2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include "t4_values.h"
39 #include "t4fw_ri_api.h"
41 #define T4_MAX_NUM_PD 65536
42 #define T4_MAX_MR_SIZE (~0ULL)
43 #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
44 #define T4_STAG_UNSET 0xffffffff
46 #define PCIE_MA_SYNC_A 0x30b4
48 struct t4_status_page
{
49 __be32 rsvd1
; /* flit 0 - hw owns */
54 u8 qp_err
; /* flit 1 - sw owns */
64 #define T4_RQT_ENTRY_SHIFT 6
65 #define T4_RQT_ENTRY_SIZE BIT(T4_RQT_ENTRY_SHIFT)
66 #define T4_EQ_ENTRY_SIZE 64
68 #define T4_SQ_NUM_SLOTS 5
69 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
70 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
71 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
72 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
73 sizeof(struct fw_ri_immd)))
74 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
75 sizeof(struct fw_ri_rdma_write_wr) - \
76 sizeof(struct fw_ri_immd)))
77 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
78 sizeof(struct fw_ri_rdma_write_wr) - \
79 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
80 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
81 sizeof(struct fw_ri_immd)) & ~31UL)
82 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
83 #define T4_MAX_FR_DSGL 1024
84 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
86 static inline int t4_max_fr_depth(int use_dsgl
)
88 return use_dsgl
? T4_MAX_FR_DSGL_DEPTH
: T4_MAX_FR_IMMD_DEPTH
;
91 #define T4_RQ_NUM_SLOTS 2
92 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
93 #define T4_MAX_RECV_SGE 4
95 #define T4_WRITE_CMPL_MAX_SGL 4
96 #define T4_WRITE_CMPL_MAX_CQE 16
99 struct fw_ri_res_wr res
;
101 struct fw_ri_rdma_write_wr write
;
102 struct fw_ri_send_wr send
;
103 struct fw_ri_rdma_read_wr read
;
104 struct fw_ri_bind_mw_wr bind
;
105 struct fw_ri_fr_nsmr_wr fr
;
106 struct fw_ri_fr_nsmr_tpte_wr fr_tpte
;
107 struct fw_ri_inv_lstag_wr inv
;
108 struct fw_ri_rdma_write_cmpl_wr write_cmpl
;
109 struct t4_status_page status
;
110 __be64 flits
[T4_EQ_ENTRY_SIZE
/ sizeof(__be64
) * T4_SQ_NUM_SLOTS
];
114 struct fw_ri_recv_wr recv
;
115 struct t4_status_page status
;
116 __be64 flits
[T4_EQ_ENTRY_SIZE
/ sizeof(__be64
) * T4_RQ_NUM_SLOTS
];
119 static inline void init_wr_hdr(union t4_wr
*wqe
, u16 wrid
,
120 enum fw_wr_opcodes opcode
, u8 flags
, u8 len16
)
122 wqe
->send
.opcode
= (u8
)opcode
;
123 wqe
->send
.flags
= flags
;
124 wqe
->send
.wrid
= wrid
;
128 wqe
->send
.len16
= len16
;
131 /* CQE/AE status codes */
132 #define T4_ERR_SUCCESS 0x0
133 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
134 /* STAG is offlimt, being 0, */
135 /* or STAG_key mismatch */
136 #define T4_ERR_PDID 0x2 /* PDID mismatch */
137 #define T4_ERR_QPID 0x3 /* QPID mismatch */
138 #define T4_ERR_ACCESS 0x4 /* Invalid access right */
139 #define T4_ERR_WRAP 0x5 /* Wrap error */
140 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
141 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
142 /* shared memory region */
143 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
144 /* shared memory region */
145 #define T4_ERR_ECC 0x9 /* ECC error detected */
146 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
147 /* reading PSTAG for a MW */
149 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
151 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
152 #define T4_ERR_CRC 0x10 /* CRC error */
153 #define T4_ERR_MARKER 0x11 /* Marker error */
154 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
155 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
156 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
157 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
158 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
159 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
160 #define T4_ERR_MSN 0x18 /* MSN error */
161 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
162 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
164 #define T4_ERR_MSN_GAP 0x1B
165 #define T4_ERR_MSN_RANGE 0x1C
166 #define T4_ERR_IRD_OVERFLOW 0x1D
167 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
169 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
201 * Use union for immediate data to be consistent with
202 * stack's 32 bit data and iWARP spec's 64 bit data.
220 /* macros for flit 0 of the cqe */
222 #define CQE_QPID_S 12
223 #define CQE_QPID_M 0xFFFFF
224 #define CQE_QPID_G(x) ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
225 #define CQE_QPID_V(x) ((x)<<CQE_QPID_S)
227 #define CQE_SWCQE_S 11
228 #define CQE_SWCQE_M 0x1
229 #define CQE_SWCQE_G(x) ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
230 #define CQE_SWCQE_V(x) ((x)<<CQE_SWCQE_S)
232 #define CQE_DRAIN_S 10
233 #define CQE_DRAIN_M 0x1
234 #define CQE_DRAIN_G(x) ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
235 #define CQE_DRAIN_V(x) ((x)<<CQE_DRAIN_S)
237 #define CQE_STATUS_S 5
238 #define CQE_STATUS_M 0x1F
239 #define CQE_STATUS_G(x) ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
240 #define CQE_STATUS_V(x) ((x)<<CQE_STATUS_S)
243 #define CQE_TYPE_M 0x1
244 #define CQE_TYPE_G(x) ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
245 #define CQE_TYPE_V(x) ((x)<<CQE_TYPE_S)
247 #define CQE_OPCODE_S 0
248 #define CQE_OPCODE_M 0xF
249 #define CQE_OPCODE_G(x) ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
250 #define CQE_OPCODE_V(x) ((x)<<CQE_OPCODE_S)
252 #define SW_CQE(x) (CQE_SWCQE_G(be32_to_cpu((x)->header)))
253 #define DRAIN_CQE(x) (CQE_DRAIN_G(be32_to_cpu((x)->header)))
254 #define CQE_QPID(x) (CQE_QPID_G(be32_to_cpu((x)->header)))
255 #define CQE_TYPE(x) (CQE_TYPE_G(be32_to_cpu((x)->header)))
256 #define SQ_TYPE(x) (CQE_TYPE((x)))
257 #define RQ_TYPE(x) (!CQE_TYPE((x)))
258 #define CQE_STATUS(x) (CQE_STATUS_G(be32_to_cpu((x)->header)))
259 #define CQE_OPCODE(x) (CQE_OPCODE_G(be32_to_cpu((x)->header)))
261 #define CQE_SEND_OPCODE(x)( \
262 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
263 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
264 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
265 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
267 #define CQE_LEN(x) (be32_to_cpu((x)->len))
269 /* used for RQ completion processing */
270 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
271 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
272 #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
273 #define CQE_IMM_DATA(x)( \
274 (x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
276 /* used for SQ completion processing */
277 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
278 #define CQE_WRID_FR_STAG(x) (be32_to_cpu((x)->u.scqe.stag))
280 /* generic accessor macros */
281 #define CQE_WRID_HI(x) (be32_to_cpu((x)->u.gen.wrid_hi))
282 #define CQE_WRID_LOW(x) (be32_to_cpu((x)->u.gen.wrid_low))
283 #define CQE_DRAIN_COOKIE(x) ((x)->u.drain_cookie)
285 /* macros for flit 3 of the cqe */
286 #define CQE_GENBIT_S 63
287 #define CQE_GENBIT_M 0x1
288 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
289 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
291 #define CQE_OVFBIT_S 62
292 #define CQE_OVFBIT_M 0x1
293 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
295 #define CQE_IQTYPE_S 60
296 #define CQE_IQTYPE_M 0x3
297 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
299 #define CQE_TS_M 0x0fffffffffffffffULL
300 #define CQE_TS_G(x) ((x) & CQE_TS_M)
302 #define CQE_OVFBIT(x) ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
303 #define CQE_GENBIT(x) ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
304 #define CQE_TS(x) (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
319 static inline pgprot_t
t4_pgprot_wc(pgprot_t prot
)
321 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
322 return pgprot_writecombine(prot
);
324 return pgprot_noncached(prot
);
329 T4_SQ_ONCHIP
= (1<<0),
335 DEFINE_DMA_UNMAP_ADDR(mapping
);
336 unsigned long phys_addr
;
337 struct t4_swsqe
*sw_sq
;
338 struct t4_swsqe
*oldest_read
;
339 void __iomem
*bar2_va
;
362 union t4_recv_wr
*queue
;
364 DEFINE_DMA_UNMAP_ADDR(mapping
);
365 struct t4_swrqe
*sw_rq
;
366 void __iomem
*bar2_va
;
386 struct c4iw_rdev
*rdev
;
392 struct t4_srq_pending_wr
{
394 union t4_recv_wr wqe
;
399 union t4_recv_wr
*queue
;
401 DEFINE_DMA_UNMAP_ADDR(mapping
);
402 struct t4_swrqe
*sw_rq
;
403 void __iomem
*bar2_va
;
418 struct t4_srq_pending_wr
*pending_wrs
;
425 static inline u32
t4_srq_avail(struct t4_srq
*srq
)
427 return srq
->size
- 1 - srq
->in_use
;
430 static inline void t4_srq_produce(struct t4_srq
*srq
, u8 len16
)
433 if (++srq
->pidx
== srq
->size
)
435 srq
->wq_pidx
+= DIV_ROUND_UP(len16
* 16, T4_EQ_ENTRY_SIZE
);
436 if (srq
->wq_pidx
>= srq
->size
* T4_RQ_NUM_SLOTS
)
437 srq
->wq_pidx
%= srq
->size
* T4_RQ_NUM_SLOTS
;
438 srq
->queue
[srq
->size
].status
.host_pidx
= srq
->pidx
;
441 static inline void t4_srq_produce_pending_wr(struct t4_srq
*srq
)
443 srq
->pending_in_use
++;
445 if (++srq
->pending_pidx
== srq
->size
)
446 srq
->pending_pidx
= 0;
449 static inline void t4_srq_consume_pending_wr(struct t4_srq
*srq
)
451 srq
->pending_in_use
--;
453 if (++srq
->pending_cidx
== srq
->size
)
454 srq
->pending_cidx
= 0;
457 static inline void t4_srq_produce_ooo(struct t4_srq
*srq
)
463 static inline void t4_srq_consume_ooo(struct t4_srq
*srq
)
466 if (srq
->cidx
== srq
->size
)
468 srq
->queue
[srq
->size
].status
.host_cidx
= srq
->cidx
;
472 static inline void t4_srq_consume(struct t4_srq
*srq
)
475 if (++srq
->cidx
== srq
->size
)
477 srq
->queue
[srq
->size
].status
.host_cidx
= srq
->cidx
;
480 static inline int t4_rqes_posted(struct t4_wq
*wq
)
482 return wq
->rq
.in_use
;
485 static inline int t4_rq_empty(struct t4_wq
*wq
)
487 return wq
->rq
.in_use
== 0;
490 static inline int t4_rq_full(struct t4_wq
*wq
)
492 return wq
->rq
.in_use
== (wq
->rq
.size
- 1);
495 static inline u32
t4_rq_avail(struct t4_wq
*wq
)
497 return wq
->rq
.size
- 1 - wq
->rq
.in_use
;
500 static inline void t4_rq_produce(struct t4_wq
*wq
, u8 len16
)
503 if (++wq
->rq
.pidx
== wq
->rq
.size
)
505 wq
->rq
.wq_pidx
+= DIV_ROUND_UP(len16
*16, T4_EQ_ENTRY_SIZE
);
506 if (wq
->rq
.wq_pidx
>= wq
->rq
.size
* T4_RQ_NUM_SLOTS
)
507 wq
->rq
.wq_pidx
%= wq
->rq
.size
* T4_RQ_NUM_SLOTS
;
510 static inline void t4_rq_consume(struct t4_wq
*wq
)
513 if (++wq
->rq
.cidx
== wq
->rq
.size
)
517 static inline u16
t4_rq_host_wq_pidx(struct t4_wq
*wq
)
519 return wq
->rq
.queue
[wq
->rq
.size
].status
.host_wq_pidx
;
522 static inline u16
t4_rq_wq_size(struct t4_wq
*wq
)
524 return wq
->rq
.size
* T4_RQ_NUM_SLOTS
;
527 static inline int t4_sq_onchip(struct t4_sq
*sq
)
529 return sq
->flags
& T4_SQ_ONCHIP
;
532 static inline int t4_sq_empty(struct t4_wq
*wq
)
534 return wq
->sq
.in_use
== 0;
537 static inline int t4_sq_full(struct t4_wq
*wq
)
539 return wq
->sq
.in_use
== (wq
->sq
.size
- 1);
542 static inline u32
t4_sq_avail(struct t4_wq
*wq
)
544 return wq
->sq
.size
- 1 - wq
->sq
.in_use
;
547 static inline void t4_sq_produce(struct t4_wq
*wq
, u8 len16
)
550 if (++wq
->sq
.pidx
== wq
->sq
.size
)
552 wq
->sq
.wq_pidx
+= DIV_ROUND_UP(len16
*16, T4_EQ_ENTRY_SIZE
);
553 if (wq
->sq
.wq_pidx
>= wq
->sq
.size
* T4_SQ_NUM_SLOTS
)
554 wq
->sq
.wq_pidx
%= wq
->sq
.size
* T4_SQ_NUM_SLOTS
;
557 static inline void t4_sq_consume(struct t4_wq
*wq
)
559 if (wq
->sq
.cidx
== wq
->sq
.flush_cidx
)
560 wq
->sq
.flush_cidx
= -1;
562 if (++wq
->sq
.cidx
== wq
->sq
.size
)
566 static inline u16
t4_sq_host_wq_pidx(struct t4_wq
*wq
)
568 return wq
->sq
.queue
[wq
->sq
.size
].status
.host_wq_pidx
;
571 static inline u16
t4_sq_wq_size(struct t4_wq
*wq
)
573 return wq
->sq
.size
* T4_SQ_NUM_SLOTS
;
576 /* This function copies 64 byte coalesced work request to memory
577 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
578 * from the FIFO instead of from Host.
580 static inline void pio_copy(u64 __iomem
*dst
, u64
*src
)
592 static inline void t4_ring_srq_db(struct t4_srq
*srq
, u16 inc
, u8 len16
,
593 union t4_recv_wr
*wqe
)
595 /* Flush host queue memory writes. */
597 if (inc
== 1 && srq
->bar2_qid
== 0 && wqe
) {
598 pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
599 __func__
, srq
->pidx
, len16
);
600 pio_copy(srq
->bar2_va
+ SGE_UDB_WCDOORBELL
, (u64
*)wqe
);
602 pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
603 __func__
, srq
->pidx
, len16
);
604 writel(PIDX_T5_V(inc
) | QID_V(srq
->bar2_qid
),
605 srq
->bar2_va
+ SGE_UDB_KDOORBELL
);
607 /* Flush user doorbell area writes. */
611 static inline void t4_ring_sq_db(struct t4_wq
*wq
, u16 inc
, union t4_wr
*wqe
)
614 /* Flush host queue memory writes. */
616 if (wq
->sq
.bar2_va
) {
617 if (inc
== 1 && wq
->sq
.bar2_qid
== 0 && wqe
) {
618 pr_debug("WC wq->sq.pidx = %d\n", wq
->sq
.pidx
);
619 pio_copy((u64 __iomem
*)
620 (wq
->sq
.bar2_va
+ SGE_UDB_WCDOORBELL
),
623 pr_debug("DB wq->sq.pidx = %d\n", wq
->sq
.pidx
);
624 writel(PIDX_T5_V(inc
) | QID_V(wq
->sq
.bar2_qid
),
625 wq
->sq
.bar2_va
+ SGE_UDB_KDOORBELL
);
628 /* Flush user doorbell area writes. */
632 writel(QID_V(wq
->sq
.qid
) | PIDX_V(inc
), wq
->db
);
635 static inline void t4_ring_rq_db(struct t4_wq
*wq
, u16 inc
,
636 union t4_recv_wr
*wqe
)
639 /* Flush host queue memory writes. */
641 if (wq
->rq
.bar2_va
) {
642 if (inc
== 1 && wq
->rq
.bar2_qid
== 0 && wqe
) {
643 pr_debug("WC wq->rq.pidx = %d\n", wq
->rq
.pidx
);
644 pio_copy((u64 __iomem
*)
645 (wq
->rq
.bar2_va
+ SGE_UDB_WCDOORBELL
),
648 pr_debug("DB wq->rq.pidx = %d\n", wq
->rq
.pidx
);
649 writel(PIDX_T5_V(inc
) | QID_V(wq
->rq
.bar2_qid
),
650 wq
->rq
.bar2_va
+ SGE_UDB_KDOORBELL
);
653 /* Flush user doorbell area writes. */
657 writel(QID_V(wq
->rq
.qid
) | PIDX_V(inc
), wq
->db
);
660 static inline int t4_wq_in_error(struct t4_wq
*wq
)
665 static inline void t4_set_wq_in_error(struct t4_wq
*wq
, u32 srqidx
)
668 *wq
->srqidxp
= srqidx
;
672 static inline void t4_disable_wq_db(struct t4_wq
*wq
)
674 wq
->rq
.queue
[wq
->rq
.size
].status
.db_off
= 1;
677 static inline void t4_enable_wq_db(struct t4_wq
*wq
)
679 wq
->rq
.queue
[wq
->rq
.size
].status
.db_off
= 0;
682 static inline int t4_wq_db_enabled(struct t4_wq
*wq
)
684 return !wq
->rq
.queue
[wq
->rq
.size
].status
.db_off
;
692 struct t4_cqe
*queue
;
694 DEFINE_DMA_UNMAP_ADDR(mapping
);
695 struct t4_cqe
*sw_queue
;
697 void __iomem
*bar2_va
;
700 struct c4iw_rdev
*rdev
;
706 u16 size
; /* including status page */
718 static inline void write_gts(struct t4_cq
*cq
, u32 val
)
721 writel(val
| INGRESSQID_V(cq
->bar2_qid
),
722 cq
->bar2_va
+ SGE_UDB_GTS
);
724 writel(val
| INGRESSQID_V(cq
->cqid
), cq
->gts
);
727 static inline int t4_clear_cq_armed(struct t4_cq
*cq
)
729 return test_and_clear_bit(CQ_ARMED
, &cq
->flags
);
732 static inline int t4_arm_cq(struct t4_cq
*cq
, int se
)
736 set_bit(CQ_ARMED
, &cq
->flags
);
737 while (cq
->cidx_inc
> CIDXINC_M
) {
738 val
= SEINTARM_V(0) | CIDXINC_V(CIDXINC_M
) | TIMERREG_V(7);
740 cq
->cidx_inc
-= CIDXINC_M
;
742 val
= SEINTARM_V(se
) | CIDXINC_V(cq
->cidx_inc
) | TIMERREG_V(6);
748 static inline void t4_swcq_produce(struct t4_cq
*cq
)
751 if (cq
->sw_in_use
== cq
->size
) {
752 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
758 if (++cq
->sw_pidx
== cq
->size
)
762 static inline void t4_swcq_consume(struct t4_cq
*cq
)
765 if (++cq
->sw_cidx
== cq
->size
)
769 static inline void t4_hwcq_consume(struct t4_cq
*cq
)
771 cq
->bits_type_ts
= cq
->queue
[cq
->cidx
].bits_type_ts
;
772 if (++cq
->cidx_inc
== (cq
->size
>> 4) || cq
->cidx_inc
== CIDXINC_M
) {
775 val
= SEINTARM_V(0) | CIDXINC_V(cq
->cidx_inc
) | TIMERREG_V(7);
779 if (++cq
->cidx
== cq
->size
) {
785 static inline int t4_valid_cqe(struct t4_cq
*cq
, struct t4_cqe
*cqe
)
787 return (CQE_GENBIT(cqe
) == cq
->gen
);
790 static inline int t4_cq_notempty(struct t4_cq
*cq
)
792 return cq
->sw_in_use
|| t4_valid_cqe(cq
, &cq
->queue
[cq
->cidx
]);
795 static inline int t4_next_hw_cqe(struct t4_cq
*cq
, struct t4_cqe
**cqe
)
801 prev_cidx
= cq
->size
- 1;
803 prev_cidx
= cq
->cidx
- 1;
805 if (cq
->queue
[prev_cidx
].bits_type_ts
!= cq
->bits_type_ts
) {
808 pr_err("cq overflow cqid %u\n", cq
->cqid
);
809 } else if (t4_valid_cqe(cq
, &cq
->queue
[cq
->cidx
])) {
811 /* Ensure CQE is flushed to memory */
813 *cqe
= &cq
->queue
[cq
->cidx
];
820 static inline struct t4_cqe
*t4_next_sw_cqe(struct t4_cq
*cq
)
822 if (cq
->sw_in_use
== cq
->size
) {
823 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
829 return &cq
->sw_queue
[cq
->sw_cidx
];
833 static inline int t4_next_cqe(struct t4_cq
*cq
, struct t4_cqe
**cqe
)
839 else if (cq
->sw_in_use
)
840 *cqe
= &cq
->sw_queue
[cq
->sw_cidx
];
842 ret
= t4_next_hw_cqe(cq
, cqe
);
846 static inline int t4_cq_in_error(struct t4_cq
*cq
)
851 static inline void t4_set_cq_in_error(struct t4_cq
*cq
)
857 struct t4_dev_status_page
{
859 u8 write_cmpl_supported
;