WIP FPC-III support
[linux/fpc-iii.git] / drivers / iio / temperature / mlx90632.c
blob503fe54a0bb937ad9684b001cf3dd59dbf2741b1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8 */
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/limits.h>
16 #include <linux/module.h>
17 #include <linux/math64.h>
18 #include <linux/of.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/regmap.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
25 /* Memory sections addresses */
26 #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
27 #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
29 /* EEPROM addresses - used at startup */
30 #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
31 #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
32 #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
33 #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
34 #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
35 #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
36 #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
37 #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
38 #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
39 #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
40 #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
41 #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
42 #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
43 #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
44 #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
45 #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
46 #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
47 #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
48 #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
49 #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
51 #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
52 #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
54 #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
55 #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
57 /* Register addresses - volatile */
58 #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
60 /* Control register address - volatile */
61 #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
62 #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
63 #define MLX90632_CFG_MTYP_MASK GENMASK(8, 4) /* Meas select Mask */
65 /* PowerModes statuses */
66 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
67 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
68 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
69 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
70 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
72 /* Measurement types */
73 #define MLX90632_MTYP_MEDICAL 0
74 #define MLX90632_MTYP_EXTENDED 17
76 /* Measurement type select*/
77 #define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
78 #define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
79 #define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
81 /* I2C command register - volatile */
82 #define MLX90632_REG_I2C_CMD 0x3005 /* I2C command Register address */
84 /* Device status register - volatile */
85 #define MLX90632_REG_STATUS 0x3fff /* Device status register */
86 #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
87 #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
88 #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
89 #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
90 #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
92 /* RAM_MEAS address-es for each channel */
93 #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
94 #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
95 #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
97 /* Name important RAM_MEAS channels */
98 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
99 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
100 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
101 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
102 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
103 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
104 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
105 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
107 /* Magic constants */
108 #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
109 #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
110 #define MLX90632_ID_EXTENDED 0x0505 /* EEPROM DSPv5 Extended range device id */
111 #define MLX90632_ID_MASK GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
112 #define MLX90632_DSP_VERSION 5 /* DSP version */
113 #define MLX90632_DSP_MASK GENMASK(7, 0) /* DSP version in EE_VERSION */
114 #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
115 #define MLX90632_REF_12 12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
116 #define MLX90632_REF_3 12LL /* ResCtrlRef value of Channel 3 */
117 #define MLX90632_MAX_MEAS_NUM 31 /* Maximum measurements in list */
118 #define MLX90632_SLEEP_DELAY_MS 3000 /* Autosleep delay */
119 #define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
122 * struct mlx90632_data - private data for the MLX90632 device
123 * @client: I2C client of the device
124 * @lock: Internal mutex for multiple reads for single measurement
125 * @regmap: Regmap of the device
126 * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
127 * @mtyp: Measurement type physical sensor configuration for extended range
128 * calculations
129 * @object_ambient_temperature: Ambient temperature at object (might differ of
130 * the ambient temperature of sensor.
132 struct mlx90632_data {
133 struct i2c_client *client;
134 struct mutex lock;
135 struct regmap *regmap;
136 u16 emissivity;
137 u8 mtyp;
138 u32 object_ambient_temperature;
141 static const struct regmap_range mlx90632_volatile_reg_range[] = {
142 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
143 regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
144 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
145 regmap_reg_range(MLX90632_RAM_1(0),
146 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
149 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
150 .yes_ranges = mlx90632_volatile_reg_range,
151 .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
154 static const struct regmap_range mlx90632_read_reg_range[] = {
155 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
156 regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
157 regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
158 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
159 regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
160 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
161 regmap_reg_range(MLX90632_RAM_1(0),
162 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
165 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
166 .yes_ranges = mlx90632_read_reg_range,
167 .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
170 static const struct regmap_range mlx90632_no_write_reg_range[] = {
171 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
172 regmap_reg_range(MLX90632_RAM_1(0),
173 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
176 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
177 .no_ranges = mlx90632_no_write_reg_range,
178 .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
181 static const struct regmap_config mlx90632_regmap = {
182 .reg_bits = 16,
183 .val_bits = 16,
185 .volatile_table = &mlx90632_volatile_regs_tbl,
186 .rd_table = &mlx90632_readable_regs_tbl,
187 .wr_table = &mlx90632_writeable_regs_tbl,
189 .use_single_read = true,
190 .use_single_write = true,
191 .reg_format_endian = REGMAP_ENDIAN_BIG,
192 .val_format_endian = REGMAP_ENDIAN_BIG,
193 .cache_type = REGCACHE_RBTREE,
196 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
198 return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
199 MLX90632_CFG_PWR_MASK,
200 MLX90632_PWR_STATUS_SLEEP_STEP);
203 static s32 mlx90632_pwr_continuous(struct regmap *regmap)
205 return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
206 MLX90632_CFG_PWR_MASK,
207 MLX90632_PWR_STATUS_CONTINUOUS);
211 * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
212 * @data: pointer to mlx90632_data object containing regmap information
214 * Perform a measurement and return latest measurement cycle position reported
215 * by sensor. This is a blocking function for 500ms, as that is default sensor
216 * refresh rate.
218 static int mlx90632_perform_measurement(struct mlx90632_data *data)
220 unsigned int reg_status;
221 int ret;
223 ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
224 MLX90632_STAT_DATA_RDY, 0);
225 if (ret < 0)
226 return ret;
228 ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
229 !(reg_status & MLX90632_STAT_DATA_RDY), 10000,
230 100 * 10000);
232 if (ret < 0) {
233 dev_err(&data->client->dev, "data not ready");
234 return -ETIMEDOUT;
237 return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
240 static int mlx90632_set_meas_type(struct regmap *regmap, u8 type)
242 int ret;
244 if ((type != MLX90632_MTYP_MEDICAL) && (type != MLX90632_MTYP_EXTENDED))
245 return -EINVAL;
247 ret = regmap_write(regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
248 if (ret < 0)
249 return ret;
251 ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL,
252 (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
253 (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
254 if (ret < 0)
255 return ret;
257 return mlx90632_pwr_continuous(regmap);
260 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
261 uint8_t *channel_old)
263 switch (perform_ret) {
264 case 1:
265 *channel_new = 1;
266 *channel_old = 2;
267 break;
268 case 2:
269 *channel_new = 2;
270 *channel_old = 1;
271 break;
272 default:
273 return -EINVAL;
276 return 0;
279 static int mlx90632_read_ambient_raw(struct regmap *regmap,
280 s16 *ambient_new_raw, s16 *ambient_old_raw)
282 int ret;
283 unsigned int read_tmp;
285 ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
286 if (ret < 0)
287 return ret;
288 *ambient_new_raw = (s16)read_tmp;
290 ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
291 if (ret < 0)
292 return ret;
293 *ambient_old_raw = (s16)read_tmp;
295 return ret;
298 static int mlx90632_read_object_raw(struct regmap *regmap,
299 int perform_measurement_ret,
300 s16 *object_new_raw, s16 *object_old_raw)
302 int ret;
303 unsigned int read_tmp;
304 s16 read;
305 u8 channel = 0;
306 u8 channel_old = 0;
308 ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
309 &channel_old);
310 if (ret != 0)
311 return ret;
313 ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
314 if (ret < 0)
315 return ret;
317 read = (s16)read_tmp;
319 ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
320 if (ret < 0)
321 return ret;
322 *object_new_raw = (read + (s16)read_tmp) / 2;
324 ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
325 if (ret < 0)
326 return ret;
327 read = (s16)read_tmp;
329 ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
330 if (ret < 0)
331 return ret;
332 *object_old_raw = (read + (s16)read_tmp) / 2;
334 return ret;
337 static int mlx90632_read_all_channel(struct mlx90632_data *data,
338 s16 *ambient_new_raw, s16 *ambient_old_raw,
339 s16 *object_new_raw, s16 *object_old_raw)
341 s32 ret, measurement;
343 mutex_lock(&data->lock);
344 measurement = mlx90632_perform_measurement(data);
345 if (measurement < 0) {
346 ret = measurement;
347 goto read_unlock;
349 ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
350 ambient_old_raw);
351 if (ret < 0)
352 goto read_unlock;
354 ret = mlx90632_read_object_raw(data->regmap, measurement,
355 object_new_raw, object_old_raw);
356 read_unlock:
357 mutex_unlock(&data->lock);
358 return ret;
361 static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
362 s16 *ambient_new_raw, s16 *ambient_old_raw)
364 unsigned int read_tmp;
365 int ret;
367 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp);
368 if (ret < 0)
369 return ret;
370 *ambient_new_raw = (s16)read_tmp;
372 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp);
373 if (ret < 0)
374 return ret;
375 *ambient_old_raw = (s16)read_tmp;
377 return 0;
380 static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
382 unsigned int read_tmp;
383 s32 read;
384 int ret;
386 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp);
387 if (ret < 0)
388 return ret;
389 read = (s16)read_tmp;
391 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp);
392 if (ret < 0)
393 return ret;
394 read = read - (s16)read_tmp;
396 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp);
397 if (ret < 0)
398 return ret;
399 read = read - (s16)read_tmp;
401 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp);
402 if (ret < 0)
403 return ret;
404 read = (read + (s16)read_tmp) / 2;
406 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp);
407 if (ret < 0)
408 return ret;
409 read = read + (s16)read_tmp;
411 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp);
412 if (ret < 0)
413 return ret;
414 read = read + (s16)read_tmp;
416 if (read > S16_MAX || read < S16_MIN)
417 return -ERANGE;
419 *object_new_raw = read;
421 return 0;
424 static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
425 s16 *ambient_new_raw, s16 *ambient_old_raw)
427 s32 ret, meas;
429 mutex_lock(&data->lock);
430 ret = mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_EXTENDED);
431 if (ret < 0)
432 goto read_unlock;
434 ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
435 50000, 800000, false, data);
436 if (ret != 0)
437 goto read_unlock;
439 ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw);
440 if (ret < 0)
441 goto read_unlock;
443 ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw);
445 read_unlock:
446 (void) mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_MEDICAL);
448 mutex_unlock(&data->lock);
449 return ret;
452 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
453 s32 *reg_value)
455 s32 ret;
456 unsigned int read;
457 u32 value;
459 ret = regmap_read(regmap, reg_lsb, &read);
460 if (ret < 0)
461 return ret;
463 value = read;
465 ret = regmap_read(regmap, reg_lsb + 1, &read);
466 if (ret < 0)
467 return ret;
469 *reg_value = (read << 16) | (value & 0xffff);
471 return 0;
474 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
475 s16 ambient_old_raw, s16 Gb)
477 s64 VR_Ta, kGb, tmp;
479 kGb = ((s64)Gb * 1000LL) >> 10ULL;
480 VR_Ta = (s64)ambient_old_raw * 1000000LL +
481 kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
482 (MLX90632_REF_3));
483 tmp = div64_s64(
484 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
485 (MLX90632_REF_3)), VR_Ta);
486 return div64_s64(tmp << 19ULL, 1000LL);
489 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
490 s16 ambient_new_raw,
491 s16 ambient_old_raw, s16 Ka)
493 s64 VR_IR, kKa, tmp;
495 kKa = ((s64)Ka * 1000LL) >> 10ULL;
496 VR_IR = (s64)ambient_old_raw * 1000000LL +
497 kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
498 (MLX90632_REF_3));
499 tmp = div64_s64(
500 div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
501 * 1000000000000LL), (MLX90632_REF_12)),
502 VR_IR);
503 return div64_s64((tmp << 19ULL), 1000LL);
506 static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
507 s16 ambient_old_raw, s16 Ka)
509 s64 VR_IR, kKa, tmp;
511 kKa = ((s64)Ka * 1000LL) >> 10ULL;
512 VR_IR = (s64)ambient_old_raw * 1000000LL +
513 kKa * div64_s64((s64)ambient_new_raw * 1000LL,
514 MLX90632_REF_3);
515 tmp = div64_s64(
516 div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
517 VR_IR);
518 return div64_s64(tmp << 19ULL, 1000LL);
521 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
522 s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
524 s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
526 AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
527 Gb);
528 Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
529 Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
530 Ablock = Asub * (Bsub * Bsub);
531 Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
532 Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
534 sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
536 return div64_s64(sum, 10000000LL);
539 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
540 s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
541 s32 Ga, s16 Ha, s16 Hb,
542 u16 emissivity)
544 s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
545 s64 Ha_customer, Hb_customer;
547 Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
548 Hb_customer = ((s64)Hb * 100) >> 10ULL;
550 calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
551 * 1000LL)) >> 36LL;
552 calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
553 Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
554 * Ha_customer), 1000LL);
555 Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
556 Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
557 Alpha_corr = div64_s64(Alpha_corr, 1000LL);
558 ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
560 return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
561 - 27315 - Hb_customer) * 10;
564 static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
566 return (div64_s64(TAdut, scale) + 27315) *
567 (div64_s64(TAdut, scale) + 27315) *
568 (div64_s64(TAdut, scale) + 27315) *
569 (div64_s64(TAdut, scale) + 27315);
572 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
573 s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
574 u16 tmp_emi)
576 s64 kTA, kTA0, TAdut, TAdut4;
577 s64 temp = 25000;
578 s8 i;
580 kTA = (Ea * 1000LL) >> 16LL;
581 kTA0 = (Eb * 1000LL) >> 8LL;
582 TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
583 TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
585 /* Iterations of calculation as described in datasheet */
586 for (i = 0; i < 5; ++i) {
587 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
588 Fa, Fb, Ga, Ha, Hb,
589 tmp_emi);
591 return temp;
594 static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
595 s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
596 s16 Ha, s16 Hb, u16 tmp_emi)
598 s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
599 s64 temp = 25000;
600 s8 i;
602 kTA = (Ea * 1000LL) >> 16LL;
603 kTA0 = (Eb * 1000LL) >> 8LL;
604 TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL;
605 Tr4 = mlx90632_calc_ta4(reflected, 10);
606 TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
607 TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000;
609 /* Iterations of calculation as described in datasheet */
610 for (i = 0; i < 5; ++i) {
611 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4,
612 Fa / 2, Fb, Ga, Ha, Hb,
613 tmp_emi);
616 return temp;
619 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
621 s32 ret;
622 s32 Ea, Eb, Fa, Fb, Ga;
623 unsigned int read_tmp;
624 s16 Ha, Hb, Gb, Ka;
625 s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
626 s64 object, ambient;
628 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
629 if (ret < 0)
630 return ret;
631 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
632 if (ret < 0)
633 return ret;
634 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
635 if (ret < 0)
636 return ret;
637 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
638 if (ret < 0)
639 return ret;
640 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
641 if (ret < 0)
642 return ret;
643 ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
644 if (ret < 0)
645 return ret;
646 Ha = (s16)read_tmp;
647 ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
648 if (ret < 0)
649 return ret;
650 Hb = (s16)read_tmp;
651 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
652 if (ret < 0)
653 return ret;
654 Gb = (s16)read_tmp;
655 ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
656 if (ret < 0)
657 return ret;
658 Ka = (s16)read_tmp;
660 ret = mlx90632_read_all_channel(data,
661 &ambient_new_raw, &ambient_old_raw,
662 &object_new_raw, &object_old_raw);
663 if (ret < 0)
664 return ret;
666 if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
667 data->mtyp == MLX90632_MTYP_EXTENDED) {
668 ret = mlx90632_read_all_channel_extended(data, &object_new_raw,
669 &ambient_new_raw, &ambient_old_raw);
670 if (ret < 0)
671 return ret;
673 /* Use extended mode calculations */
674 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
675 ambient_old_raw, Gb);
676 object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
677 ambient_new_raw,
678 ambient_old_raw, Ka);
679 *val = mlx90632_calc_temp_object_extended(object, ambient,
680 data->object_ambient_temperature,
681 Ea, Eb, Fa, Fb, Ga,
682 Ha, Hb, data->emissivity);
683 return 0;
686 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
687 ambient_old_raw, Gb);
688 object = mlx90632_preprocess_temp_obj(object_new_raw,
689 object_old_raw,
690 ambient_new_raw,
691 ambient_old_raw, Ka);
693 *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
694 Ha, Hb, data->emissivity);
695 return 0;
698 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
700 s32 ret;
701 unsigned int read_tmp;
702 s32 PT, PR, PG, PO;
703 s16 Gb;
704 s16 ambient_new_raw, ambient_old_raw;
706 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
707 if (ret < 0)
708 return ret;
709 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
710 if (ret < 0)
711 return ret;
712 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
713 if (ret < 0)
714 return ret;
715 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
716 if (ret < 0)
717 return ret;
718 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
719 if (ret < 0)
720 return ret;
721 Gb = (s16)read_tmp;
723 ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
724 &ambient_old_raw);
725 if (ret < 0)
726 return ret;
727 *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
728 PT, PR, PG, PO, Gb);
729 return ret;
732 static int mlx90632_read_raw(struct iio_dev *indio_dev,
733 struct iio_chan_spec const *channel, int *val,
734 int *val2, long mask)
736 struct mlx90632_data *data = iio_priv(indio_dev);
737 int ret;
739 switch (mask) {
740 case IIO_CHAN_INFO_PROCESSED:
741 switch (channel->channel2) {
742 case IIO_MOD_TEMP_AMBIENT:
743 ret = mlx90632_calc_ambient_dsp105(data, val);
744 if (ret < 0)
745 return ret;
746 return IIO_VAL_INT;
747 case IIO_MOD_TEMP_OBJECT:
748 ret = mlx90632_calc_object_dsp105(data, val);
749 if (ret < 0)
750 return ret;
751 return IIO_VAL_INT;
752 default:
753 return -EINVAL;
755 case IIO_CHAN_INFO_CALIBEMISSIVITY:
756 if (data->emissivity == 1000) {
757 *val = 1;
758 *val2 = 0;
759 } else {
760 *val = 0;
761 *val2 = data->emissivity * 1000;
763 return IIO_VAL_INT_PLUS_MICRO;
764 case IIO_CHAN_INFO_CALIBAMBIENT:
765 *val = data->object_ambient_temperature;
766 return IIO_VAL_INT;
767 default:
768 return -EINVAL;
772 static int mlx90632_write_raw(struct iio_dev *indio_dev,
773 struct iio_chan_spec const *channel, int val,
774 int val2, long mask)
776 struct mlx90632_data *data = iio_priv(indio_dev);
778 switch (mask) {
779 case IIO_CHAN_INFO_CALIBEMISSIVITY:
780 /* Confirm we are within 0 and 1.0 */
781 if (val < 0 || val2 < 0 || val > 1 ||
782 (val == 1 && val2 != 0))
783 return -EINVAL;
784 data->emissivity = val * 1000 + val2 / 1000;
785 return 0;
786 case IIO_CHAN_INFO_CALIBAMBIENT:
787 data->object_ambient_temperature = val;
788 return 0;
789 default:
790 return -EINVAL;
794 static const struct iio_chan_spec mlx90632_channels[] = {
796 .type = IIO_TEMP,
797 .modified = 1,
798 .channel2 = IIO_MOD_TEMP_AMBIENT,
799 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
802 .type = IIO_TEMP,
803 .modified = 1,
804 .channel2 = IIO_MOD_TEMP_OBJECT,
805 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
806 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
810 static const struct iio_info mlx90632_info = {
811 .read_raw = mlx90632_read_raw,
812 .write_raw = mlx90632_write_raw,
815 static int mlx90632_sleep(struct mlx90632_data *data)
817 regcache_mark_dirty(data->regmap);
819 dev_dbg(&data->client->dev, "Requesting sleep");
820 return mlx90632_pwr_set_sleep_step(data->regmap);
823 static int mlx90632_wakeup(struct mlx90632_data *data)
825 int ret;
827 ret = regcache_sync(data->regmap);
828 if (ret < 0) {
829 dev_err(&data->client->dev,
830 "Failed to sync regmap registers: %d\n", ret);
831 return ret;
834 dev_dbg(&data->client->dev, "Requesting wake-up\n");
835 return mlx90632_pwr_continuous(data->regmap);
838 static int mlx90632_probe(struct i2c_client *client,
839 const struct i2c_device_id *id)
841 struct iio_dev *indio_dev;
842 struct mlx90632_data *mlx90632;
843 struct regmap *regmap;
844 int ret;
845 unsigned int read;
847 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
848 if (!indio_dev) {
849 dev_err(&client->dev, "Failed to allocate device\n");
850 return -ENOMEM;
853 regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
854 if (IS_ERR(regmap)) {
855 ret = PTR_ERR(regmap);
856 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
857 return ret;
860 mlx90632 = iio_priv(indio_dev);
861 i2c_set_clientdata(client, indio_dev);
862 mlx90632->client = client;
863 mlx90632->regmap = regmap;
864 mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
866 mutex_init(&mlx90632->lock);
867 indio_dev->name = id->name;
868 indio_dev->modes = INDIO_DIRECT_MODE;
869 indio_dev->info = &mlx90632_info;
870 indio_dev->channels = mlx90632_channels;
871 indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
873 ret = mlx90632_wakeup(mlx90632);
874 if (ret < 0) {
875 dev_err(&client->dev, "Wakeup failed: %d\n", ret);
876 return ret;
879 ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
880 if (ret < 0) {
881 dev_err(&client->dev, "read of version failed: %d\n", ret);
882 return ret;
884 read = read & MLX90632_ID_MASK;
885 if (read == MLX90632_ID_MEDICAL) {
886 dev_dbg(&client->dev,
887 "Detected Medical EEPROM calibration %x\n", read);
888 } else if (read == MLX90632_ID_CONSUMER) {
889 dev_dbg(&client->dev,
890 "Detected Consumer EEPROM calibration %x\n", read);
891 } else if (read == MLX90632_ID_EXTENDED) {
892 dev_dbg(&client->dev,
893 "Detected Extended range EEPROM calibration %x\n", read);
894 mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
895 } else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
896 dev_dbg(&client->dev,
897 "Detected Unknown EEPROM calibration %x\n", read);
898 } else {
899 dev_err(&client->dev,
900 "Wrong DSP version %x (expected %x)\n",
901 read, MLX90632_DSP_VERSION);
902 return -EPROTONOSUPPORT;
905 mlx90632->emissivity = 1000;
906 mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
908 pm_runtime_disable(&client->dev);
909 ret = pm_runtime_set_active(&client->dev);
910 if (ret < 0) {
911 mlx90632_sleep(mlx90632);
912 return ret;
914 pm_runtime_enable(&client->dev);
915 pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
916 pm_runtime_use_autosuspend(&client->dev);
918 return iio_device_register(indio_dev);
921 static int mlx90632_remove(struct i2c_client *client)
923 struct iio_dev *indio_dev = i2c_get_clientdata(client);
924 struct mlx90632_data *data = iio_priv(indio_dev);
926 iio_device_unregister(indio_dev);
928 pm_runtime_disable(&client->dev);
929 pm_runtime_set_suspended(&client->dev);
930 pm_runtime_put_noidle(&client->dev);
932 mlx90632_sleep(data);
934 return 0;
937 static const struct i2c_device_id mlx90632_id[] = {
938 { "mlx90632", 0 },
941 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
943 static const struct of_device_id mlx90632_of_match[] = {
944 { .compatible = "melexis,mlx90632" },
947 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
949 static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
951 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
952 struct mlx90632_data *data = iio_priv(indio_dev);
954 return mlx90632_sleep(data);
957 static int __maybe_unused mlx90632_pm_resume(struct device *dev)
959 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
960 struct mlx90632_data *data = iio_priv(indio_dev);
962 return mlx90632_wakeup(data);
965 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
966 mlx90632_pm_resume, NULL);
968 static struct i2c_driver mlx90632_driver = {
969 .driver = {
970 .name = "mlx90632",
971 .of_match_table = mlx90632_of_match,
972 .pm = &mlx90632_pm_ops,
974 .probe = mlx90632_probe,
975 .remove = mlx90632_remove,
976 .id_table = mlx90632_id,
978 module_i2c_driver(mlx90632_driver);
980 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
981 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
982 MODULE_LICENSE("GPL v2");