WIP FPC-III support
[linux/fpc-iii.git] / drivers / infiniband / hw / hfi1 / affinity.c
blob2a91b8d95e12fd58e6ef2f7e8ddf4173bab9bd32
1 /*
2 * Copyright(c) 2015 - 2020 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51 #include <linux/numa.h>
53 #include "hfi.h"
54 #include "affinity.h"
55 #include "sdma.h"
56 #include "trace.h"
58 struct hfi1_affinity_node_list node_affinity = {
59 .list = LIST_HEAD_INIT(node_affinity.list),
60 .lock = __MUTEX_INITIALIZER(node_affinity.lock)
63 /* Name of IRQ types, indexed by enum irq_type */
64 static const char * const irq_type_names[] = {
65 "SDMA",
66 "RCVCTXT",
67 "NETDEVCTXT",
68 "GENERAL",
69 "OTHER",
72 /* Per NUMA node count of HFI devices */
73 static unsigned int *hfi1_per_node_cntr;
75 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
77 cpumask_clear(&set->mask);
78 cpumask_clear(&set->used);
79 set->gen = 0;
82 /* Increment generation of CPU set if needed */
83 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
85 if (cpumask_equal(&set->mask, &set->used)) {
87 * We've used up all the CPUs, bump up the generation
88 * and reset the 'used' map
90 set->gen++;
91 cpumask_clear(&set->used);
95 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
97 if (cpumask_empty(&set->used) && set->gen) {
98 set->gen--;
99 cpumask_copy(&set->used, &set->mask);
103 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
104 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
106 int cpu;
108 if (!diff || !set)
109 return -EINVAL;
111 _cpu_mask_set_gen_inc(set);
113 /* Find out CPUs left in CPU mask */
114 cpumask_andnot(diff, &set->mask, &set->used);
116 cpu = cpumask_first(diff);
117 if (cpu >= nr_cpu_ids) /* empty */
118 cpu = -EINVAL;
119 else
120 cpumask_set_cpu(cpu, &set->used);
122 return cpu;
125 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
127 if (!set)
128 return;
130 cpumask_clear_cpu(cpu, &set->used);
131 _cpu_mask_set_gen_dec(set);
134 /* Initialize non-HT cpu cores mask */
135 void init_real_cpu_mask(void)
137 int possible, curr_cpu, i, ht;
139 cpumask_clear(&node_affinity.real_cpu_mask);
141 /* Start with cpu online mask as the real cpu mask */
142 cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
145 * Remove HT cores from the real cpu mask. Do this in two steps below.
147 possible = cpumask_weight(&node_affinity.real_cpu_mask);
148 ht = cpumask_weight(topology_sibling_cpumask(
149 cpumask_first(&node_affinity.real_cpu_mask)));
151 * Step 1. Skip over the first N HT siblings and use them as the
152 * "real" cores. Assumes that HT cores are not enumerated in
153 * succession (except in the single core case).
155 curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
156 for (i = 0; i < possible / ht; i++)
157 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
159 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to
160 * skip any gaps.
162 for (; i < possible; i++) {
163 cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
164 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
168 int node_affinity_init(void)
170 int node;
171 struct pci_dev *dev = NULL;
172 const struct pci_device_id *ids = hfi1_pci_tbl;
174 cpumask_clear(&node_affinity.proc.used);
175 cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
177 node_affinity.proc.gen = 0;
178 node_affinity.num_core_siblings =
179 cpumask_weight(topology_sibling_cpumask(
180 cpumask_first(&node_affinity.proc.mask)
182 node_affinity.num_possible_nodes = num_possible_nodes();
183 node_affinity.num_online_nodes = num_online_nodes();
184 node_affinity.num_online_cpus = num_online_cpus();
187 * The real cpu mask is part of the affinity struct but it has to be
188 * initialized early. It is needed to calculate the number of user
189 * contexts in set_up_context_variables().
191 init_real_cpu_mask();
193 hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
194 sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
195 if (!hfi1_per_node_cntr)
196 return -ENOMEM;
198 while (ids->vendor) {
199 dev = NULL;
200 while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
201 node = pcibus_to_node(dev->bus);
202 if (node < 0)
203 goto out;
205 hfi1_per_node_cntr[node]++;
207 ids++;
210 return 0;
212 out:
214 * Invalid PCI NUMA node information found, note it, and populate
215 * our database 1:1.
217 pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
218 pr_err("HFI: System BIOS may need to be upgraded\n");
219 for (node = 0; node < node_affinity.num_possible_nodes; node++)
220 hfi1_per_node_cntr[node] = 1;
222 return 0;
225 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
227 free_percpu(entry->comp_vect_affinity);
228 kfree(entry);
231 void node_affinity_destroy_all(void)
233 struct list_head *pos, *q;
234 struct hfi1_affinity_node *entry;
236 mutex_lock(&node_affinity.lock);
237 list_for_each_safe(pos, q, &node_affinity.list) {
238 entry = list_entry(pos, struct hfi1_affinity_node,
239 list);
240 list_del(pos);
241 node_affinity_destroy(entry);
243 mutex_unlock(&node_affinity.lock);
244 kfree(hfi1_per_node_cntr);
247 static struct hfi1_affinity_node *node_affinity_allocate(int node)
249 struct hfi1_affinity_node *entry;
251 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
252 if (!entry)
253 return NULL;
254 entry->node = node;
255 entry->comp_vect_affinity = alloc_percpu(u16);
256 INIT_LIST_HEAD(&entry->list);
258 return entry;
262 * It appends an entry to the list.
263 * It *must* be called with node_affinity.lock held.
265 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
267 list_add_tail(&entry->list, &node_affinity.list);
270 /* It must be called with node_affinity.lock held */
271 static struct hfi1_affinity_node *node_affinity_lookup(int node)
273 struct list_head *pos;
274 struct hfi1_affinity_node *entry;
276 list_for_each(pos, &node_affinity.list) {
277 entry = list_entry(pos, struct hfi1_affinity_node, list);
278 if (entry->node == node)
279 return entry;
282 return NULL;
285 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
286 u16 __percpu *comp_vect_affinity)
288 int curr_cpu;
289 u16 cntr;
290 u16 prev_cntr;
291 int ret_cpu;
293 if (!possible_cpumask) {
294 ret_cpu = -EINVAL;
295 goto fail;
298 if (!comp_vect_affinity) {
299 ret_cpu = -EINVAL;
300 goto fail;
303 ret_cpu = cpumask_first(possible_cpumask);
304 if (ret_cpu >= nr_cpu_ids) {
305 ret_cpu = -EINVAL;
306 goto fail;
309 prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
310 for_each_cpu(curr_cpu, possible_cpumask) {
311 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
313 if (cntr < prev_cntr) {
314 ret_cpu = curr_cpu;
315 prev_cntr = cntr;
319 *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
321 fail:
322 return ret_cpu;
325 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
326 u16 __percpu *comp_vect_affinity)
328 int curr_cpu;
329 int max_cpu;
330 u16 cntr;
331 u16 prev_cntr;
333 if (!possible_cpumask)
334 return -EINVAL;
336 if (!comp_vect_affinity)
337 return -EINVAL;
339 max_cpu = cpumask_first(possible_cpumask);
340 if (max_cpu >= nr_cpu_ids)
341 return -EINVAL;
343 prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
344 for_each_cpu(curr_cpu, possible_cpumask) {
345 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
347 if (cntr > prev_cntr) {
348 max_cpu = curr_cpu;
349 prev_cntr = cntr;
353 *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
355 return max_cpu;
359 * Non-interrupt CPUs are used first, then interrupt CPUs.
360 * Two already allocated cpu masks must be passed.
362 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
363 struct hfi1_affinity_node *entry,
364 cpumask_var_t non_intr_cpus,
365 cpumask_var_t available_cpus)
366 __must_hold(&node_affinity.lock)
368 int cpu;
369 struct cpu_mask_set *set = dd->comp_vect;
371 lockdep_assert_held(&node_affinity.lock);
372 if (!non_intr_cpus) {
373 cpu = -1;
374 goto fail;
377 if (!available_cpus) {
378 cpu = -1;
379 goto fail;
382 /* Available CPUs for pinning completion vectors */
383 _cpu_mask_set_gen_inc(set);
384 cpumask_andnot(available_cpus, &set->mask, &set->used);
386 /* Available CPUs without SDMA engine interrupts */
387 cpumask_andnot(non_intr_cpus, available_cpus,
388 &entry->def_intr.used);
390 /* If there are non-interrupt CPUs available, use them first */
391 if (!cpumask_empty(non_intr_cpus))
392 cpu = cpumask_first(non_intr_cpus);
393 else /* Otherwise, use interrupt CPUs */
394 cpu = cpumask_first(available_cpus);
396 if (cpu >= nr_cpu_ids) { /* empty */
397 cpu = -1;
398 goto fail;
400 cpumask_set_cpu(cpu, &set->used);
402 fail:
403 return cpu;
406 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
408 struct cpu_mask_set *set = dd->comp_vect;
410 if (cpu < 0)
411 return;
413 cpu_mask_set_put(set, cpu);
416 /* _dev_comp_vect_mappings_destroy() is reentrant */
417 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
419 int i, cpu;
421 if (!dd->comp_vect_mappings)
422 return;
424 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
425 cpu = dd->comp_vect_mappings[i];
426 _dev_comp_vect_cpu_put(dd, cpu);
427 dd->comp_vect_mappings[i] = -1;
428 hfi1_cdbg(AFFINITY,
429 "[%s] Release CPU %d from completion vector %d",
430 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
433 kfree(dd->comp_vect_mappings);
434 dd->comp_vect_mappings = NULL;
438 * This function creates the table for looking up CPUs for completion vectors.
439 * num_comp_vectors needs to have been initilized before calling this function.
441 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
442 struct hfi1_affinity_node *entry)
443 __must_hold(&node_affinity.lock)
445 int i, cpu, ret;
446 cpumask_var_t non_intr_cpus;
447 cpumask_var_t available_cpus;
449 lockdep_assert_held(&node_affinity.lock);
451 if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
452 return -ENOMEM;
454 if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
455 free_cpumask_var(non_intr_cpus);
456 return -ENOMEM;
459 dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
460 sizeof(*dd->comp_vect_mappings),
461 GFP_KERNEL);
462 if (!dd->comp_vect_mappings) {
463 ret = -ENOMEM;
464 goto fail;
466 for (i = 0; i < dd->comp_vect_possible_cpus; i++)
467 dd->comp_vect_mappings[i] = -1;
469 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
470 cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
471 available_cpus);
472 if (cpu < 0) {
473 ret = -EINVAL;
474 goto fail;
477 dd->comp_vect_mappings[i] = cpu;
478 hfi1_cdbg(AFFINITY,
479 "[%s] Completion Vector %d -> CPU %d",
480 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
483 free_cpumask_var(available_cpus);
484 free_cpumask_var(non_intr_cpus);
485 return 0;
487 fail:
488 free_cpumask_var(available_cpus);
489 free_cpumask_var(non_intr_cpus);
490 _dev_comp_vect_mappings_destroy(dd);
492 return ret;
495 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
497 int ret;
498 struct hfi1_affinity_node *entry;
500 mutex_lock(&node_affinity.lock);
501 entry = node_affinity_lookup(dd->node);
502 if (!entry) {
503 ret = -EINVAL;
504 goto unlock;
506 ret = _dev_comp_vect_mappings_create(dd, entry);
507 unlock:
508 mutex_unlock(&node_affinity.lock);
510 return ret;
513 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
515 _dev_comp_vect_mappings_destroy(dd);
518 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
520 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
521 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
523 if (!dd->comp_vect_mappings)
524 return -EINVAL;
525 if (comp_vect >= dd->comp_vect_possible_cpus)
526 return -EINVAL;
528 return dd->comp_vect_mappings[comp_vect];
532 * It assumes dd->comp_vect_possible_cpus is available.
534 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
535 struct hfi1_affinity_node *entry,
536 bool first_dev_init)
537 __must_hold(&node_affinity.lock)
539 int i, j, curr_cpu;
540 int possible_cpus_comp_vect = 0;
541 struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
543 lockdep_assert_held(&node_affinity.lock);
545 * If there's only one CPU available for completion vectors, then
546 * there will only be one completion vector available. Othewise,
547 * the number of completion vector available will be the number of
548 * available CPUs divide it by the number of devices in the
549 * local NUMA node.
551 if (cpumask_weight(&entry->comp_vect_mask) == 1) {
552 possible_cpus_comp_vect = 1;
553 dd_dev_warn(dd,
554 "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
555 } else {
556 possible_cpus_comp_vect +=
557 cpumask_weight(&entry->comp_vect_mask) /
558 hfi1_per_node_cntr[dd->node];
561 * If the completion vector CPUs available doesn't divide
562 * evenly among devices, then the first device device to be
563 * initialized gets an extra CPU.
565 if (first_dev_init &&
566 cpumask_weight(&entry->comp_vect_mask) %
567 hfi1_per_node_cntr[dd->node] != 0)
568 possible_cpus_comp_vect++;
571 dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
573 /* Reserving CPUs for device completion vector */
574 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
575 curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
576 entry->comp_vect_affinity);
577 if (curr_cpu < 0)
578 goto fail;
580 cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
583 hfi1_cdbg(AFFINITY,
584 "[%s] Completion vector affinity CPU set(s) %*pbl",
585 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
586 cpumask_pr_args(dev_comp_vect_mask));
588 return 0;
590 fail:
591 for (j = 0; j < i; j++)
592 per_cpu_affinity_put_max(&entry->comp_vect_mask,
593 entry->comp_vect_affinity);
595 return curr_cpu;
599 * It assumes dd->comp_vect_possible_cpus is available.
601 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
602 struct hfi1_affinity_node *entry)
603 __must_hold(&node_affinity.lock)
605 int i, cpu;
607 lockdep_assert_held(&node_affinity.lock);
608 if (!dd->comp_vect_possible_cpus)
609 return;
611 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
612 cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
613 entry->comp_vect_affinity);
614 /* Clearing CPU in device completion vector cpu mask */
615 if (cpu >= 0)
616 cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
619 dd->comp_vect_possible_cpus = 0;
623 * Interrupt affinity.
625 * non-rcv avail gets a default mask that
626 * starts as possible cpus with threads reset
627 * and each rcv avail reset.
629 * rcv avail gets node relative 1 wrapping back
630 * to the node relative 1 as necessary.
633 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
635 int node = pcibus_to_node(dd->pcidev->bus);
636 struct hfi1_affinity_node *entry;
637 const struct cpumask *local_mask;
638 int curr_cpu, possible, i, ret;
639 bool new_entry = false;
642 * If the BIOS does not have the NUMA node information set, select
643 * NUMA 0 so we get consistent performance.
645 if (node < 0) {
646 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
647 node = 0;
649 dd->node = node;
651 local_mask = cpumask_of_node(dd->node);
652 if (cpumask_first(local_mask) >= nr_cpu_ids)
653 local_mask = topology_core_cpumask(0);
655 mutex_lock(&node_affinity.lock);
656 entry = node_affinity_lookup(dd->node);
659 * If this is the first time this NUMA node's affinity is used,
660 * create an entry in the global affinity structure and initialize it.
662 if (!entry) {
663 entry = node_affinity_allocate(node);
664 if (!entry) {
665 dd_dev_err(dd,
666 "Unable to allocate global affinity node\n");
667 ret = -ENOMEM;
668 goto fail;
670 new_entry = true;
672 init_cpu_mask_set(&entry->def_intr);
673 init_cpu_mask_set(&entry->rcv_intr);
674 cpumask_clear(&entry->comp_vect_mask);
675 cpumask_clear(&entry->general_intr_mask);
676 /* Use the "real" cpu mask of this node as the default */
677 cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
678 local_mask);
680 /* fill in the receive list */
681 possible = cpumask_weight(&entry->def_intr.mask);
682 curr_cpu = cpumask_first(&entry->def_intr.mask);
684 if (possible == 1) {
685 /* only one CPU, everyone will use it */
686 cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
687 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
688 } else {
690 * The general/control context will be the first CPU in
691 * the default list, so it is removed from the default
692 * list and added to the general interrupt list.
694 cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
695 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
696 curr_cpu = cpumask_next(curr_cpu,
697 &entry->def_intr.mask);
700 * Remove the remaining kernel receive queues from
701 * the default list and add them to the receive list.
703 for (i = 0;
704 i < (dd->n_krcv_queues - 1) *
705 hfi1_per_node_cntr[dd->node];
706 i++) {
707 cpumask_clear_cpu(curr_cpu,
708 &entry->def_intr.mask);
709 cpumask_set_cpu(curr_cpu,
710 &entry->rcv_intr.mask);
711 curr_cpu = cpumask_next(curr_cpu,
712 &entry->def_intr.mask);
713 if (curr_cpu >= nr_cpu_ids)
714 break;
718 * If there ends up being 0 CPU cores leftover for SDMA
719 * engines, use the same CPU cores as general/control
720 * context.
722 if (cpumask_weight(&entry->def_intr.mask) == 0)
723 cpumask_copy(&entry->def_intr.mask,
724 &entry->general_intr_mask);
727 /* Determine completion vector CPUs for the entire node */
728 cpumask_and(&entry->comp_vect_mask,
729 &node_affinity.real_cpu_mask, local_mask);
730 cpumask_andnot(&entry->comp_vect_mask,
731 &entry->comp_vect_mask,
732 &entry->rcv_intr.mask);
733 cpumask_andnot(&entry->comp_vect_mask,
734 &entry->comp_vect_mask,
735 &entry->general_intr_mask);
738 * If there ends up being 0 CPU cores leftover for completion
739 * vectors, use the same CPU core as the general/control
740 * context.
742 if (cpumask_weight(&entry->comp_vect_mask) == 0)
743 cpumask_copy(&entry->comp_vect_mask,
744 &entry->general_intr_mask);
747 ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
748 if (ret < 0)
749 goto fail;
751 if (new_entry)
752 node_affinity_add_tail(entry);
754 mutex_unlock(&node_affinity.lock);
756 return 0;
758 fail:
759 if (new_entry)
760 node_affinity_destroy(entry);
761 mutex_unlock(&node_affinity.lock);
762 return ret;
765 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
767 struct hfi1_affinity_node *entry;
769 if (dd->node < 0)
770 return;
772 mutex_lock(&node_affinity.lock);
773 entry = node_affinity_lookup(dd->node);
774 if (!entry)
775 goto unlock;
778 * Free device completion vector CPUs to be used by future
779 * completion vectors
781 _dev_comp_vect_cpu_mask_clean_up(dd, entry);
782 unlock:
783 mutex_unlock(&node_affinity.lock);
784 dd->node = NUMA_NO_NODE;
788 * Function updates the irq affinity hint for msix after it has been changed
789 * by the user using the /proc/irq interface. This function only accepts
790 * one cpu in the mask.
792 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
794 struct sdma_engine *sde = msix->arg;
795 struct hfi1_devdata *dd = sde->dd;
796 struct hfi1_affinity_node *entry;
797 struct cpu_mask_set *set;
798 int i, old_cpu;
800 if (cpu > num_online_cpus() || cpu == sde->cpu)
801 return;
803 mutex_lock(&node_affinity.lock);
804 entry = node_affinity_lookup(dd->node);
805 if (!entry)
806 goto unlock;
808 old_cpu = sde->cpu;
809 sde->cpu = cpu;
810 cpumask_clear(&msix->mask);
811 cpumask_set_cpu(cpu, &msix->mask);
812 dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
813 msix->irq, irq_type_names[msix->type],
814 sde->this_idx, cpu);
815 irq_set_affinity_hint(msix->irq, &msix->mask);
818 * Set the new cpu in the hfi1_affinity_node and clean
819 * the old cpu if it is not used by any other IRQ
821 set = &entry->def_intr;
822 cpumask_set_cpu(cpu, &set->mask);
823 cpumask_set_cpu(cpu, &set->used);
824 for (i = 0; i < dd->msix_info.max_requested; i++) {
825 struct hfi1_msix_entry *other_msix;
827 other_msix = &dd->msix_info.msix_entries[i];
828 if (other_msix->type != IRQ_SDMA || other_msix == msix)
829 continue;
831 if (cpumask_test_cpu(old_cpu, &other_msix->mask))
832 goto unlock;
834 cpumask_clear_cpu(old_cpu, &set->mask);
835 cpumask_clear_cpu(old_cpu, &set->used);
836 unlock:
837 mutex_unlock(&node_affinity.lock);
840 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
841 const cpumask_t *mask)
843 int cpu = cpumask_first(mask);
844 struct hfi1_msix_entry *msix = container_of(notify,
845 struct hfi1_msix_entry,
846 notify);
848 /* Only one CPU configuration supported currently */
849 hfi1_update_sdma_affinity(msix, cpu);
852 static void hfi1_irq_notifier_release(struct kref *ref)
855 * This is required by affinity notifier. We don't have anything to
856 * free here.
860 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
862 struct irq_affinity_notify *notify = &msix->notify;
864 notify->irq = msix->irq;
865 notify->notify = hfi1_irq_notifier_notify;
866 notify->release = hfi1_irq_notifier_release;
868 if (irq_set_affinity_notifier(notify->irq, notify))
869 pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
870 notify->irq);
873 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
875 struct irq_affinity_notify *notify = &msix->notify;
877 if (irq_set_affinity_notifier(notify->irq, NULL))
878 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
879 notify->irq);
883 * Function sets the irq affinity for msix.
884 * It *must* be called with node_affinity.lock held.
886 static int get_irq_affinity(struct hfi1_devdata *dd,
887 struct hfi1_msix_entry *msix)
889 cpumask_var_t diff;
890 struct hfi1_affinity_node *entry;
891 struct cpu_mask_set *set = NULL;
892 struct sdma_engine *sde = NULL;
893 struct hfi1_ctxtdata *rcd = NULL;
894 char extra[64];
895 int cpu = -1;
897 extra[0] = '\0';
898 cpumask_clear(&msix->mask);
900 entry = node_affinity_lookup(dd->node);
902 switch (msix->type) {
903 case IRQ_SDMA:
904 sde = (struct sdma_engine *)msix->arg;
905 scnprintf(extra, 64, "engine %u", sde->this_idx);
906 set = &entry->def_intr;
907 break;
908 case IRQ_GENERAL:
909 cpu = cpumask_first(&entry->general_intr_mask);
910 break;
911 case IRQ_RCVCTXT:
912 rcd = (struct hfi1_ctxtdata *)msix->arg;
913 if (rcd->ctxt == HFI1_CTRL_CTXT)
914 cpu = cpumask_first(&entry->general_intr_mask);
915 else
916 set = &entry->rcv_intr;
917 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
918 break;
919 case IRQ_NETDEVCTXT:
920 rcd = (struct hfi1_ctxtdata *)msix->arg;
921 set = &entry->def_intr;
922 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
923 break;
924 default:
925 dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
926 return -EINVAL;
930 * The general and control contexts are placed on a particular
931 * CPU, which is set above. Skip accounting for it. Everything else
932 * finds its CPU here.
934 if (cpu == -1 && set) {
935 if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
936 return -ENOMEM;
938 cpu = cpu_mask_set_get_first(set, diff);
939 if (cpu < 0) {
940 free_cpumask_var(diff);
941 dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
942 return cpu;
945 free_cpumask_var(diff);
948 cpumask_set_cpu(cpu, &msix->mask);
949 dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
950 msix->irq, irq_type_names[msix->type],
951 extra, cpu);
952 irq_set_affinity_hint(msix->irq, &msix->mask);
954 if (msix->type == IRQ_SDMA) {
955 sde->cpu = cpu;
956 hfi1_setup_sdma_notifier(msix);
959 return 0;
962 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
964 int ret;
966 mutex_lock(&node_affinity.lock);
967 ret = get_irq_affinity(dd, msix);
968 mutex_unlock(&node_affinity.lock);
969 return ret;
972 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
973 struct hfi1_msix_entry *msix)
975 struct cpu_mask_set *set = NULL;
976 struct hfi1_ctxtdata *rcd;
977 struct hfi1_affinity_node *entry;
979 mutex_lock(&node_affinity.lock);
980 entry = node_affinity_lookup(dd->node);
982 switch (msix->type) {
983 case IRQ_SDMA:
984 set = &entry->def_intr;
985 hfi1_cleanup_sdma_notifier(msix);
986 break;
987 case IRQ_GENERAL:
988 /* Don't do accounting for general contexts */
989 break;
990 case IRQ_RCVCTXT:
991 rcd = (struct hfi1_ctxtdata *)msix->arg;
992 /* Don't do accounting for control contexts */
993 if (rcd->ctxt != HFI1_CTRL_CTXT)
994 set = &entry->rcv_intr;
995 break;
996 case IRQ_NETDEVCTXT:
997 rcd = (struct hfi1_ctxtdata *)msix->arg;
998 set = &entry->def_intr;
999 break;
1000 default:
1001 mutex_unlock(&node_affinity.lock);
1002 return;
1005 if (set) {
1006 cpumask_andnot(&set->used, &set->used, &msix->mask);
1007 _cpu_mask_set_gen_dec(set);
1010 irq_set_affinity_hint(msix->irq, NULL);
1011 cpumask_clear(&msix->mask);
1012 mutex_unlock(&node_affinity.lock);
1015 /* This should be called with node_affinity.lock held */
1016 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
1017 struct hfi1_affinity_node_list *affinity)
1019 int possible, curr_cpu, i;
1020 uint num_cores_per_socket = node_affinity.num_online_cpus /
1021 affinity->num_core_siblings /
1022 node_affinity.num_online_nodes;
1024 cpumask_copy(hw_thread_mask, &affinity->proc.mask);
1025 if (affinity->num_core_siblings > 0) {
1026 /* Removing other siblings not needed for now */
1027 possible = cpumask_weight(hw_thread_mask);
1028 curr_cpu = cpumask_first(hw_thread_mask);
1029 for (i = 0;
1030 i < num_cores_per_socket * node_affinity.num_online_nodes;
1031 i++)
1032 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1034 for (; i < possible; i++) {
1035 cpumask_clear_cpu(curr_cpu, hw_thread_mask);
1036 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1039 /* Identifying correct HW threads within physical cores */
1040 cpumask_shift_left(hw_thread_mask, hw_thread_mask,
1041 num_cores_per_socket *
1042 node_affinity.num_online_nodes *
1043 hw_thread_no);
1047 int hfi1_get_proc_affinity(int node)
1049 int cpu = -1, ret, i;
1050 struct hfi1_affinity_node *entry;
1051 cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1052 const struct cpumask *node_mask,
1053 *proc_mask = current->cpus_ptr;
1054 struct hfi1_affinity_node_list *affinity = &node_affinity;
1055 struct cpu_mask_set *set = &affinity->proc;
1058 * check whether process/context affinity has already
1059 * been set
1061 if (current->nr_cpus_allowed == 1) {
1062 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1063 current->pid, current->comm,
1064 cpumask_pr_args(proc_mask));
1066 * Mark the pre-set CPU as used. This is atomic so we don't
1067 * need the lock
1069 cpu = cpumask_first(proc_mask);
1070 cpumask_set_cpu(cpu, &set->used);
1071 goto done;
1072 } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1073 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1074 current->pid, current->comm,
1075 cpumask_pr_args(proc_mask));
1076 goto done;
1080 * The process does not have a preset CPU affinity so find one to
1081 * recommend using the following algorithm:
1083 * For each user process that is opening a context on HFI Y:
1084 * a) If all cores are filled, reinitialize the bitmask
1085 * b) Fill real cores first, then HT cores (First set of HT
1086 * cores on all physical cores, then second set of HT core,
1087 * and, so on) in the following order:
1089 * 1. Same NUMA node as HFI Y and not running an IRQ
1090 * handler
1091 * 2. Same NUMA node as HFI Y and running an IRQ handler
1092 * 3. Different NUMA node to HFI Y and not running an IRQ
1093 * handler
1094 * 4. Different NUMA node to HFI Y and running an IRQ
1095 * handler
1096 * c) Mark core as filled in the bitmask. As user processes are
1097 * done, clear cores from the bitmask.
1100 ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1101 if (!ret)
1102 goto done;
1103 ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1104 if (!ret)
1105 goto free_diff;
1106 ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1107 if (!ret)
1108 goto free_hw_thread_mask;
1109 ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1110 if (!ret)
1111 goto free_available_mask;
1113 mutex_lock(&affinity->lock);
1115 * If we've used all available HW threads, clear the mask and start
1116 * overloading.
1118 _cpu_mask_set_gen_inc(set);
1121 * If NUMA node has CPUs used by interrupt handlers, include them in the
1122 * interrupt handler mask.
1124 entry = node_affinity_lookup(node);
1125 if (entry) {
1126 cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1127 &entry->def_intr.mask :
1128 &entry->def_intr.used));
1129 cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1130 &entry->rcv_intr.mask :
1131 &entry->rcv_intr.used));
1132 cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1134 hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1135 cpumask_pr_args(intrs_mask));
1137 cpumask_copy(hw_thread_mask, &set->mask);
1140 * If HT cores are enabled, identify which HW threads within the
1141 * physical cores should be used.
1143 if (affinity->num_core_siblings > 0) {
1144 for (i = 0; i < affinity->num_core_siblings; i++) {
1145 find_hw_thread_mask(i, hw_thread_mask, affinity);
1148 * If there's at least one available core for this HW
1149 * thread number, stop looking for a core.
1151 * diff will always be not empty at least once in this
1152 * loop as the used mask gets reset when
1153 * (set->mask == set->used) before this loop.
1155 cpumask_andnot(diff, hw_thread_mask, &set->used);
1156 if (!cpumask_empty(diff))
1157 break;
1160 hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1161 cpumask_pr_args(hw_thread_mask));
1163 node_mask = cpumask_of_node(node);
1164 hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1165 cpumask_pr_args(node_mask));
1167 /* Get cpumask of available CPUs on preferred NUMA */
1168 cpumask_and(available_mask, hw_thread_mask, node_mask);
1169 cpumask_andnot(available_mask, available_mask, &set->used);
1170 hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1171 cpumask_pr_args(available_mask));
1174 * At first, we don't want to place processes on the same
1175 * CPUs as interrupt handlers. Then, CPUs running interrupt
1176 * handlers are used.
1178 * 1) If diff is not empty, then there are CPUs not running
1179 * non-interrupt handlers available, so diff gets copied
1180 * over to available_mask.
1181 * 2) If diff is empty, then all CPUs not running interrupt
1182 * handlers are taken, so available_mask contains all
1183 * available CPUs running interrupt handlers.
1184 * 3) If available_mask is empty, then all CPUs on the
1185 * preferred NUMA node are taken, so other NUMA nodes are
1186 * used for process assignments using the same method as
1187 * the preferred NUMA node.
1189 cpumask_andnot(diff, available_mask, intrs_mask);
1190 if (!cpumask_empty(diff))
1191 cpumask_copy(available_mask, diff);
1193 /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1194 if (cpumask_empty(available_mask)) {
1195 cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1196 /* Excluding preferred NUMA cores */
1197 cpumask_andnot(available_mask, available_mask, node_mask);
1198 hfi1_cdbg(PROC,
1199 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1200 cpumask_pr_args(available_mask));
1203 * At first, we don't want to place processes on the same
1204 * CPUs as interrupt handlers.
1206 cpumask_andnot(diff, available_mask, intrs_mask);
1207 if (!cpumask_empty(diff))
1208 cpumask_copy(available_mask, diff);
1210 hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1211 cpumask_pr_args(available_mask));
1213 cpu = cpumask_first(available_mask);
1214 if (cpu >= nr_cpu_ids) /* empty */
1215 cpu = -1;
1216 else
1217 cpumask_set_cpu(cpu, &set->used);
1219 mutex_unlock(&affinity->lock);
1220 hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1222 free_cpumask_var(intrs_mask);
1223 free_available_mask:
1224 free_cpumask_var(available_mask);
1225 free_hw_thread_mask:
1226 free_cpumask_var(hw_thread_mask);
1227 free_diff:
1228 free_cpumask_var(diff);
1229 done:
1230 return cpu;
1233 void hfi1_put_proc_affinity(int cpu)
1235 struct hfi1_affinity_node_list *affinity = &node_affinity;
1236 struct cpu_mask_set *set = &affinity->proc;
1238 if (cpu < 0)
1239 return;
1241 mutex_lock(&affinity->lock);
1242 cpu_mask_set_put(set, cpu);
1243 hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1244 mutex_unlock(&affinity->lock);