WIP FPC-III support
[linux/fpc-iii.git] / drivers / iio / light / ltr501.c
blobb4323d2db0b19b53a9405de2e3d54a875f7059e4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
7 * 7-bit I2C slave address 0x23
9 * TODO: IR LED characteristics
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/regmap.h>
17 #include <linux/acpi.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/events.h>
21 #include <linux/iio/sysfs.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/buffer.h>
24 #include <linux/iio/triggered_buffer.h>
26 #define LTR501_DRV_NAME "ltr501"
28 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
29 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
30 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
31 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
32 #define LTR501_PART_ID 0x86
33 #define LTR501_MANUFAC_ID 0x87
34 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
35 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
36 #define LTR501_ALS_PS_STATUS 0x8c
37 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
38 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
39 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
40 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
41 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
42 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
43 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
44 #define LTR501_MAX_REG 0x9f
46 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
47 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
48 #define LTR501_CONTR_PS_GAIN_SHIFT 2
49 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
50 #define LTR501_CONTR_ACTIVE BIT(1)
52 #define LTR501_STATUS_ALS_INTR BIT(3)
53 #define LTR501_STATUS_ALS_RDY BIT(2)
54 #define LTR501_STATUS_PS_INTR BIT(1)
55 #define LTR501_STATUS_PS_RDY BIT(0)
57 #define LTR501_PS_DATA_MASK 0x7ff
58 #define LTR501_PS_THRESH_MASK 0x7ff
59 #define LTR501_ALS_THRESH_MASK 0xffff
61 #define LTR501_ALS_DEF_PERIOD 500000
62 #define LTR501_PS_DEF_PERIOD 100000
64 #define LTR501_REGMAP_NAME "ltr501_regmap"
66 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
67 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
69 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
71 static const struct reg_field reg_field_it =
72 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
73 static const struct reg_field reg_field_als_intr =
74 REG_FIELD(LTR501_INTR, 1, 1);
75 static const struct reg_field reg_field_ps_intr =
76 REG_FIELD(LTR501_INTR, 0, 0);
77 static const struct reg_field reg_field_als_rate =
78 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
79 static const struct reg_field reg_field_ps_rate =
80 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
81 static const struct reg_field reg_field_als_prst =
82 REG_FIELD(LTR501_INTR_PRST, 0, 3);
83 static const struct reg_field reg_field_ps_prst =
84 REG_FIELD(LTR501_INTR_PRST, 4, 7);
86 struct ltr501_samp_table {
87 int freq_val; /* repetition frequency in micro HZ*/
88 int time_val; /* repetition rate in micro seconds */
91 #define LTR501_RESERVED_GAIN -1
93 enum {
94 ltr501 = 0,
95 ltr559,
96 ltr301,
99 struct ltr501_gain {
100 int scale;
101 int uscale;
104 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
105 {1, 0},
106 {0, 5000},
109 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
110 {1, 0},
111 {0, 500000},
112 {0, 250000},
113 {0, 125000},
114 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
115 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
116 {0, 20000},
117 {0, 10000},
120 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
121 {1, 0},
122 {0, 250000},
123 {0, 125000},
124 {0, 62500},
127 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
128 {0, 62500}, /* x16 gain */
129 {0, 31250}, /* x32 gain */
130 {0, 15625}, /* bits X1 are for x64 gain */
131 {0, 15624},
134 struct ltr501_chip_info {
135 u8 partid;
136 const struct ltr501_gain *als_gain;
137 int als_gain_tbl_size;
138 const struct ltr501_gain *ps_gain;
139 int ps_gain_tbl_size;
140 u8 als_mode_active;
141 u8 als_gain_mask;
142 u8 als_gain_shift;
143 struct iio_chan_spec const *channels;
144 const int no_channels;
145 const struct iio_info *info;
146 const struct iio_info *info_no_irq;
149 struct ltr501_data {
150 struct i2c_client *client;
151 struct mutex lock_als, lock_ps;
152 struct ltr501_chip_info *chip_info;
153 u8 als_contr, ps_contr;
154 int als_period, ps_period; /* period in micro seconds */
155 struct regmap *regmap;
156 struct regmap_field *reg_it;
157 struct regmap_field *reg_als_intr;
158 struct regmap_field *reg_ps_intr;
159 struct regmap_field *reg_als_rate;
160 struct regmap_field *reg_ps_rate;
161 struct regmap_field *reg_als_prst;
162 struct regmap_field *reg_ps_prst;
165 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
166 {20000000, 50000}, {10000000, 100000},
167 {5000000, 200000}, {2000000, 500000},
168 {1000000, 1000000}, {500000, 2000000},
169 {500000, 2000000}, {500000, 2000000}
172 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
173 {20000000, 50000}, {14285714, 70000},
174 {10000000, 100000}, {5000000, 200000},
175 {2000000, 500000}, {1000000, 1000000},
176 {500000, 2000000}, {500000, 2000000},
177 {500000, 2000000}
180 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
181 int len, int val, int val2)
183 int i, freq;
185 freq = val * 1000000 + val2;
187 for (i = 0; i < len; i++) {
188 if (tab[i].freq_val == freq)
189 return i;
192 return -EINVAL;
195 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
196 int *val, int *val2)
198 int ret, i;
200 ret = regmap_field_read(data->reg_als_rate, &i);
201 if (ret < 0)
202 return ret;
204 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
205 return -EINVAL;
207 *val = ltr501_als_samp_table[i].freq_val / 1000000;
208 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
210 return IIO_VAL_INT_PLUS_MICRO;
213 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
214 int *val, int *val2)
216 int ret, i;
218 ret = regmap_field_read(data->reg_ps_rate, &i);
219 if (ret < 0)
220 return ret;
222 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
223 return -EINVAL;
225 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
226 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
228 return IIO_VAL_INT_PLUS_MICRO;
231 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
232 int val, int val2)
234 int i, ret;
236 i = ltr501_match_samp_freq(ltr501_als_samp_table,
237 ARRAY_SIZE(ltr501_als_samp_table),
238 val, val2);
240 if (i < 0)
241 return i;
243 mutex_lock(&data->lock_als);
244 ret = regmap_field_write(data->reg_als_rate, i);
245 mutex_unlock(&data->lock_als);
247 return ret;
250 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
251 int val, int val2)
253 int i, ret;
255 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
256 ARRAY_SIZE(ltr501_ps_samp_table),
257 val, val2);
259 if (i < 0)
260 return i;
262 mutex_lock(&data->lock_ps);
263 ret = regmap_field_write(data->reg_ps_rate, i);
264 mutex_unlock(&data->lock_ps);
266 return ret;
269 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
271 int ret, i;
273 ret = regmap_field_read(data->reg_als_rate, &i);
274 if (ret < 0)
275 return ret;
277 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
278 return -EINVAL;
280 *val = ltr501_als_samp_table[i].time_val;
282 return IIO_VAL_INT;
285 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
287 int ret, i;
289 ret = regmap_field_read(data->reg_ps_rate, &i);
290 if (ret < 0)
291 return ret;
293 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
294 return -EINVAL;
296 *val = ltr501_ps_samp_table[i].time_val;
298 return IIO_VAL_INT;
301 /* IR and visible spectrum coeff's are given in data sheet */
302 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
304 unsigned long ratio, lux;
306 if (vis_data == 0)
307 return 0;
309 /* multiply numerator by 100 to avoid handling ratio < 1 */
310 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
312 if (ratio < 45)
313 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
314 else if (ratio >= 45 && ratio < 64)
315 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
316 else if (ratio >= 64 && ratio < 85)
317 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
318 else
319 lux = 0;
321 return lux / 1000;
324 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
326 int tries = 100;
327 int ret, status;
329 while (tries--) {
330 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
331 if (ret < 0)
332 return ret;
333 if ((status & drdy_mask) == drdy_mask)
334 return 0;
335 msleep(25);
338 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
339 return -EIO;
342 static int ltr501_set_it_time(struct ltr501_data *data, int it)
344 int ret, i, index = -1, status;
346 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
347 if (int_time_mapping[i] == it) {
348 index = i;
349 break;
352 /* Make sure integ time index is valid */
353 if (index < 0)
354 return -EINVAL;
356 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
357 if (ret < 0)
358 return ret;
360 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
362 * 200 ms and 400 ms integ time can only be
363 * used in dynamic range 1
365 if (index > 1)
366 return -EINVAL;
367 } else
368 /* 50 ms integ time can only be used in dynamic range 2 */
369 if (index == 1)
370 return -EINVAL;
372 return regmap_field_write(data->reg_it, index);
375 /* read int time in micro seconds */
376 static int ltr501_read_it_time(const struct ltr501_data *data,
377 int *val, int *val2)
379 int ret, index;
381 ret = regmap_field_read(data->reg_it, &index);
382 if (ret < 0)
383 return ret;
385 /* Make sure integ time index is valid */
386 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
387 return -EINVAL;
389 *val2 = int_time_mapping[index];
390 *val = 0;
392 return IIO_VAL_INT_PLUS_MICRO;
395 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
397 int ret;
399 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
400 if (ret < 0)
401 return ret;
402 /* always read both ALS channels in given order */
403 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
404 buf, 2 * sizeof(__le16));
407 static int ltr501_read_ps(const struct ltr501_data *data)
409 int ret, status;
411 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
412 if (ret < 0)
413 return ret;
415 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
416 &status, 2);
417 if (ret < 0)
418 return ret;
420 return status;
423 static int ltr501_read_intr_prst(const struct ltr501_data *data,
424 enum iio_chan_type type,
425 int *val2)
427 int ret, samp_period, prst;
429 switch (type) {
430 case IIO_INTENSITY:
431 ret = regmap_field_read(data->reg_als_prst, &prst);
432 if (ret < 0)
433 return ret;
435 ret = ltr501_als_read_samp_period(data, &samp_period);
437 if (ret < 0)
438 return ret;
439 *val2 = samp_period * prst;
440 return IIO_VAL_INT_PLUS_MICRO;
441 case IIO_PROXIMITY:
442 ret = regmap_field_read(data->reg_ps_prst, &prst);
443 if (ret < 0)
444 return ret;
446 ret = ltr501_ps_read_samp_period(data, &samp_period);
448 if (ret < 0)
449 return ret;
451 *val2 = samp_period * prst;
452 return IIO_VAL_INT_PLUS_MICRO;
453 default:
454 return -EINVAL;
457 return -EINVAL;
460 static int ltr501_write_intr_prst(struct ltr501_data *data,
461 enum iio_chan_type type,
462 int val, int val2)
464 int ret, samp_period, new_val;
465 unsigned long period;
467 if (val < 0 || val2 < 0)
468 return -EINVAL;
470 /* period in microseconds */
471 period = ((val * 1000000) + val2);
473 switch (type) {
474 case IIO_INTENSITY:
475 ret = ltr501_als_read_samp_period(data, &samp_period);
476 if (ret < 0)
477 return ret;
479 /* period should be atleast equal to sampling period */
480 if (period < samp_period)
481 return -EINVAL;
483 new_val = DIV_ROUND_UP(period, samp_period);
484 if (new_val < 0 || new_val > 0x0f)
485 return -EINVAL;
487 mutex_lock(&data->lock_als);
488 ret = regmap_field_write(data->reg_als_prst, new_val);
489 mutex_unlock(&data->lock_als);
490 if (ret >= 0)
491 data->als_period = period;
493 return ret;
494 case IIO_PROXIMITY:
495 ret = ltr501_ps_read_samp_period(data, &samp_period);
496 if (ret < 0)
497 return ret;
499 /* period should be atleast equal to rate */
500 if (period < samp_period)
501 return -EINVAL;
503 new_val = DIV_ROUND_UP(period, samp_period);
504 if (new_val < 0 || new_val > 0x0f)
505 return -EINVAL;
507 mutex_lock(&data->lock_ps);
508 ret = regmap_field_write(data->reg_ps_prst, new_val);
509 mutex_unlock(&data->lock_ps);
510 if (ret >= 0)
511 data->ps_period = period;
513 return ret;
514 default:
515 return -EINVAL;
518 return -EINVAL;
521 static const struct iio_event_spec ltr501_als_event_spec[] = {
523 .type = IIO_EV_TYPE_THRESH,
524 .dir = IIO_EV_DIR_RISING,
525 .mask_separate = BIT(IIO_EV_INFO_VALUE),
526 }, {
527 .type = IIO_EV_TYPE_THRESH,
528 .dir = IIO_EV_DIR_FALLING,
529 .mask_separate = BIT(IIO_EV_INFO_VALUE),
530 }, {
531 .type = IIO_EV_TYPE_THRESH,
532 .dir = IIO_EV_DIR_EITHER,
533 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
534 BIT(IIO_EV_INFO_PERIOD),
539 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
541 .type = IIO_EV_TYPE_THRESH,
542 .dir = IIO_EV_DIR_RISING,
543 .mask_separate = BIT(IIO_EV_INFO_VALUE),
544 }, {
545 .type = IIO_EV_TYPE_THRESH,
546 .dir = IIO_EV_DIR_FALLING,
547 .mask_separate = BIT(IIO_EV_INFO_VALUE),
548 }, {
549 .type = IIO_EV_TYPE_THRESH,
550 .dir = IIO_EV_DIR_EITHER,
551 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
552 BIT(IIO_EV_INFO_PERIOD),
556 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
557 _evspec, _evsize) { \
558 .type = IIO_INTENSITY, \
559 .modified = 1, \
560 .address = (_addr), \
561 .channel2 = (_mod), \
562 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
563 .info_mask_shared_by_type = (_shared), \
564 .scan_index = (_idx), \
565 .scan_type = { \
566 .sign = 'u', \
567 .realbits = 16, \
568 .storagebits = 16, \
569 .endianness = IIO_CPU, \
570 }, \
571 .event_spec = _evspec,\
572 .num_event_specs = _evsize,\
575 #define LTR501_LIGHT_CHANNEL() { \
576 .type = IIO_LIGHT, \
577 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
578 .scan_index = -1, \
581 static const struct iio_chan_spec ltr501_channels[] = {
582 LTR501_LIGHT_CHANNEL(),
583 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
584 ltr501_als_event_spec,
585 ARRAY_SIZE(ltr501_als_event_spec)),
586 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
587 BIT(IIO_CHAN_INFO_SCALE) |
588 BIT(IIO_CHAN_INFO_INT_TIME) |
589 BIT(IIO_CHAN_INFO_SAMP_FREQ),
590 NULL, 0),
592 .type = IIO_PROXIMITY,
593 .address = LTR501_PS_DATA,
594 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
595 BIT(IIO_CHAN_INFO_SCALE),
596 .scan_index = 2,
597 .scan_type = {
598 .sign = 'u',
599 .realbits = 11,
600 .storagebits = 16,
601 .endianness = IIO_CPU,
603 .event_spec = ltr501_pxs_event_spec,
604 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
606 IIO_CHAN_SOFT_TIMESTAMP(3),
609 static const struct iio_chan_spec ltr301_channels[] = {
610 LTR501_LIGHT_CHANNEL(),
611 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
612 ltr501_als_event_spec,
613 ARRAY_SIZE(ltr501_als_event_spec)),
614 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
615 BIT(IIO_CHAN_INFO_SCALE) |
616 BIT(IIO_CHAN_INFO_INT_TIME) |
617 BIT(IIO_CHAN_INFO_SAMP_FREQ),
618 NULL, 0),
619 IIO_CHAN_SOFT_TIMESTAMP(2),
622 static int ltr501_read_raw(struct iio_dev *indio_dev,
623 struct iio_chan_spec const *chan,
624 int *val, int *val2, long mask)
626 struct ltr501_data *data = iio_priv(indio_dev);
627 __le16 buf[2];
628 int ret, i;
630 switch (mask) {
631 case IIO_CHAN_INFO_PROCESSED:
632 switch (chan->type) {
633 case IIO_LIGHT:
634 ret = iio_device_claim_direct_mode(indio_dev);
635 if (ret)
636 return ret;
638 mutex_lock(&data->lock_als);
639 ret = ltr501_read_als(data, buf);
640 mutex_unlock(&data->lock_als);
641 iio_device_release_direct_mode(indio_dev);
642 if (ret < 0)
643 return ret;
644 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
645 le16_to_cpu(buf[0]));
646 return IIO_VAL_INT;
647 default:
648 return -EINVAL;
650 case IIO_CHAN_INFO_RAW:
651 ret = iio_device_claim_direct_mode(indio_dev);
652 if (ret)
653 return ret;
655 switch (chan->type) {
656 case IIO_INTENSITY:
657 mutex_lock(&data->lock_als);
658 ret = ltr501_read_als(data, buf);
659 mutex_unlock(&data->lock_als);
660 if (ret < 0)
661 break;
662 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
663 buf[0] : buf[1]);
664 ret = IIO_VAL_INT;
665 break;
666 case IIO_PROXIMITY:
667 mutex_lock(&data->lock_ps);
668 ret = ltr501_read_ps(data);
669 mutex_unlock(&data->lock_ps);
670 if (ret < 0)
671 break;
672 *val = ret & LTR501_PS_DATA_MASK;
673 ret = IIO_VAL_INT;
674 break;
675 default:
676 ret = -EINVAL;
677 break;
680 iio_device_release_direct_mode(indio_dev);
681 return ret;
683 case IIO_CHAN_INFO_SCALE:
684 switch (chan->type) {
685 case IIO_INTENSITY:
686 i = (data->als_contr & data->chip_info->als_gain_mask)
687 >> data->chip_info->als_gain_shift;
688 *val = data->chip_info->als_gain[i].scale;
689 *val2 = data->chip_info->als_gain[i].uscale;
690 return IIO_VAL_INT_PLUS_MICRO;
691 case IIO_PROXIMITY:
692 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
693 LTR501_CONTR_PS_GAIN_SHIFT;
694 *val = data->chip_info->ps_gain[i].scale;
695 *val2 = data->chip_info->ps_gain[i].uscale;
696 return IIO_VAL_INT_PLUS_MICRO;
697 default:
698 return -EINVAL;
700 case IIO_CHAN_INFO_INT_TIME:
701 switch (chan->type) {
702 case IIO_INTENSITY:
703 return ltr501_read_it_time(data, val, val2);
704 default:
705 return -EINVAL;
707 case IIO_CHAN_INFO_SAMP_FREQ:
708 switch (chan->type) {
709 case IIO_INTENSITY:
710 return ltr501_als_read_samp_freq(data, val, val2);
711 case IIO_PROXIMITY:
712 return ltr501_ps_read_samp_freq(data, val, val2);
713 default:
714 return -EINVAL;
717 return -EINVAL;
720 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
721 int val, int val2)
723 int i;
725 for (i = 0; i < size; i++)
726 if (val == gain[i].scale && val2 == gain[i].uscale)
727 return i;
729 return -1;
732 static int ltr501_write_raw(struct iio_dev *indio_dev,
733 struct iio_chan_spec const *chan,
734 int val, int val2, long mask)
736 struct ltr501_data *data = iio_priv(indio_dev);
737 int i, ret, freq_val, freq_val2;
738 struct ltr501_chip_info *info = data->chip_info;
740 ret = iio_device_claim_direct_mode(indio_dev);
741 if (ret)
742 return ret;
744 switch (mask) {
745 case IIO_CHAN_INFO_SCALE:
746 switch (chan->type) {
747 case IIO_INTENSITY:
748 i = ltr501_get_gain_index(info->als_gain,
749 info->als_gain_tbl_size,
750 val, val2);
751 if (i < 0) {
752 ret = -EINVAL;
753 break;
756 data->als_contr &= ~info->als_gain_mask;
757 data->als_contr |= i << info->als_gain_shift;
759 ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
760 data->als_contr);
761 break;
762 case IIO_PROXIMITY:
763 i = ltr501_get_gain_index(info->ps_gain,
764 info->ps_gain_tbl_size,
765 val, val2);
766 if (i < 0) {
767 ret = -EINVAL;
768 break;
770 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
771 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
773 ret = regmap_write(data->regmap, LTR501_PS_CONTR,
774 data->ps_contr);
775 break;
776 default:
777 ret = -EINVAL;
778 break;
780 break;
782 case IIO_CHAN_INFO_INT_TIME:
783 switch (chan->type) {
784 case IIO_INTENSITY:
785 if (val != 0) {
786 ret = -EINVAL;
787 break;
789 mutex_lock(&data->lock_als);
790 ret = ltr501_set_it_time(data, val2);
791 mutex_unlock(&data->lock_als);
792 break;
793 default:
794 ret = -EINVAL;
795 break;
797 break;
799 case IIO_CHAN_INFO_SAMP_FREQ:
800 switch (chan->type) {
801 case IIO_INTENSITY:
802 ret = ltr501_als_read_samp_freq(data, &freq_val,
803 &freq_val2);
804 if (ret < 0)
805 break;
807 ret = ltr501_als_write_samp_freq(data, val, val2);
808 if (ret < 0)
809 break;
811 /* update persistence count when changing frequency */
812 ret = ltr501_write_intr_prst(data, chan->type,
813 0, data->als_period);
815 if (ret < 0)
816 ret = ltr501_als_write_samp_freq(data, freq_val,
817 freq_val2);
818 break;
819 case IIO_PROXIMITY:
820 ret = ltr501_ps_read_samp_freq(data, &freq_val,
821 &freq_val2);
822 if (ret < 0)
823 break;
825 ret = ltr501_ps_write_samp_freq(data, val, val2);
826 if (ret < 0)
827 break;
829 /* update persistence count when changing frequency */
830 ret = ltr501_write_intr_prst(data, chan->type,
831 0, data->ps_period);
833 if (ret < 0)
834 ret = ltr501_ps_write_samp_freq(data, freq_val,
835 freq_val2);
836 break;
837 default:
838 ret = -EINVAL;
839 break;
841 break;
843 default:
844 ret = -EINVAL;
845 break;
848 iio_device_release_direct_mode(indio_dev);
849 return ret;
852 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
853 const struct iio_chan_spec *chan,
854 enum iio_event_type type,
855 enum iio_event_direction dir,
856 enum iio_event_info info,
857 int *val, int *val2)
859 const struct ltr501_data *data = iio_priv(indio_dev);
860 int ret, thresh_data;
862 switch (chan->type) {
863 case IIO_INTENSITY:
864 switch (dir) {
865 case IIO_EV_DIR_RISING:
866 ret = regmap_bulk_read(data->regmap,
867 LTR501_ALS_THRESH_UP,
868 &thresh_data, 2);
869 if (ret < 0)
870 return ret;
871 *val = thresh_data & LTR501_ALS_THRESH_MASK;
872 return IIO_VAL_INT;
873 case IIO_EV_DIR_FALLING:
874 ret = regmap_bulk_read(data->regmap,
875 LTR501_ALS_THRESH_LOW,
876 &thresh_data, 2);
877 if (ret < 0)
878 return ret;
879 *val = thresh_data & LTR501_ALS_THRESH_MASK;
880 return IIO_VAL_INT;
881 default:
882 return -EINVAL;
884 case IIO_PROXIMITY:
885 switch (dir) {
886 case IIO_EV_DIR_RISING:
887 ret = regmap_bulk_read(data->regmap,
888 LTR501_PS_THRESH_UP,
889 &thresh_data, 2);
890 if (ret < 0)
891 return ret;
892 *val = thresh_data & LTR501_PS_THRESH_MASK;
893 return IIO_VAL_INT;
894 case IIO_EV_DIR_FALLING:
895 ret = regmap_bulk_read(data->regmap,
896 LTR501_PS_THRESH_LOW,
897 &thresh_data, 2);
898 if (ret < 0)
899 return ret;
900 *val = thresh_data & LTR501_PS_THRESH_MASK;
901 return IIO_VAL_INT;
902 default:
903 return -EINVAL;
905 default:
906 return -EINVAL;
909 return -EINVAL;
912 static int ltr501_write_thresh(struct iio_dev *indio_dev,
913 const struct iio_chan_spec *chan,
914 enum iio_event_type type,
915 enum iio_event_direction dir,
916 enum iio_event_info info,
917 int val, int val2)
919 struct ltr501_data *data = iio_priv(indio_dev);
920 int ret;
922 if (val < 0)
923 return -EINVAL;
925 switch (chan->type) {
926 case IIO_INTENSITY:
927 if (val > LTR501_ALS_THRESH_MASK)
928 return -EINVAL;
929 switch (dir) {
930 case IIO_EV_DIR_RISING:
931 mutex_lock(&data->lock_als);
932 ret = regmap_bulk_write(data->regmap,
933 LTR501_ALS_THRESH_UP,
934 &val, 2);
935 mutex_unlock(&data->lock_als);
936 return ret;
937 case IIO_EV_DIR_FALLING:
938 mutex_lock(&data->lock_als);
939 ret = regmap_bulk_write(data->regmap,
940 LTR501_ALS_THRESH_LOW,
941 &val, 2);
942 mutex_unlock(&data->lock_als);
943 return ret;
944 default:
945 return -EINVAL;
947 case IIO_PROXIMITY:
948 if (val > LTR501_PS_THRESH_MASK)
949 return -EINVAL;
950 switch (dir) {
951 case IIO_EV_DIR_RISING:
952 mutex_lock(&data->lock_ps);
953 ret = regmap_bulk_write(data->regmap,
954 LTR501_PS_THRESH_UP,
955 &val, 2);
956 mutex_unlock(&data->lock_ps);
957 return ret;
958 case IIO_EV_DIR_FALLING:
959 mutex_lock(&data->lock_ps);
960 ret = regmap_bulk_write(data->regmap,
961 LTR501_PS_THRESH_LOW,
962 &val, 2);
963 mutex_unlock(&data->lock_ps);
964 return ret;
965 default:
966 return -EINVAL;
968 default:
969 return -EINVAL;
972 return -EINVAL;
975 static int ltr501_read_event(struct iio_dev *indio_dev,
976 const struct iio_chan_spec *chan,
977 enum iio_event_type type,
978 enum iio_event_direction dir,
979 enum iio_event_info info,
980 int *val, int *val2)
982 int ret;
984 switch (info) {
985 case IIO_EV_INFO_VALUE:
986 return ltr501_read_thresh(indio_dev, chan, type, dir,
987 info, val, val2);
988 case IIO_EV_INFO_PERIOD:
989 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
990 chan->type, val2);
991 *val = *val2 / 1000000;
992 *val2 = *val2 % 1000000;
993 return ret;
994 default:
995 return -EINVAL;
998 return -EINVAL;
1001 static int ltr501_write_event(struct iio_dev *indio_dev,
1002 const struct iio_chan_spec *chan,
1003 enum iio_event_type type,
1004 enum iio_event_direction dir,
1005 enum iio_event_info info,
1006 int val, int val2)
1008 switch (info) {
1009 case IIO_EV_INFO_VALUE:
1010 if (val2 != 0)
1011 return -EINVAL;
1012 return ltr501_write_thresh(indio_dev, chan, type, dir,
1013 info, val, val2);
1014 case IIO_EV_INFO_PERIOD:
1015 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1016 val, val2);
1017 default:
1018 return -EINVAL;
1021 return -EINVAL;
1024 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1025 const struct iio_chan_spec *chan,
1026 enum iio_event_type type,
1027 enum iio_event_direction dir)
1029 struct ltr501_data *data = iio_priv(indio_dev);
1030 int ret, status;
1032 switch (chan->type) {
1033 case IIO_INTENSITY:
1034 ret = regmap_field_read(data->reg_als_intr, &status);
1035 if (ret < 0)
1036 return ret;
1037 return status;
1038 case IIO_PROXIMITY:
1039 ret = regmap_field_read(data->reg_ps_intr, &status);
1040 if (ret < 0)
1041 return ret;
1042 return status;
1043 default:
1044 return -EINVAL;
1047 return -EINVAL;
1050 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1051 const struct iio_chan_spec *chan,
1052 enum iio_event_type type,
1053 enum iio_event_direction dir, int state)
1055 struct ltr501_data *data = iio_priv(indio_dev);
1056 int ret;
1058 /* only 1 and 0 are valid inputs */
1059 if (state != 1 && state != 0)
1060 return -EINVAL;
1062 switch (chan->type) {
1063 case IIO_INTENSITY:
1064 mutex_lock(&data->lock_als);
1065 ret = regmap_field_write(data->reg_als_intr, state);
1066 mutex_unlock(&data->lock_als);
1067 return ret;
1068 case IIO_PROXIMITY:
1069 mutex_lock(&data->lock_ps);
1070 ret = regmap_field_write(data->reg_ps_intr, state);
1071 mutex_unlock(&data->lock_ps);
1072 return ret;
1073 default:
1074 return -EINVAL;
1077 return -EINVAL;
1080 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1081 struct device_attribute *attr,
1082 char *buf)
1084 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1085 struct ltr501_chip_info *info = data->chip_info;
1086 ssize_t len = 0;
1087 int i;
1089 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1090 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1091 continue;
1092 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1093 info->ps_gain[i].scale,
1094 info->ps_gain[i].uscale);
1097 buf[len - 1] = '\n';
1099 return len;
1102 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1103 struct device_attribute *attr,
1104 char *buf)
1106 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1107 struct ltr501_chip_info *info = data->chip_info;
1108 ssize_t len = 0;
1109 int i;
1111 for (i = 0; i < info->als_gain_tbl_size; i++) {
1112 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1113 continue;
1114 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1115 info->als_gain[i].scale,
1116 info->als_gain[i].uscale);
1119 buf[len - 1] = '\n';
1121 return len;
1124 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1125 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1127 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1128 ltr501_show_proximity_scale_avail, NULL, 0);
1129 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1130 ltr501_show_intensity_scale_avail, NULL, 0);
1132 static struct attribute *ltr501_attributes[] = {
1133 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1134 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1135 &iio_const_attr_integration_time_available.dev_attr.attr,
1136 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1137 NULL
1140 static struct attribute *ltr301_attributes[] = {
1141 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1142 &iio_const_attr_integration_time_available.dev_attr.attr,
1143 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1144 NULL
1147 static const struct attribute_group ltr501_attribute_group = {
1148 .attrs = ltr501_attributes,
1151 static const struct attribute_group ltr301_attribute_group = {
1152 .attrs = ltr301_attributes,
1155 static const struct iio_info ltr501_info_no_irq = {
1156 .read_raw = ltr501_read_raw,
1157 .write_raw = ltr501_write_raw,
1158 .attrs = &ltr501_attribute_group,
1161 static const struct iio_info ltr501_info = {
1162 .read_raw = ltr501_read_raw,
1163 .write_raw = ltr501_write_raw,
1164 .attrs = &ltr501_attribute_group,
1165 .read_event_value = &ltr501_read_event,
1166 .write_event_value = &ltr501_write_event,
1167 .read_event_config = &ltr501_read_event_config,
1168 .write_event_config = &ltr501_write_event_config,
1171 static const struct iio_info ltr301_info_no_irq = {
1172 .read_raw = ltr501_read_raw,
1173 .write_raw = ltr501_write_raw,
1174 .attrs = &ltr301_attribute_group,
1177 static const struct iio_info ltr301_info = {
1178 .read_raw = ltr501_read_raw,
1179 .write_raw = ltr501_write_raw,
1180 .attrs = &ltr301_attribute_group,
1181 .read_event_value = &ltr501_read_event,
1182 .write_event_value = &ltr501_write_event,
1183 .read_event_config = &ltr501_read_event_config,
1184 .write_event_config = &ltr501_write_event_config,
1187 static struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1188 [ltr501] = {
1189 .partid = 0x08,
1190 .als_gain = ltr501_als_gain_tbl,
1191 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1192 .ps_gain = ltr501_ps_gain_tbl,
1193 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1194 .als_mode_active = BIT(0) | BIT(1),
1195 .als_gain_mask = BIT(3),
1196 .als_gain_shift = 3,
1197 .info = &ltr501_info,
1198 .info_no_irq = &ltr501_info_no_irq,
1199 .channels = ltr501_channels,
1200 .no_channels = ARRAY_SIZE(ltr501_channels),
1202 [ltr559] = {
1203 .partid = 0x09,
1204 .als_gain = ltr559_als_gain_tbl,
1205 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1206 .ps_gain = ltr559_ps_gain_tbl,
1207 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1208 .als_mode_active = BIT(1),
1209 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1210 .als_gain_shift = 2,
1211 .info = &ltr501_info,
1212 .info_no_irq = &ltr501_info_no_irq,
1213 .channels = ltr501_channels,
1214 .no_channels = ARRAY_SIZE(ltr501_channels),
1216 [ltr301] = {
1217 .partid = 0x08,
1218 .als_gain = ltr501_als_gain_tbl,
1219 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1220 .als_mode_active = BIT(0) | BIT(1),
1221 .als_gain_mask = BIT(3),
1222 .als_gain_shift = 3,
1223 .info = &ltr301_info,
1224 .info_no_irq = &ltr301_info_no_irq,
1225 .channels = ltr301_channels,
1226 .no_channels = ARRAY_SIZE(ltr301_channels),
1230 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1232 int ret;
1234 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1235 if (ret < 0)
1236 return ret;
1238 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1241 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1243 struct iio_poll_func *pf = p;
1244 struct iio_dev *indio_dev = pf->indio_dev;
1245 struct ltr501_data *data = iio_priv(indio_dev);
1246 struct {
1247 u16 channels[3];
1248 s64 ts __aligned(8);
1249 } scan;
1250 __le16 als_buf[2];
1251 u8 mask = 0;
1252 int j = 0;
1253 int ret, psdata;
1255 memset(&scan, 0, sizeof(scan));
1257 /* figure out which data needs to be ready */
1258 if (test_bit(0, indio_dev->active_scan_mask) ||
1259 test_bit(1, indio_dev->active_scan_mask))
1260 mask |= LTR501_STATUS_ALS_RDY;
1261 if (test_bit(2, indio_dev->active_scan_mask))
1262 mask |= LTR501_STATUS_PS_RDY;
1264 ret = ltr501_drdy(data, mask);
1265 if (ret < 0)
1266 goto done;
1268 if (mask & LTR501_STATUS_ALS_RDY) {
1269 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1270 als_buf, sizeof(als_buf));
1271 if (ret < 0)
1272 return ret;
1273 if (test_bit(0, indio_dev->active_scan_mask))
1274 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1275 if (test_bit(1, indio_dev->active_scan_mask))
1276 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1279 if (mask & LTR501_STATUS_PS_RDY) {
1280 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1281 &psdata, 2);
1282 if (ret < 0)
1283 goto done;
1284 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1287 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1288 iio_get_time_ns(indio_dev));
1290 done:
1291 iio_trigger_notify_done(indio_dev->trig);
1293 return IRQ_HANDLED;
1296 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1298 struct iio_dev *indio_dev = private;
1299 struct ltr501_data *data = iio_priv(indio_dev);
1300 int ret, status;
1302 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1303 if (ret < 0) {
1304 dev_err(&data->client->dev,
1305 "irq read int reg failed\n");
1306 return IRQ_HANDLED;
1309 if (status & LTR501_STATUS_ALS_INTR)
1310 iio_push_event(indio_dev,
1311 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1312 IIO_EV_TYPE_THRESH,
1313 IIO_EV_DIR_EITHER),
1314 iio_get_time_ns(indio_dev));
1316 if (status & LTR501_STATUS_PS_INTR)
1317 iio_push_event(indio_dev,
1318 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1319 IIO_EV_TYPE_THRESH,
1320 IIO_EV_DIR_EITHER),
1321 iio_get_time_ns(indio_dev));
1323 return IRQ_HANDLED;
1326 static int ltr501_init(struct ltr501_data *data)
1328 int ret, status;
1330 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1331 if (ret < 0)
1332 return ret;
1334 data->als_contr = status | data->chip_info->als_mode_active;
1336 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1337 if (ret < 0)
1338 return ret;
1340 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1342 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1343 if (ret < 0)
1344 return ret;
1346 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1347 if (ret < 0)
1348 return ret;
1350 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1353 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1355 switch (reg) {
1356 case LTR501_ALS_DATA1:
1357 case LTR501_ALS_DATA0:
1358 case LTR501_ALS_PS_STATUS:
1359 case LTR501_PS_DATA:
1360 return true;
1361 default:
1362 return false;
1366 static const struct regmap_config ltr501_regmap_config = {
1367 .name = LTR501_REGMAP_NAME,
1368 .reg_bits = 8,
1369 .val_bits = 8,
1370 .max_register = LTR501_MAX_REG,
1371 .cache_type = REGCACHE_RBTREE,
1372 .volatile_reg = ltr501_is_volatile_reg,
1375 static int ltr501_powerdown(struct ltr501_data *data)
1377 return ltr501_write_contr(data, data->als_contr &
1378 ~data->chip_info->als_mode_active,
1379 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1382 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1384 const struct acpi_device_id *id;
1386 id = acpi_match_device(dev->driver->acpi_match_table, dev);
1387 if (!id)
1388 return NULL;
1389 *chip_idx = id->driver_data;
1390 return dev_name(dev);
1393 static int ltr501_probe(struct i2c_client *client,
1394 const struct i2c_device_id *id)
1396 struct ltr501_data *data;
1397 struct iio_dev *indio_dev;
1398 struct regmap *regmap;
1399 int ret, partid, chip_idx = 0;
1400 const char *name = NULL;
1402 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1403 if (!indio_dev)
1404 return -ENOMEM;
1406 regmap = devm_regmap_init_i2c(client, &ltr501_regmap_config);
1407 if (IS_ERR(regmap)) {
1408 dev_err(&client->dev, "Regmap initialization failed.\n");
1409 return PTR_ERR(regmap);
1412 data = iio_priv(indio_dev);
1413 i2c_set_clientdata(client, indio_dev);
1414 data->client = client;
1415 data->regmap = regmap;
1416 mutex_init(&data->lock_als);
1417 mutex_init(&data->lock_ps);
1419 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1420 reg_field_it);
1421 if (IS_ERR(data->reg_it)) {
1422 dev_err(&client->dev, "Integ time reg field init failed.\n");
1423 return PTR_ERR(data->reg_it);
1426 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1427 reg_field_als_intr);
1428 if (IS_ERR(data->reg_als_intr)) {
1429 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1430 return PTR_ERR(data->reg_als_intr);
1433 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1434 reg_field_ps_intr);
1435 if (IS_ERR(data->reg_ps_intr)) {
1436 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1437 return PTR_ERR(data->reg_ps_intr);
1440 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1441 reg_field_als_rate);
1442 if (IS_ERR(data->reg_als_rate)) {
1443 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1444 return PTR_ERR(data->reg_als_rate);
1447 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1448 reg_field_ps_rate);
1449 if (IS_ERR(data->reg_ps_rate)) {
1450 dev_err(&client->dev, "PS samp rate field init failed.\n");
1451 return PTR_ERR(data->reg_ps_rate);
1454 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1455 reg_field_als_prst);
1456 if (IS_ERR(data->reg_als_prst)) {
1457 dev_err(&client->dev, "ALS prst reg field init failed\n");
1458 return PTR_ERR(data->reg_als_prst);
1461 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1462 reg_field_ps_prst);
1463 if (IS_ERR(data->reg_ps_prst)) {
1464 dev_err(&client->dev, "PS prst reg field init failed.\n");
1465 return PTR_ERR(data->reg_ps_prst);
1468 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1469 if (ret < 0)
1470 return ret;
1472 if (id) {
1473 name = id->name;
1474 chip_idx = id->driver_data;
1475 } else if (ACPI_HANDLE(&client->dev)) {
1476 name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1477 } else {
1478 return -ENODEV;
1481 data->chip_info = &ltr501_chip_info_tbl[chip_idx];
1483 if ((partid >> 4) != data->chip_info->partid)
1484 return -ENODEV;
1486 indio_dev->info = data->chip_info->info;
1487 indio_dev->channels = data->chip_info->channels;
1488 indio_dev->num_channels = data->chip_info->no_channels;
1489 indio_dev->name = name;
1490 indio_dev->modes = INDIO_DIRECT_MODE;
1492 ret = ltr501_init(data);
1493 if (ret < 0)
1494 return ret;
1496 if (client->irq > 0) {
1497 ret = devm_request_threaded_irq(&client->dev, client->irq,
1498 NULL, ltr501_interrupt_handler,
1499 IRQF_TRIGGER_FALLING |
1500 IRQF_ONESHOT,
1501 "ltr501_thresh_event",
1502 indio_dev);
1503 if (ret) {
1504 dev_err(&client->dev, "request irq (%d) failed\n",
1505 client->irq);
1506 return ret;
1508 } else {
1509 indio_dev->info = data->chip_info->info_no_irq;
1512 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1513 ltr501_trigger_handler, NULL);
1514 if (ret)
1515 goto powerdown_on_error;
1517 ret = iio_device_register(indio_dev);
1518 if (ret)
1519 goto error_unreg_buffer;
1521 return 0;
1523 error_unreg_buffer:
1524 iio_triggered_buffer_cleanup(indio_dev);
1525 powerdown_on_error:
1526 ltr501_powerdown(data);
1527 return ret;
1530 static int ltr501_remove(struct i2c_client *client)
1532 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1534 iio_device_unregister(indio_dev);
1535 iio_triggered_buffer_cleanup(indio_dev);
1536 ltr501_powerdown(iio_priv(indio_dev));
1538 return 0;
1541 #ifdef CONFIG_PM_SLEEP
1542 static int ltr501_suspend(struct device *dev)
1544 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1545 to_i2c_client(dev)));
1546 return ltr501_powerdown(data);
1549 static int ltr501_resume(struct device *dev)
1551 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1552 to_i2c_client(dev)));
1554 return ltr501_write_contr(data, data->als_contr,
1555 data->ps_contr);
1557 #endif
1559 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1561 static const struct acpi_device_id ltr_acpi_match[] = {
1562 {"LTER0501", ltr501},
1563 {"LTER0559", ltr559},
1564 {"LTER0301", ltr301},
1565 { },
1567 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1569 static const struct i2c_device_id ltr501_id[] = {
1570 { "ltr501", ltr501},
1571 { "ltr559", ltr559},
1572 { "ltr301", ltr301},
1575 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1577 static struct i2c_driver ltr501_driver = {
1578 .driver = {
1579 .name = LTR501_DRV_NAME,
1580 .pm = &ltr501_pm_ops,
1581 .acpi_match_table = ACPI_PTR(ltr_acpi_match),
1583 .probe = ltr501_probe,
1584 .remove = ltr501_remove,
1585 .id_table = ltr501_id,
1588 module_i2c_driver(ltr501_driver);
1590 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1591 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1592 MODULE_LICENSE("GPL");