;
562 static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
564 struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
565 struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
567 dev_data->ibi_data = NULL;
568 i3c_generic_ibi_free_pool(dev_ibi->pool);
569 kfree(dev_ibi);
572 static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
573 struct i3c_dev_desc *dev,
574 struct i3c_ibi_slot *slot)
576 struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
577 struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
579 i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
582 static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
584 struct i3c_dev_desc *dev;
585 struct i3c_hci_dev_data *dev_data;
586 struct hci_dma_dev_ibi_data *dev_ibi;
587 struct i3c_ibi_slot *slot;
588 u32 op1_val, op2_val, ibi_status_error;
589 unsigned int ptr, enq_ptr, deq_ptr;
590 unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
591 int ibi_addr, last_ptr;
592 void *ring_ibi_data;
593 dma_addr_t ring_ibi_data_dma;
595 op1_val = rh_reg_read(RING_OPERATION1);
596 deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);
598 op2_val = rh_reg_read(RING_OPERATION2);
599 enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);
601 ibi_status_error = 0;
602 ibi_addr = -1;
603 ibi_chunks = 0;
604 ibi_size = 0;
605 last_ptr = -1;
607 /* let's find all we can about this IBI */
608 for (ptr = deq_ptr; ptr != enq_ptr;
609 ptr = (ptr + 1) % rh->ibi_status_entries) {
610 u32 ibi_status, *ring_ibi_status;
611 unsigned int chunks;
613 ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
614 ibi_status = *ring_ibi_status;
615 DBG("status = %#x", ibi_status);
617 if (ibi_status_error) {
618 /* we no longer care */
619 } else if (ibi_status & IBI_ERROR) {
620 ibi_status_error = ibi_status;
621 } else if (ibi_addr == -1) {
622 ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
623 } else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
624 /* the address changed unexpectedly */
625 ibi_status_error = ibi_status;
628 chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
629 ibi_chunks += chunks;
630 if (!(ibi_status & IBI_LAST_STATUS)) {
631 ibi_size += chunks * rh->ibi_chunk_sz;
632 } else {
633 ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
634 last_ptr = ptr;
635 break;
639 /* validate what we've got */
641 if (last_ptr == -1) {
642 /* this IBI sequence is not yet complete */
643 DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
644 return;
646 deq_ptr = last_ptr + 1;
647 deq_ptr %= rh->ibi_status_entries;
649 if (ibi_status_error) {
650 dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
651 goto done;
654 /* determine who this is for */
655 dev = i3c_hci_addr_to_dev(hci, ibi_addr);
656 if (!dev) {
657 dev_err(&hci->master.dev,
658 "IBI for unknown device %#x\n", ibi_addr);
659 goto done;
662 dev_data = i3c_dev_get_master_data(dev);
663 dev_ibi = dev_data->ibi_data;
664 if (ibi_size > dev_ibi->max_len) {
665 dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
666 ibi_size, dev_ibi->max_len);
667 goto done;
671 * This ring model is not suitable for zero-copy processing of IBIs.
672 * We have the data chunk ring wrap-around to deal with, meaning
673 * that the payload might span multiple chunks beginning at the
674 * end of the ring and wrap to the start of the ring. Furthermore
675 * there is no guarantee that those chunks will be released in order
676 * and in a timely manner by the upper driver. So let's just copy
677 * them to a discrete buffer. In practice they're supposed to be
678 * small anyway.
680 slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
681 if (!slot) {
682 dev_err(&hci->master.dev, "no free slot for IBI\n");
683 goto done;
686 /* copy first part of the payload */
687 ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
688 ring_ibi_data = rh->ibi_data + ibi_data_offset;
689 ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
690 first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
691 * rh->ibi_chunk_sz;
692 if (first_part > ibi_size)
693 first_part = ibi_size;
694 dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
695 first_part, DMA_FROM_DEVICE);
696 memcpy(slot->data, ring_ibi_data, first_part);
698 /* copy second part if any */
699 if (ibi_size > first_part) {
700 /* we wrap back to the start and copy remaining data */
701 ring_ibi_data = rh->ibi_data;
702 ring_ibi_data_dma = rh->ibi_data_dma;
703 dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
704 ibi_size - first_part, DMA_FROM_DEVICE);
705 memcpy(slot->data + first_part, ring_ibi_data,
706 ibi_size - first_part);
709 /* submit it */
710 slot->dev = dev;
711 slot->len = ibi_size;
712 i3c_master_queue_ibi(dev, slot);
714 done:
715 /* take care to update the ibi dequeue pointer atomically */
716 spin_lock(&rh->lock);
717 op1_val = rh_reg_read(RING_OPERATION1);
718 op1_val &= ~RING_OP1_IBI_DEQ_PTR;
719 op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
720 rh_reg_write(RING_OPERATION1, op1_val);
721 spin_unlock(&rh->lock);
723 /* update the chunk pointer */
724 rh->ibi_chunk_ptr += ibi_chunks;
725 rh->ibi_chunk_ptr %= rh->ibi_chunks_total;
727 /* and tell the hardware about freed chunks */
728 rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
731 static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask)
733 struct hci_rings_data *rings = hci->io_data;
734 unsigned int i;
735 bool handled = false;
737 for (i = 0; mask && i < 8; i++) {
738 struct hci_rh_data *rh;
739 u32 status;
741 if (!(mask & BIT(i)))
742 continue;
743 mask &= ~BIT(i);
745 rh = &rings->headers[i];
746 status = rh_reg_read(INTR_STATUS);
747 DBG("rh%d status: %#x", i, status);
748 if (!status)
749 continue;
750 rh_reg_write(INTR_STATUS, status);
752 if (status & INTR_IBI_READY)
753 hci_dma_process_ibi(hci, rh);
754 if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
755 hci_dma_xfer_done(hci, rh);
756 if (status & INTR_RING_OP)
757 complete(&rh->op_done);
759 if (status & INTR_TRANSFER_ABORT)
760 dev_notice_ratelimited(&hci->master.dev,
761 "ring %d: Transfer Aborted\n", i);
762 if (status & INTR_WARN_INS_STOP_MODE)
763 dev_warn_ratelimited(&hci->master.dev,
764 "ring %d: Inserted Stop on Mode Change\n", i);
765 if (status & INTR_IBI_RING_FULL)
766 dev_err_ratelimited(&hci->master.dev,
767 "ring %d: IBI Ring Full Condition\n", i);
769 handled = true;
772 return handled;
775 const struct hci_io_ops mipi_i3c_hci_dma = {
776 .init = hci_dma_init,
777 .cleanup = hci_dma_cleanup,
778 .queue_xfer = hci_dma_queue_xfer,
779 .dequeue_xfer = hci_dma_dequeue_xfer,
780 .irq_handler = hci_dma_irq_handler,
781 .request_ibi = hci_dma_request_ibi,
782 .free_ibi = hci_dma_free_ibi,
783 .recycle_ibi_slot = hci_dma_recycle_ibi_slot,