2 * Copyright(c) 2015-2020 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 #include <linux/etherdevice.h>
71 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
74 * The size has to be longer than this string, so we can append
75 * board/chip information to it in the initialization code.
77 const char ib_hfi1_version
[] = HFI1_DRIVER_VERSION
"\n";
79 DEFINE_MUTEX(hfi1_mutex
); /* general driver use */
81 unsigned int hfi1_max_mtu
= HFI1_DEFAULT_MAX_MTU
;
82 module_param_named(max_mtu
, hfi1_max_mtu
, uint
, S_IRUGO
);
83 MODULE_PARM_DESC(max_mtu
, "Set max MTU bytes, default is " __stringify(
84 HFI1_DEFAULT_MAX_MTU
));
86 unsigned int hfi1_cu
= 1;
87 module_param_named(cu
, hfi1_cu
, uint
, S_IRUGO
);
88 MODULE_PARM_DESC(cu
, "Credit return units");
90 unsigned long hfi1_cap_mask
= HFI1_CAP_MASK_DEFAULT
;
91 static int hfi1_caps_set(const char *val
, const struct kernel_param
*kp
);
92 static int hfi1_caps_get(char *buffer
, const struct kernel_param
*kp
);
93 static const struct kernel_param_ops cap_ops
= {
97 module_param_cb(cap_mask
, &cap_ops
, &hfi1_cap_mask
, S_IWUSR
| S_IRUGO
);
98 MODULE_PARM_DESC(cap_mask
, "Bit mask of enabled/disabled HW features");
100 MODULE_LICENSE("Dual BSD/GPL");
101 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
104 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
106 #define MAX_PKT_RECV 64
108 * MAX_PKT_THREAD_RCV is the max # of packets processed before
109 * the qp_wait_list queue is flushed.
111 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
112 #define EGR_HEAD_UPDATE_THRESHOLD 16
114 struct hfi1_ib_stats hfi1_stats
;
116 static int hfi1_caps_set(const char *val
, const struct kernel_param
*kp
)
119 unsigned long *cap_mask_ptr
= (unsigned long *)kp
->arg
,
120 cap_mask
= *cap_mask_ptr
, value
, diff
,
121 write_mask
= ((HFI1_CAP_WRITABLE_MASK
<< HFI1_CAP_USER_SHIFT
) |
122 HFI1_CAP_WRITABLE_MASK
);
124 ret
= kstrtoul(val
, 0, &value
);
126 pr_warn("Invalid module parameter value for 'cap_mask'\n");
129 /* Get the changed bits (except the locked bit) */
130 diff
= value
^ (cap_mask
& ~HFI1_CAP_LOCKED_SMASK
);
132 /* Remove any bits that are not allowed to change after driver load */
133 if (HFI1_CAP_LOCKED() && (diff
& ~write_mask
)) {
134 pr_warn("Ignoring non-writable capability bits %#lx\n",
139 /* Mask off any reserved bits */
140 diff
&= ~HFI1_CAP_RESERVED_MASK
;
141 /* Clear any previously set and changing bits */
143 /* Update the bits with the new capability */
144 cap_mask
|= (value
& diff
);
145 /* Check for any kernel/user restrictions */
146 diff
= (cap_mask
& (HFI1_CAP_MUST_HAVE_KERN
<< HFI1_CAP_USER_SHIFT
)) ^
147 ((cap_mask
& HFI1_CAP_MUST_HAVE_KERN
) << HFI1_CAP_USER_SHIFT
);
149 /* Set the bitmask to the final set */
150 *cap_mask_ptr
= cap_mask
;
155 static int hfi1_caps_get(char *buffer
, const struct kernel_param
*kp
)
157 unsigned long cap_mask
= *(unsigned long *)kp
->arg
;
159 cap_mask
&= ~HFI1_CAP_LOCKED_SMASK
;
160 cap_mask
|= ((cap_mask
& HFI1_CAP_K2U
) << HFI1_CAP_USER_SHIFT
);
162 return scnprintf(buffer
, PAGE_SIZE
, "0x%lx", cap_mask
);
165 struct pci_dev
*get_pci_dev(struct rvt_dev_info
*rdi
)
167 struct hfi1_ibdev
*ibdev
= container_of(rdi
, struct hfi1_ibdev
, rdi
);
168 struct hfi1_devdata
*dd
= container_of(ibdev
,
169 struct hfi1_devdata
, verbs_dev
);
174 * Return count of units with at least one port ACTIVE.
176 int hfi1_count_active_units(void)
178 struct hfi1_devdata
*dd
;
179 struct hfi1_pportdata
*ppd
;
180 unsigned long index
, flags
;
181 int pidx
, nunits_active
= 0;
183 xa_lock_irqsave(&hfi1_dev_table
, flags
);
184 xa_for_each(&hfi1_dev_table
, index
, dd
) {
185 if (!(dd
->flags
& HFI1_PRESENT
) || !dd
->kregbase1
)
187 for (pidx
= 0; pidx
< dd
->num_pports
; ++pidx
) {
188 ppd
= dd
->pport
+ pidx
;
189 if (ppd
->lid
&& ppd
->linkup
) {
195 xa_unlock_irqrestore(&hfi1_dev_table
, flags
);
196 return nunits_active
;
200 * Get address of eager buffer from it's index (allocated in chunks, not
203 static inline void *get_egrbuf(const struct hfi1_ctxtdata
*rcd
, u64 rhf
,
206 u32 idx
= rhf_egr_index(rhf
), offset
= rhf_egr_buf_offset(rhf
);
208 *update
|= !(idx
& (rcd
->egrbufs
.threshold
- 1)) && !offset
;
209 return (void *)(((u64
)(rcd
->egrbufs
.rcvtids
[idx
].addr
)) +
210 (offset
* RCV_BUF_BLOCK_SIZE
));
213 static inline void *hfi1_get_header(struct hfi1_ctxtdata
*rcd
,
216 u32 offset
= rhf_hdrq_offset(rhf_to_cpu(rhf_addr
));
218 return (void *)(rhf_addr
- rcd
->rhf_offset
+ offset
);
221 static inline struct ib_header
*hfi1_get_msgheader(struct hfi1_ctxtdata
*rcd
,
224 return (struct ib_header
*)hfi1_get_header(rcd
, rhf_addr
);
227 static inline struct hfi1_16b_header
228 *hfi1_get_16B_header(struct hfi1_ctxtdata
*rcd
,
231 return (struct hfi1_16b_header
*)hfi1_get_header(rcd
, rhf_addr
);
235 * Validate and encode the a given RcvArray Buffer size.
236 * The function will check whether the given size falls within
237 * allowed size ranges for the respective type and, optionally,
238 * return the proper encoding.
240 int hfi1_rcvbuf_validate(u32 size
, u8 type
, u16
*encoded
)
242 if (unlikely(!PAGE_ALIGNED(size
)))
244 if (unlikely(size
< MIN_EAGER_BUFFER
))
247 (type
== PT_EAGER
? MAX_EAGER_BUFFER
: MAX_EXPECTED_BUFFER
))
250 *encoded
= ilog2(size
/ PAGE_SIZE
) + 1;
254 static void rcv_hdrerr(struct hfi1_ctxtdata
*rcd
, struct hfi1_pportdata
*ppd
,
255 struct hfi1_packet
*packet
)
257 struct ib_header
*rhdr
= packet
->hdr
;
258 u32 rte
= rhf_rcv_type_err(packet
->rhf
);
260 struct hfi1_ibport
*ibp
= rcd_to_iport(rcd
);
261 struct hfi1_devdata
*dd
= ppd
->dd
;
262 struct hfi1_ibdev
*verbs_dev
= &dd
->verbs_dev
;
263 struct rvt_dev_info
*rdi
= &verbs_dev
->rdi
;
265 if ((packet
->rhf
& RHF_DC_ERR
) &&
266 hfi1_dbg_fault_suppress_err(verbs_dev
))
269 if (packet
->rhf
& RHF_ICRC_ERR
)
272 if (packet
->etype
== RHF_RCV_TYPE_BYPASS
) {
275 u8 lnh
= ib_get_lnh(rhdr
);
277 mlid_base
= be16_to_cpu(IB_MULTICAST_LID_BASE
);
278 if (lnh
== HFI1_LRH_BTH
) {
279 packet
->ohdr
= &rhdr
->u
.oth
;
280 } else if (lnh
== HFI1_LRH_GRH
) {
281 packet
->ohdr
= &rhdr
->u
.l
.oth
;
282 packet
->grh
= &rhdr
->u
.l
.grh
;
288 if (packet
->rhf
& RHF_TID_ERR
) {
289 /* For TIDERR and RC QPs preemptively schedule a NAK */
290 u32 tlen
= rhf_pkt_len(packet
->rhf
); /* in bytes */
291 u32 dlid
= ib_get_dlid(rhdr
);
294 /* Sanity check packet */
301 struct ib_grh
*grh
= packet
->grh
;
303 if (grh
->next_hdr
!= IB_GRH_NEXT_HDR
)
305 vtf
= be32_to_cpu(grh
->version_tclass_flow
);
306 if ((vtf
>> IB_GRH_VERSION_SHIFT
) != IB_GRH_VERSION
)
310 /* Get the destination QP number. */
311 qp_num
= ib_bth_get_qpn(packet
->ohdr
);
312 if (dlid
< mlid_base
) {
317 qp
= rvt_lookup_qpn(rdi
, &ibp
->rvp
, qp_num
);
324 * Handle only RC QPs - for other QP types drop error
327 spin_lock_irqsave(&qp
->r_lock
, flags
);
329 /* Check for valid receive state. */
330 if (!(ib_rvt_state_ops
[qp
->state
] &
331 RVT_PROCESS_RECV_OK
)) {
332 ibp
->rvp
.n_pkt_drops
++;
335 switch (qp
->ibqp
.qp_type
) {
337 hfi1_rc_hdrerr(rcd
, packet
, qp
);
340 /* For now don't handle any other QP types */
344 spin_unlock_irqrestore(&qp
->r_lock
, flags
);
347 } /* Valid packet with TIDErr */
349 /* handle "RcvTypeErr" flags */
351 case RHF_RTE_ERROR_OP_CODE_ERR
:
356 if (rhf_use_egr_bfr(packet
->rhf
))
360 goto drop
; /* this should never happen */
362 opcode
= ib_bth_get_opcode(packet
->ohdr
);
363 if (opcode
== IB_OPCODE_CNP
) {
365 * Only in pre-B0 h/w is the CNP_OPCODE handled
366 * via this code path.
368 struct rvt_qp
*qp
= NULL
;
371 u8 svc_type
, sl
, sc5
;
373 sc5
= hfi1_9B_get_sc5(rhdr
, packet
->rhf
);
374 sl
= ibp
->sc_to_sl
[sc5
];
376 lqpn
= ib_bth_get_qpn(packet
->ohdr
);
378 qp
= rvt_lookup_qpn(rdi
, &ibp
->rvp
, lqpn
);
384 switch (qp
->ibqp
.qp_type
) {
388 svc_type
= IB_CC_SVCTYPE_UD
;
391 rlid
= ib_get_slid(rhdr
);
392 rqpn
= qp
->remote_qpn
;
393 svc_type
= IB_CC_SVCTYPE_UC
;
400 process_becn(ppd
, sl
, rlid
, lqpn
, rqpn
, svc_type
);
404 packet
->rhf
&= ~RHF_RCV_TYPE_ERR_SMASK
;
415 static inline void init_packet(struct hfi1_ctxtdata
*rcd
,
416 struct hfi1_packet
*packet
)
418 packet
->rsize
= get_hdrqentsize(rcd
); /* words */
419 packet
->maxcnt
= get_hdrq_cnt(rcd
) * packet
->rsize
; /* words */
423 packet
->rhf_addr
= get_rhf_addr(rcd
);
424 packet
->rhf
= rhf_to_cpu(packet
->rhf_addr
);
425 packet
->rhqoff
= hfi1_rcd_head(rcd
);
429 /* We support only two types - 9B and 16B for now */
430 static const hfi1_handle_cnp hfi1_handle_cnp_tbl
[2] = {
431 [HFI1_PKT_TYPE_9B
] = &return_cnp
,
432 [HFI1_PKT_TYPE_16B
] = &return_cnp_16B
436 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
437 * @qp: The packet's destination QP
438 * @pkt: The packet itself.
439 * @prescan: Is the caller the RXQ prescan
441 * Process the packet's FECN or BECN bits. By now, the packet
442 * has already been evaluated whether processing of those bit should
444 * The significance of the @prescan argument is that if the caller
445 * is the RXQ prescan, a CNP will be send out instead of waiting for the
446 * normal packet processing to send an ACK with BECN set (or a CNP).
448 bool hfi1_process_ecn_slowpath(struct rvt_qp
*qp
, struct hfi1_packet
*pkt
,
451 struct hfi1_ibport
*ibp
= to_iport(qp
->ibqp
.device
, qp
->port_num
);
452 struct hfi1_pportdata
*ppd
= ppd_from_ibp(ibp
);
453 struct ib_other_headers
*ohdr
= pkt
->ohdr
;
454 struct ib_grh
*grh
= pkt
->grh
;
457 u32 rlid
, slid
, dlid
= 0;
458 u8 hdr_type
, sc
, svc_type
, opcode
;
459 bool is_mcast
= false, ignore_fecn
= false, do_cnp
= false,
462 /* can be called from prescan */
463 if (pkt
->etype
== RHF_RCV_TYPE_BYPASS
) {
464 pkey
= hfi1_16B_get_pkey(pkt
->hdr
);
465 sc
= hfi1_16B_get_sc(pkt
->hdr
);
466 dlid
= hfi1_16B_get_dlid(pkt
->hdr
);
467 slid
= hfi1_16B_get_slid(pkt
->hdr
);
468 is_mcast
= hfi1_is_16B_mcast(dlid
);
469 opcode
= ib_bth_get_opcode(ohdr
);
470 hdr_type
= HFI1_PKT_TYPE_16B
;
471 fecn
= hfi1_16B_get_fecn(pkt
->hdr
);
472 becn
= hfi1_16B_get_becn(pkt
->hdr
);
474 pkey
= ib_bth_get_pkey(ohdr
);
475 sc
= hfi1_9B_get_sc5(pkt
->hdr
, pkt
->rhf
);
476 dlid
= qp
->ibqp
.qp_type
!= IB_QPT_UD
? ib_get_dlid(pkt
->hdr
) :
478 slid
= ib_get_slid(pkt
->hdr
);
479 is_mcast
= (dlid
> be16_to_cpu(IB_MULTICAST_LID_BASE
)) &&
480 (dlid
!= be16_to_cpu(IB_LID_PERMISSIVE
));
481 opcode
= ib_bth_get_opcode(ohdr
);
482 hdr_type
= HFI1_PKT_TYPE_9B
;
483 fecn
= ib_bth_get_fecn(ohdr
);
484 becn
= ib_bth_get_becn(ohdr
);
487 switch (qp
->ibqp
.qp_type
) {
490 rqpn
= ib_get_sqpn(pkt
->ohdr
);
491 svc_type
= IB_CC_SVCTYPE_UD
;
496 rqpn
= ib_get_sqpn(pkt
->ohdr
);
497 svc_type
= IB_CC_SVCTYPE_UD
;
500 rlid
= rdma_ah_get_dlid(&qp
->remote_ah_attr
);
501 rqpn
= qp
->remote_qpn
;
502 svc_type
= IB_CC_SVCTYPE_UC
;
505 rlid
= rdma_ah_get_dlid(&qp
->remote_ah_attr
);
506 rqpn
= qp
->remote_qpn
;
507 svc_type
= IB_CC_SVCTYPE_RC
;
513 ignore_fecn
= is_mcast
|| (opcode
== IB_OPCODE_CNP
) ||
514 (opcode
== IB_OPCODE_RC_ACKNOWLEDGE
);
516 * ACKNOWLEDGE packets do not get a CNP but this will be
517 * guarded by ignore_fecn above.
520 (opcode
>= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST
&&
521 opcode
<= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE
) ||
522 opcode
== TID_OP(READ_RESP
) ||
523 opcode
== TID_OP(ACK
);
525 /* Call appropriate CNP handler */
526 if (!ignore_fecn
&& do_cnp
&& fecn
)
527 hfi1_handle_cnp_tbl
[hdr_type
](ibp
, qp
, rqpn
, pkey
,
528 dlid
, rlid
, sc
, grh
);
531 u32 lqpn
= be32_to_cpu(ohdr
->bth
[1]) & RVT_QPN_MASK
;
532 u8 sl
= ibp
->sc_to_sl
[sc
];
534 process_becn(ppd
, sl
, rlid
, lqpn
, rqpn
, svc_type
);
536 return !ignore_fecn
&& fecn
;
540 struct hfi1_ctxtdata
*rcd
;
548 static inline void init_ps_mdata(struct ps_mdata
*mdata
,
549 struct hfi1_packet
*packet
)
551 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
554 mdata
->rsize
= packet
->rsize
;
555 mdata
->maxcnt
= packet
->maxcnt
;
556 mdata
->ps_head
= packet
->rhqoff
;
558 if (get_dma_rtail_setting(rcd
)) {
559 mdata
->ps_tail
= get_rcvhdrtail(rcd
);
560 if (rcd
->ctxt
== HFI1_CTRL_CTXT
)
561 mdata
->ps_seq
= hfi1_seq_cnt(rcd
);
563 mdata
->ps_seq
= 0; /* not used with DMA_RTAIL */
565 mdata
->ps_tail
= 0; /* used only with DMA_RTAIL*/
566 mdata
->ps_seq
= hfi1_seq_cnt(rcd
);
570 static inline int ps_done(struct ps_mdata
*mdata
, u64 rhf
,
571 struct hfi1_ctxtdata
*rcd
)
573 if (get_dma_rtail_setting(rcd
))
574 return mdata
->ps_head
== mdata
->ps_tail
;
575 return mdata
->ps_seq
!= rhf_rcv_seq(rhf
);
578 static inline int ps_skip(struct ps_mdata
*mdata
, u64 rhf
,
579 struct hfi1_ctxtdata
*rcd
)
582 * Control context can potentially receive an invalid rhf.
585 if ((rcd
->ctxt
== HFI1_CTRL_CTXT
) && (mdata
->ps_head
!= mdata
->ps_tail
))
586 return mdata
->ps_seq
!= rhf_rcv_seq(rhf
);
591 static inline void update_ps_mdata(struct ps_mdata
*mdata
,
592 struct hfi1_ctxtdata
*rcd
)
594 mdata
->ps_head
+= mdata
->rsize
;
595 if (mdata
->ps_head
>= mdata
->maxcnt
)
598 /* Control context must do seq counting */
599 if (!get_dma_rtail_setting(rcd
) ||
600 rcd
->ctxt
== HFI1_CTRL_CTXT
)
601 mdata
->ps_seq
= hfi1_seq_incr_wrap(mdata
->ps_seq
);
605 * prescan_rxq - search through the receive queue looking for packets
606 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
607 * When an ECN is found, process the Congestion Notification, and toggle
609 * This is declared as a macro to allow quick checking of the port to avoid
610 * the overhead of a function call if not enabled.
612 #define prescan_rxq(rcd, packet) \
614 if (rcd->ppd->cc_prescan) \
615 __prescan_rxq(packet); \
617 static void __prescan_rxq(struct hfi1_packet
*packet
)
619 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
620 struct ps_mdata mdata
;
622 init_ps_mdata(&mdata
, packet
);
625 struct hfi1_ibport
*ibp
= rcd_to_iport(rcd
);
626 __le32
*rhf_addr
= (__le32
*)rcd
->rcvhdrq
+ mdata
.ps_head
+
627 packet
->rcd
->rhf_offset
;
629 struct ib_header
*hdr
;
630 struct rvt_dev_info
*rdi
= &rcd
->dd
->verbs_dev
.rdi
;
631 u64 rhf
= rhf_to_cpu(rhf_addr
);
632 u32 etype
= rhf_rcv_type(rhf
), qpn
, bth1
;
635 if (ps_done(&mdata
, rhf
, rcd
))
638 if (ps_skip(&mdata
, rhf
, rcd
))
641 if (etype
!= RHF_RCV_TYPE_IB
)
644 packet
->hdr
= hfi1_get_msgheader(packet
->rcd
, rhf_addr
);
646 lnh
= ib_get_lnh(hdr
);
648 if (lnh
== HFI1_LRH_BTH
) {
649 packet
->ohdr
= &hdr
->u
.oth
;
651 } else if (lnh
== HFI1_LRH_GRH
) {
652 packet
->ohdr
= &hdr
->u
.l
.oth
;
653 packet
->grh
= &hdr
->u
.l
.grh
;
655 goto next
; /* just in case */
658 if (!hfi1_may_ecn(packet
))
661 bth1
= be32_to_cpu(packet
->ohdr
->bth
[1]);
662 qpn
= bth1
& RVT_QPN_MASK
;
664 qp
= rvt_lookup_qpn(rdi
, &ibp
->rvp
, qpn
);
671 hfi1_process_ecn_slowpath(qp
, packet
, true);
674 /* turn off BECN, FECN */
675 bth1
&= ~(IB_FECN_SMASK
| IB_BECN_SMASK
);
676 packet
->ohdr
->bth
[1] = cpu_to_be32(bth1
);
678 update_ps_mdata(&mdata
, rcd
);
682 static void process_rcv_qp_work(struct hfi1_packet
*packet
)
684 struct rvt_qp
*qp
, *nqp
;
685 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
688 * Iterate over all QPs waiting to respond.
689 * The list won't change since the IRQ is only run on one CPU.
691 list_for_each_entry_safe(qp
, nqp
, &rcd
->qp_wait_list
, rspwait
) {
692 list_del_init(&qp
->rspwait
);
693 if (qp
->r_flags
& RVT_R_RSP_NAK
) {
694 qp
->r_flags
&= ~RVT_R_RSP_NAK
;
696 hfi1_send_rc_ack(packet
, 0);
698 if (qp
->r_flags
& RVT_R_RSP_SEND
) {
701 qp
->r_flags
&= ~RVT_R_RSP_SEND
;
702 spin_lock_irqsave(&qp
->s_lock
, flags
);
703 if (ib_rvt_state_ops
[qp
->state
] &
704 RVT_PROCESS_OR_FLUSH_SEND
)
705 hfi1_schedule_send(qp
);
706 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
712 static noinline
int max_packet_exceeded(struct hfi1_packet
*packet
, int thread
)
715 if ((packet
->numpkt
& (MAX_PKT_RECV_THREAD
- 1)) == 0)
716 /* allow defered processing */
717 process_rcv_qp_work(packet
);
721 this_cpu_inc(*packet
->rcd
->dd
->rcv_limit
);
722 return RCV_PKT_LIMIT
;
726 static inline int check_max_packet(struct hfi1_packet
*packet
, int thread
)
728 int ret
= RCV_PKT_OK
;
730 if (unlikely((packet
->numpkt
& (MAX_PKT_RECV
- 1)) == 0))
731 ret
= max_packet_exceeded(packet
, thread
);
735 static noinline
int skip_rcv_packet(struct hfi1_packet
*packet
, int thread
)
739 packet
->rcd
->dd
->ctx0_seq_drop
++;
740 /* Set up for the next packet */
741 packet
->rhqoff
+= packet
->rsize
;
742 if (packet
->rhqoff
>= packet
->maxcnt
)
746 ret
= check_max_packet(packet
, thread
);
748 packet
->rhf_addr
= (__le32
*)packet
->rcd
->rcvhdrq
+ packet
->rhqoff
+
749 packet
->rcd
->rhf_offset
;
750 packet
->rhf
= rhf_to_cpu(packet
->rhf_addr
);
755 static void process_rcv_packet_napi(struct hfi1_packet
*packet
)
757 packet
->etype
= rhf_rcv_type(packet
->rhf
);
760 packet
->tlen
= rhf_pkt_len(packet
->rhf
); /* in bytes */
761 /* retrieve eager buffer details */
762 packet
->etail
= rhf_egr_index(packet
->rhf
);
763 packet
->ebuf
= get_egrbuf(packet
->rcd
, packet
->rhf
,
766 * Prefetch the contents of the eager buffer. It is
767 * OK to send a negative length to prefetch_range().
768 * The +2 is the size of the RHF.
770 prefetch_range(packet
->ebuf
,
771 packet
->tlen
- ((packet
->rcd
->rcvhdrqentsize
-
772 (rhf_hdrq_offset(packet
->rhf
)
775 packet
->rcd
->rhf_rcv_function_map
[packet
->etype
](packet
);
778 /* Set up for the next packet */
779 packet
->rhqoff
+= packet
->rsize
;
780 if (packet
->rhqoff
>= packet
->maxcnt
)
783 packet
->rhf_addr
= (__le32
*)packet
->rcd
->rcvhdrq
+ packet
->rhqoff
+
784 packet
->rcd
->rhf_offset
;
785 packet
->rhf
= rhf_to_cpu(packet
->rhf_addr
);
788 static inline int process_rcv_packet(struct hfi1_packet
*packet
, int thread
)
792 packet
->etype
= rhf_rcv_type(packet
->rhf
);
795 packet
->tlen
= rhf_pkt_len(packet
->rhf
); /* in bytes */
796 /* retrieve eager buffer details */
798 if (rhf_use_egr_bfr(packet
->rhf
)) {
799 packet
->etail
= rhf_egr_index(packet
->rhf
);
800 packet
->ebuf
= get_egrbuf(packet
->rcd
, packet
->rhf
,
803 * Prefetch the contents of the eager buffer. It is
804 * OK to send a negative length to prefetch_range().
805 * The +2 is the size of the RHF.
807 prefetch_range(packet
->ebuf
,
808 packet
->tlen
- ((get_hdrqentsize(packet
->rcd
) -
809 (rhf_hdrq_offset(packet
->rhf
)
814 * Call a type specific handler for the packet. We
815 * should be able to trust that etype won't be beyond
816 * the range of valid indexes. If so something is really
817 * wrong and we can probably just let things come
818 * crashing down. There is no need to eat another
819 * comparison in this performance critical code.
821 packet
->rcd
->rhf_rcv_function_map
[packet
->etype
](packet
);
824 /* Set up for the next packet */
825 packet
->rhqoff
+= packet
->rsize
;
826 if (packet
->rhqoff
>= packet
->maxcnt
)
829 ret
= check_max_packet(packet
, thread
);
831 packet
->rhf_addr
= (__le32
*)packet
->rcd
->rcvhdrq
+ packet
->rhqoff
+
832 packet
->rcd
->rhf_offset
;
833 packet
->rhf
= rhf_to_cpu(packet
->rhf_addr
);
838 static inline void process_rcv_update(int last
, struct hfi1_packet
*packet
)
841 * Update head regs etc., every 16 packets, if not last pkt,
842 * to help prevent rcvhdrq overflows, when many packets
843 * are processed and queue is nearly full.
844 * Don't request an interrupt for intermediate updates.
846 if (!last
&& !(packet
->numpkt
& 0xf)) {
847 update_usrhead(packet
->rcd
, packet
->rhqoff
, packet
->updegr
,
848 packet
->etail
, 0, 0);
854 static inline void finish_packet(struct hfi1_packet
*packet
)
857 * Nothing we need to free for the packet.
859 * The only thing we need to do is a final update and call for an
862 update_usrhead(packet
->rcd
, hfi1_rcd_head(packet
->rcd
), packet
->updegr
,
863 packet
->etail
, rcv_intr_dynamic
, packet
->numpkt
);
867 * handle_receive_interrupt_napi_fp - receive a packet
869 * @budget: polling budget
871 * Called from interrupt handler for receive interrupt.
872 * This is the fast path interrupt handler
873 * when executing napi soft irq environment.
875 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata
*rcd
, int budget
)
877 struct hfi1_packet packet
;
879 init_packet(rcd
, &packet
);
880 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
)))
883 while (packet
.numpkt
< budget
) {
884 process_rcv_packet_napi(&packet
);
885 if (hfi1_seq_incr(rcd
, rhf_rcv_seq(packet
.rhf
)))
888 process_rcv_update(0, &packet
);
890 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
892 finish_packet(&packet
);
893 return packet
.numpkt
;
897 * Handle receive interrupts when using the no dma rtail option.
899 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata
*rcd
, int thread
)
901 int last
= RCV_PKT_OK
;
902 struct hfi1_packet packet
;
904 init_packet(rcd
, &packet
);
905 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
))) {
910 prescan_rxq(rcd
, &packet
);
912 while (last
== RCV_PKT_OK
) {
913 last
= process_rcv_packet(&packet
, thread
);
914 if (hfi1_seq_incr(rcd
, rhf_rcv_seq(packet
.rhf
)))
916 process_rcv_update(last
, &packet
);
918 process_rcv_qp_work(&packet
);
919 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
921 finish_packet(&packet
);
925 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata
*rcd
, int thread
)
928 int last
= RCV_PKT_OK
;
929 struct hfi1_packet packet
;
931 init_packet(rcd
, &packet
);
932 hdrqtail
= get_rcvhdrtail(rcd
);
933 if (packet
.rhqoff
== hdrqtail
) {
937 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
939 prescan_rxq(rcd
, &packet
);
941 while (last
== RCV_PKT_OK
) {
942 last
= process_rcv_packet(&packet
, thread
);
943 if (packet
.rhqoff
== hdrqtail
)
945 process_rcv_update(last
, &packet
);
947 process_rcv_qp_work(&packet
);
948 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
950 finish_packet(&packet
);
954 static void set_all_fastpath(struct hfi1_devdata
*dd
, struct hfi1_ctxtdata
*rcd
)
959 * For dynamically allocated kernel contexts (like vnic) switch
960 * interrupt handler only for that context. Otherwise, switch
961 * interrupt handler for all statically allocated kernel contexts.
963 if (rcd
->ctxt
>= dd
->first_dyn_alloc_ctxt
&& !rcd
->is_vnic
) {
970 for (i
= HFI1_CTRL_CTXT
+ 1; i
< dd
->num_rcv_contexts
; i
++) {
971 rcd
= hfi1_rcd_get_by_index(dd
, i
);
972 if (rcd
&& (i
< dd
->first_dyn_alloc_ctxt
|| rcd
->is_vnic
))
978 void set_all_slowpath(struct hfi1_devdata
*dd
)
980 struct hfi1_ctxtdata
*rcd
;
983 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
984 for (i
= HFI1_CTRL_CTXT
+ 1; i
< dd
->num_rcv_contexts
; i
++) {
985 rcd
= hfi1_rcd_get_by_index(dd
, i
);
988 if (i
< dd
->first_dyn_alloc_ctxt
|| rcd
->is_vnic
)
989 rcd
->do_interrupt
= rcd
->slow_handler
;
995 static bool __set_armed_to_active(struct hfi1_packet
*packet
)
997 u8 etype
= rhf_rcv_type(packet
->rhf
);
1000 if (etype
== RHF_RCV_TYPE_IB
) {
1001 struct ib_header
*hdr
= hfi1_get_msgheader(packet
->rcd
,
1003 sc
= hfi1_9B_get_sc5(hdr
, packet
->rhf
);
1004 } else if (etype
== RHF_RCV_TYPE_BYPASS
) {
1005 struct hfi1_16b_header
*hdr
= hfi1_get_16B_header(
1008 sc
= hfi1_16B_get_sc(hdr
);
1010 if (sc
!= SC15_PACKET
) {
1011 int hwstate
= driver_lstate(packet
->rcd
->ppd
);
1012 struct work_struct
*lsaw
=
1013 &packet
->rcd
->ppd
->linkstate_active_work
;
1015 if (hwstate
!= IB_PORT_ACTIVE
) {
1016 dd_dev_info(packet
->rcd
->dd
,
1017 "Unexpected link state %s\n",
1018 opa_lstate_name(hwstate
));
1022 queue_work(packet
->rcd
->ppd
->link_wq
, lsaw
);
1029 * armed to active - the fast path for armed to active
1030 * @packet: the packet structure
1032 * Return true if packet processing needs to bail.
1034 static bool set_armed_to_active(struct hfi1_packet
*packet
)
1036 if (likely(packet
->rcd
->ppd
->host_link_state
!= HLS_UP_ARMED
))
1038 return __set_armed_to_active(packet
);
1042 * handle_receive_interrupt - receive a packet
1045 * Called from interrupt handler for errors or receive interrupt.
1046 * This is the slow path interrupt handler.
1048 int handle_receive_interrupt(struct hfi1_ctxtdata
*rcd
, int thread
)
1050 struct hfi1_devdata
*dd
= rcd
->dd
;
1052 int needset
, last
= RCV_PKT_OK
;
1053 struct hfi1_packet packet
;
1056 /* Control context will always use the slow path interrupt handler */
1057 needset
= (rcd
->ctxt
== HFI1_CTRL_CTXT
) ? 0 : 1;
1059 init_packet(rcd
, &packet
);
1061 if (!get_dma_rtail_setting(rcd
)) {
1062 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
))) {
1063 last
= RCV_PKT_DONE
;
1068 hdrqtail
= get_rcvhdrtail(rcd
);
1069 if (packet
.rhqoff
== hdrqtail
) {
1070 last
= RCV_PKT_DONE
;
1073 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1076 * Control context can potentially receive an invalid
1077 * rhf. Drop such packets.
1079 if (rcd
->ctxt
== HFI1_CTRL_CTXT
)
1080 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
)))
1084 prescan_rxq(rcd
, &packet
);
1086 while (last
== RCV_PKT_OK
) {
1087 if (hfi1_need_drop(dd
)) {
1088 /* On to the next packet */
1089 packet
.rhqoff
+= packet
.rsize
;
1090 packet
.rhf_addr
= (__le32
*)rcd
->rcvhdrq
+
1093 packet
.rhf
= rhf_to_cpu(packet
.rhf_addr
);
1095 } else if (skip_pkt
) {
1096 last
= skip_rcv_packet(&packet
, thread
);
1099 if (set_armed_to_active(&packet
))
1101 last
= process_rcv_packet(&packet
, thread
);
1104 if (!get_dma_rtail_setting(rcd
)) {
1105 if (hfi1_seq_incr(rcd
, rhf_rcv_seq(packet
.rhf
)))
1106 last
= RCV_PKT_DONE
;
1108 if (packet
.rhqoff
== hdrqtail
)
1109 last
= RCV_PKT_DONE
;
1111 * Control context can potentially receive an invalid
1112 * rhf. Drop such packets.
1114 if (rcd
->ctxt
== HFI1_CTRL_CTXT
) {
1117 lseq
= hfi1_seq_incr(rcd
,
1118 rhf_rcv_seq(packet
.rhf
));
1126 set_all_fastpath(dd
, rcd
);
1128 process_rcv_update(last
, &packet
);
1131 process_rcv_qp_work(&packet
);
1132 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
1136 * Always write head at end, and setup rcv interrupt, even
1137 * if no packets were processed.
1139 finish_packet(&packet
);
1144 * handle_receive_interrupt_napi_sp - receive a packet
1146 * @budget: polling budget
1148 * Called from interrupt handler for errors or receive interrupt.
1149 * This is the slow path interrupt handler
1150 * when executing napi soft irq environment.
1152 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata
*rcd
, int budget
)
1154 struct hfi1_devdata
*dd
= rcd
->dd
;
1155 int last
= RCV_PKT_OK
;
1156 bool needset
= true;
1157 struct hfi1_packet packet
;
1159 init_packet(rcd
, &packet
);
1160 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
)))
1163 while (last
!= RCV_PKT_DONE
&& packet
.numpkt
< budget
) {
1164 if (hfi1_need_drop(dd
)) {
1165 /* On to the next packet */
1166 packet
.rhqoff
+= packet
.rsize
;
1167 packet
.rhf_addr
= (__le32
*)rcd
->rcvhdrq
+
1170 packet
.rhf
= rhf_to_cpu(packet
.rhf_addr
);
1173 if (set_armed_to_active(&packet
))
1175 process_rcv_packet_napi(&packet
);
1178 if (hfi1_seq_incr(rcd
, rhf_rcv_seq(packet
.rhf
)))
1179 last
= RCV_PKT_DONE
;
1183 set_all_fastpath(dd
, rcd
);
1186 process_rcv_update(last
, &packet
);
1189 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
1193 * Always write head at end, and setup rcv interrupt, even
1194 * if no packets were processed.
1196 finish_packet(&packet
);
1197 return packet
.numpkt
;
1201 * We may discover in the interrupt that the hardware link state has
1202 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1203 * and we need to update the driver's notion of the link state. We cannot
1204 * run set_link_state from interrupt context, so we queue this function on
1207 * We delay the regular interrupt processing until after the state changes
1208 * so that the link will be in the correct state by the time any application
1209 * we wake up attempts to send a reply to any message it received.
1210 * (Subsequent receive interrupts may possibly force the wakeup before we
1211 * update the link state.)
1213 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1214 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1215 * so we're safe from use-after-free of the rcd.
1217 void receive_interrupt_work(struct work_struct
*work
)
1219 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
1220 linkstate_active_work
);
1221 struct hfi1_devdata
*dd
= ppd
->dd
;
1222 struct hfi1_ctxtdata
*rcd
;
1225 /* Received non-SC15 packet implies neighbor_normal */
1226 ppd
->neighbor_normal
= 1;
1227 set_link_state(ppd
, HLS_UP_ACTIVE
);
1230 * Interrupt all statically allocated kernel contexts that could
1231 * have had an interrupt during auto activation.
1233 for (i
= HFI1_CTRL_CTXT
; i
< dd
->first_dyn_alloc_ctxt
; i
++) {
1234 rcd
= hfi1_rcd_get_by_index(dd
, i
);
1236 force_recv_intr(rcd
);
1242 * Convert a given MTU size to the on-wire MAD packet enumeration.
1243 * Return -1 if the size is invalid.
1245 int mtu_to_enum(u32 mtu
, int default_if_bad
)
1248 case 0: return OPA_MTU_0
;
1249 case 256: return OPA_MTU_256
;
1250 case 512: return OPA_MTU_512
;
1251 case 1024: return OPA_MTU_1024
;
1252 case 2048: return OPA_MTU_2048
;
1253 case 4096: return OPA_MTU_4096
;
1254 case 8192: return OPA_MTU_8192
;
1255 case 10240: return OPA_MTU_10240
;
1257 return default_if_bad
;
1260 u16
enum_to_mtu(int mtu
)
1263 case OPA_MTU_0
: return 0;
1264 case OPA_MTU_256
: return 256;
1265 case OPA_MTU_512
: return 512;
1266 case OPA_MTU_1024
: return 1024;
1267 case OPA_MTU_2048
: return 2048;
1268 case OPA_MTU_4096
: return 4096;
1269 case OPA_MTU_8192
: return 8192;
1270 case OPA_MTU_10240
: return 10240;
1271 default: return 0xffff;
1276 * set_mtu - set the MTU
1277 * @ppd: the per port data
1279 * We can handle "any" incoming size, the issue here is whether we
1280 * need to restrict our outgoing size. We do not deal with what happens
1281 * to programs that are already running when the size changes.
1283 int set_mtu(struct hfi1_pportdata
*ppd
)
1285 struct hfi1_devdata
*dd
= ppd
->dd
;
1286 int i
, drain
, ret
= 0, is_up
= 0;
1289 for (i
= 0; i
< ppd
->vls_supported
; i
++)
1290 if (ppd
->ibmtu
< dd
->vld
[i
].mtu
)
1291 ppd
->ibmtu
= dd
->vld
[i
].mtu
;
1292 ppd
->ibmaxlen
= ppd
->ibmtu
+ lrh_max_header_bytes(ppd
->dd
);
1294 mutex_lock(&ppd
->hls_lock
);
1295 if (ppd
->host_link_state
== HLS_UP_INIT
||
1296 ppd
->host_link_state
== HLS_UP_ARMED
||
1297 ppd
->host_link_state
== HLS_UP_ACTIVE
)
1300 drain
= !is_ax(dd
) && is_up
;
1304 * MTU is specified per-VL. To ensure that no packet gets
1305 * stuck (due, e.g., to the MTU for the packet's VL being
1306 * reduced), empty the per-VL FIFOs before adjusting MTU.
1308 ret
= stop_drain_data_vls(dd
);
1311 dd_dev_err(dd
, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1316 hfi1_set_ib_cfg(ppd
, HFI1_IB_CFG_MTU
, 0);
1319 open_fill_data_vls(dd
); /* reopen all VLs */
1322 mutex_unlock(&ppd
->hls_lock
);
1327 int hfi1_set_lid(struct hfi1_pportdata
*ppd
, u32 lid
, u8 lmc
)
1329 struct hfi1_devdata
*dd
= ppd
->dd
;
1333 hfi1_set_ib_cfg(ppd
, HFI1_IB_CFG_LIDLMC
, 0);
1335 dd_dev_info(dd
, "port %u: got a lid: 0x%x\n", ppd
->port
, lid
);
1340 void shutdown_led_override(struct hfi1_pportdata
*ppd
)
1342 struct hfi1_devdata
*dd
= ppd
->dd
;
1345 * This pairs with the memory barrier in hfi1_start_led_override to
1346 * ensure that we read the correct state of LED beaconing represented
1347 * by led_override_timer_active
1350 if (atomic_read(&ppd
->led_override_timer_active
)) {
1351 del_timer_sync(&ppd
->led_override_timer
);
1352 atomic_set(&ppd
->led_override_timer_active
, 0);
1353 /* Ensure the atomic_set is visible to all CPUs */
1357 /* Hand control of the LED to the DC for normal operation */
1358 write_csr(dd
, DCC_CFG_LED_CNTRL
, 0);
1361 static void run_led_override(struct timer_list
*t
)
1363 struct hfi1_pportdata
*ppd
= from_timer(ppd
, t
, led_override_timer
);
1364 struct hfi1_devdata
*dd
= ppd
->dd
;
1365 unsigned long timeout
;
1368 if (!(dd
->flags
& HFI1_INITTED
))
1371 phase_idx
= ppd
->led_override_phase
& 1;
1373 setextled(dd
, phase_idx
);
1375 timeout
= ppd
->led_override_vals
[phase_idx
];
1377 /* Set up for next phase */
1378 ppd
->led_override_phase
= !ppd
->led_override_phase
;
1380 mod_timer(&ppd
->led_override_timer
, jiffies
+ timeout
);
1384 * To have the LED blink in a particular pattern, provide timeon and timeoff
1386 * To turn off custom blinking and return to normal operation, use
1387 * shutdown_led_override()
1389 void hfi1_start_led_override(struct hfi1_pportdata
*ppd
, unsigned int timeon
,
1390 unsigned int timeoff
)
1392 if (!(ppd
->dd
->flags
& HFI1_INITTED
))
1395 /* Convert to jiffies for direct use in timer */
1396 ppd
->led_override_vals
[0] = msecs_to_jiffies(timeoff
);
1397 ppd
->led_override_vals
[1] = msecs_to_jiffies(timeon
);
1399 /* Arbitrarily start from LED on phase */
1400 ppd
->led_override_phase
= 1;
1403 * If the timer has not already been started, do so. Use a "quick"
1404 * timeout so the handler will be called soon to look at our request.
1406 if (!timer_pending(&ppd
->led_override_timer
)) {
1407 timer_setup(&ppd
->led_override_timer
, run_led_override
, 0);
1408 ppd
->led_override_timer
.expires
= jiffies
+ 1;
1409 add_timer(&ppd
->led_override_timer
);
1410 atomic_set(&ppd
->led_override_timer_active
, 1);
1411 /* Ensure the atomic_set is visible to all CPUs */
1417 * hfi1_reset_device - reset the chip if possible
1418 * @unit: the device to reset
1420 * Whether or not reset is successful, we attempt to re-initialize the chip
1421 * (that is, much like a driver unload/reload). We clear the INITTED flag
1422 * so that the various entry points will fail until we reinitialize. For
1423 * now, we only allow this if no user contexts are open that use chip resources
1425 int hfi1_reset_device(int unit
)
1428 struct hfi1_devdata
*dd
= hfi1_lookup(unit
);
1429 struct hfi1_pportdata
*ppd
;
1437 dd_dev_info(dd
, "Reset on unit %u requested\n", unit
);
1439 if (!dd
->kregbase1
|| !(dd
->flags
& HFI1_PRESENT
)) {
1441 "Invalid unit number %u or not initialized or not present\n",
1447 /* If there are any user/vnic contexts, we cannot reset */
1448 mutex_lock(&hfi1_mutex
);
1450 if (hfi1_stats
.sps_ctxts
) {
1451 mutex_unlock(&hfi1_mutex
);
1455 mutex_unlock(&hfi1_mutex
);
1457 for (pidx
= 0; pidx
< dd
->num_pports
; ++pidx
) {
1458 ppd
= dd
->pport
+ pidx
;
1460 shutdown_led_override(ppd
);
1462 if (dd
->flags
& HFI1_HAS_SEND_DMA
)
1465 hfi1_reset_cpu_counters(dd
);
1467 ret
= hfi1_init(dd
, 1);
1471 "Reinitialize unit %u after reset failed with %d\n",
1474 dd_dev_info(dd
, "Reinitialized unit %u after resetting\n",
1481 static inline void hfi1_setup_ib_header(struct hfi1_packet
*packet
)
1483 packet
->hdr
= (struct hfi1_ib_message_header
*)
1484 hfi1_get_msgheader(packet
->rcd
,
1486 packet
->hlen
= (u8
*)packet
->rhf_addr
- (u8
*)packet
->hdr
;
1489 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet
*packet
)
1491 struct hfi1_pportdata
*ppd
= packet
->rcd
->ppd
;
1493 /* slid and dlid cannot be 0 */
1494 if ((!packet
->slid
) || (!packet
->dlid
))
1497 /* Compare port lid with incoming packet dlid */
1498 if ((!(hfi1_is_16B_mcast(packet
->dlid
))) &&
1500 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE
), 16B
))) {
1501 if ((packet
->dlid
& ~((1 << ppd
->lmc
) - 1)) != ppd
->lid
)
1505 /* No multicast packets with SC15 */
1506 if ((hfi1_is_16B_mcast(packet
->dlid
)) && (packet
->sc
== 0xF))
1509 /* Packets with permissive DLID always on SC15 */
1510 if ((packet
->dlid
== opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE
),
1512 (packet
->sc
!= 0xF))
1518 static int hfi1_setup_9B_packet(struct hfi1_packet
*packet
)
1520 struct hfi1_ibport
*ibp
= rcd_to_iport(packet
->rcd
);
1521 struct ib_header
*hdr
;
1524 hfi1_setup_ib_header(packet
);
1527 lnh
= ib_get_lnh(hdr
);
1528 if (lnh
== HFI1_LRH_BTH
) {
1529 packet
->ohdr
= &hdr
->u
.oth
;
1531 } else if (lnh
== HFI1_LRH_GRH
) {
1534 packet
->ohdr
= &hdr
->u
.l
.oth
;
1535 packet
->grh
= &hdr
->u
.l
.grh
;
1536 if (packet
->grh
->next_hdr
!= IB_GRH_NEXT_HDR
)
1538 vtf
= be32_to_cpu(packet
->grh
->version_tclass_flow
);
1539 if ((vtf
>> IB_GRH_VERSION_SHIFT
) != IB_GRH_VERSION
)
1545 /* Query commonly used fields from packet header */
1546 packet
->payload
= packet
->ebuf
;
1547 packet
->opcode
= ib_bth_get_opcode(packet
->ohdr
);
1548 packet
->slid
= ib_get_slid(hdr
);
1549 packet
->dlid
= ib_get_dlid(hdr
);
1550 if (unlikely((packet
->dlid
>= be16_to_cpu(IB_MULTICAST_LID_BASE
)) &&
1551 (packet
->dlid
!= be16_to_cpu(IB_LID_PERMISSIVE
))))
1552 packet
->dlid
+= opa_get_mcast_base(OPA_MCAST_NR
) -
1553 be16_to_cpu(IB_MULTICAST_LID_BASE
);
1554 packet
->sl
= ib_get_sl(hdr
);
1555 packet
->sc
= hfi1_9B_get_sc5(hdr
, packet
->rhf
);
1556 packet
->pad
= ib_bth_get_pad(packet
->ohdr
);
1557 packet
->extra_byte
= 0;
1558 packet
->pkey
= ib_bth_get_pkey(packet
->ohdr
);
1559 packet
->migrated
= ib_bth_is_migration(packet
->ohdr
);
1563 ibp
->rvp
.n_pkt_drops
++;
1567 static int hfi1_setup_bypass_packet(struct hfi1_packet
*packet
)
1570 * Bypass packets have a different header/payload split
1571 * compared to an IB packet.
1572 * Current split is set such that 16 bytes of the actual
1573 * header is in the header buffer and the remining is in
1574 * the eager buffer. We chose 16 since hfi1 driver only
1575 * supports 16B bypass packets and we will be able to
1576 * receive the entire LRH with such a split.
1579 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1580 struct hfi1_pportdata
*ppd
= rcd
->ppd
;
1581 struct hfi1_ibport
*ibp
= &ppd
->ibport_data
;
1584 packet
->hdr
= (struct hfi1_16b_header
*)
1585 hfi1_get_16B_header(packet
->rcd
,
1587 l4
= hfi1_16B_get_l4(packet
->hdr
);
1588 if (l4
== OPA_16B_L4_IB_LOCAL
) {
1589 packet
->ohdr
= packet
->ebuf
;
1591 packet
->opcode
= ib_bth_get_opcode(packet
->ohdr
);
1592 packet
->pad
= hfi1_16B_bth_get_pad(packet
->ohdr
);
1593 /* hdr_len_by_opcode already has an IB LRH factored in */
1594 packet
->hlen
= hdr_len_by_opcode
[packet
->opcode
] +
1595 (LRH_16B_BYTES
- LRH_9B_BYTES
);
1596 packet
->migrated
= opa_bth_is_migration(packet
->ohdr
);
1597 } else if (l4
== OPA_16B_L4_IB_GLOBAL
) {
1599 u8 grh_len
= sizeof(struct ib_grh
);
1601 packet
->ohdr
= packet
->ebuf
+ grh_len
;
1602 packet
->grh
= packet
->ebuf
;
1603 packet
->opcode
= ib_bth_get_opcode(packet
->ohdr
);
1604 packet
->pad
= hfi1_16B_bth_get_pad(packet
->ohdr
);
1605 /* hdr_len_by_opcode already has an IB LRH factored in */
1606 packet
->hlen
= hdr_len_by_opcode
[packet
->opcode
] +
1607 (LRH_16B_BYTES
- LRH_9B_BYTES
) + grh_len
;
1608 packet
->migrated
= opa_bth_is_migration(packet
->ohdr
);
1610 if (packet
->grh
->next_hdr
!= IB_GRH_NEXT_HDR
)
1612 vtf
= be32_to_cpu(packet
->grh
->version_tclass_flow
);
1613 if ((vtf
>> IB_GRH_VERSION_SHIFT
) != IB_GRH_VERSION
)
1615 } else if (l4
== OPA_16B_L4_FM
) {
1616 packet
->mgmt
= packet
->ebuf
;
1617 packet
->ohdr
= NULL
;
1619 packet
->opcode
= IB_OPCODE_UD_SEND_ONLY
;
1620 packet
->pad
= OPA_16B_L4_FM_PAD
;
1621 packet
->hlen
= OPA_16B_L4_FM_HLEN
;
1622 packet
->migrated
= false;
1627 /* Query commonly used fields from packet header */
1628 packet
->payload
= packet
->ebuf
+ packet
->hlen
- LRH_16B_BYTES
;
1629 packet
->slid
= hfi1_16B_get_slid(packet
->hdr
);
1630 packet
->dlid
= hfi1_16B_get_dlid(packet
->hdr
);
1631 if (unlikely(hfi1_is_16B_mcast(packet
->dlid
)))
1632 packet
->dlid
+= opa_get_mcast_base(OPA_MCAST_NR
) -
1633 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR
),
1635 packet
->sc
= hfi1_16B_get_sc(packet
->hdr
);
1636 packet
->sl
= ibp
->sc_to_sl
[packet
->sc
];
1637 packet
->extra_byte
= SIZE_OF_LT
;
1638 packet
->pkey
= hfi1_16B_get_pkey(packet
->hdr
);
1640 if (hfi1_bypass_ingress_pkt_check(packet
))
1645 hfi1_cdbg(PKT
, "%s: packet dropped\n", __func__
);
1646 ibp
->rvp
.n_pkt_drops
++;
1650 static void show_eflags_errs(struct hfi1_packet
*packet
)
1652 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1653 u32 rte
= rhf_rcv_type_err(packet
->rhf
);
1656 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1657 rcd
->ctxt
, packet
->rhf
,
1658 packet
->rhf
& RHF_K_HDR_LEN_ERR
? "k_hdr_len " : "",
1659 packet
->rhf
& RHF_DC_UNC_ERR
? "dc_unc " : "",
1660 packet
->rhf
& RHF_DC_ERR
? "dc " : "",
1661 packet
->rhf
& RHF_TID_ERR
? "tid " : "",
1662 packet
->rhf
& RHF_LEN_ERR
? "len " : "",
1663 packet
->rhf
& RHF_ECC_ERR
? "ecc " : "",
1664 packet
->rhf
& RHF_ICRC_ERR
? "icrc " : "",
1668 void handle_eflags(struct hfi1_packet
*packet
)
1670 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1672 rcv_hdrerr(rcd
, rcd
->ppd
, packet
);
1673 if (rhf_err_flags(packet
->rhf
))
1674 show_eflags_errs(packet
);
1677 static void hfi1_ipoib_ib_rcv(struct hfi1_packet
*packet
)
1679 struct hfi1_ibport
*ibp
;
1680 struct net_device
*netdev
;
1681 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1682 struct napi_struct
*napi
= rcd
->napi
;
1683 struct sk_buff
*skb
;
1684 struct hfi1_netdev_rxq
*rxq
= container_of(napi
,
1685 struct hfi1_netdev_rxq
, napi
);
1688 bool do_work
, do_cnp
;
1690 trace_hfi1_rcvhdr(packet
);
1692 hfi1_setup_ib_header(packet
);
1694 packet
->ohdr
= &((struct ib_header
*)packet
->hdr
)->u
.oth
;
1697 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1698 handle_eflags(packet
);
1702 qpnum
= ib_bth_get_qpn(packet
->ohdr
);
1703 netdev
= hfi1_netdev_get_data(rcd
->dd
, qpnum
);
1707 trace_input_ibhdr(rcd
->dd
, packet
, !!(rhf_dc_info(packet
->rhf
)));
1708 trace_ctxt_rsm_hist(rcd
->ctxt
);
1710 /* handle congestion notifications */
1711 do_work
= hfi1_may_ecn(packet
);
1712 if (unlikely(do_work
)) {
1713 do_cnp
= (packet
->opcode
!= IB_OPCODE_CNP
);
1714 (void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev
)->qp
,
1719 * We have split point after last byte of DETH
1720 * lets strip padding and CRC and ICRC.
1721 * tlen is whole packet len so we need to
1722 * subtract header size as well.
1724 tlen
= packet
->tlen
;
1725 extra_bytes
= ib_bth_get_pad(packet
->ohdr
) + (SIZE_OF_CRC
<< 2) +
1727 if (unlikely(tlen
< extra_bytes
))
1730 tlen
-= extra_bytes
;
1732 skb
= hfi1_ipoib_prepare_skb(rxq
, tlen
, packet
->ebuf
);
1736 dev_sw_netstats_rx_add(netdev
, skb
->len
);
1739 skb
->pkt_type
= PACKET_HOST
;
1740 netif_receive_skb(skb
);
1745 ++netdev
->stats
.rx_dropped
;
1747 ibp
= rcd_to_iport(packet
->rcd
);
1748 ++ibp
->rvp
.n_pkt_drops
;
1752 * The following functions are called by the interrupt handler. They are type
1753 * specific handlers for each packet type.
1755 static void process_receive_ib(struct hfi1_packet
*packet
)
1757 if (hfi1_setup_9B_packet(packet
))
1760 if (unlikely(hfi1_dbg_should_fault_rx(packet
)))
1763 trace_hfi1_rcvhdr(packet
);
1765 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1766 handle_eflags(packet
);
1770 hfi1_ib_rcv(packet
);
1773 static void process_receive_bypass(struct hfi1_packet
*packet
)
1775 struct hfi1_devdata
*dd
= packet
->rcd
->dd
;
1777 if (hfi1_setup_bypass_packet(packet
))
1780 trace_hfi1_rcvhdr(packet
);
1782 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1783 handle_eflags(packet
);
1787 if (hfi1_16B_get_l2(packet
->hdr
) == 0x2) {
1788 hfi1_16B_rcv(packet
);
1791 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1792 incr_cntr64(&dd
->sw_rcv_bypass_packet_errors
);
1793 if (!(dd
->err_info_rcvport
.status_and_code
&
1794 OPA_EI_STATUS_SMASK
)) {
1795 u64
*flits
= packet
->ebuf
;
1797 if (flits
&& !(packet
->rhf
& RHF_LEN_ERR
)) {
1798 dd
->err_info_rcvport
.packet_flit1
= flits
[0];
1799 dd
->err_info_rcvport
.packet_flit2
=
1800 packet
->tlen
> sizeof(flits
[0]) ?
1803 dd
->err_info_rcvport
.status_and_code
|=
1804 (OPA_EI_STATUS_SMASK
| BAD_L2_ERR
);
1809 static void process_receive_error(struct hfi1_packet
*packet
)
1811 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1813 hfi1_dbg_fault_suppress_err(&packet
->rcd
->dd
->verbs_dev
) &&
1814 (rhf_rcv_type_err(packet
->rhf
) == RHF_RCV_TYPE_ERROR
||
1815 packet
->rhf
& RHF_DC_ERR
)))
1818 hfi1_setup_ib_header(packet
);
1819 handle_eflags(packet
);
1821 if (unlikely(rhf_err_flags(packet
->rhf
)))
1822 dd_dev_err(packet
->rcd
->dd
,
1823 "Unhandled error packet received. Dropping.\n");
1826 static void kdeth_process_expected(struct hfi1_packet
*packet
)
1828 hfi1_setup_9B_packet(packet
);
1829 if (unlikely(hfi1_dbg_should_fault_rx(packet
)))
1832 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1833 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1835 if (hfi1_handle_kdeth_eflags(rcd
, rcd
->ppd
, packet
))
1839 hfi1_kdeth_expected_rcv(packet
);
1842 static void kdeth_process_eager(struct hfi1_packet
*packet
)
1844 hfi1_setup_9B_packet(packet
);
1845 if (unlikely(hfi1_dbg_should_fault_rx(packet
)))
1848 trace_hfi1_rcvhdr(packet
);
1849 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1850 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1852 show_eflags_errs(packet
);
1853 if (hfi1_handle_kdeth_eflags(rcd
, rcd
->ppd
, packet
))
1857 hfi1_kdeth_eager_rcv(packet
);
1860 static void process_receive_invalid(struct hfi1_packet
*packet
)
1862 dd_dev_err(packet
->rcd
->dd
, "Invalid packet type %d. Dropping\n",
1863 rhf_rcv_type(packet
->rhf
));
1866 #define HFI1_RCVHDR_DUMP_MAX 5
1868 void seqfile_dump_rcd(struct seq_file
*s
, struct hfi1_ctxtdata
*rcd
)
1870 struct hfi1_packet packet
;
1871 struct ps_mdata mdata
;
1874 seq_printf(s
, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu sw head %u\n",
1875 rcd
->ctxt
, get_hdrq_cnt(rcd
), get_hdrqentsize(rcd
),
1876 get_dma_rtail_setting(rcd
) ?
1877 "dma_rtail" : "nodma_rtail",
1878 read_kctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_CTXT_CTRL
),
1879 read_kctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_CTXT_STATUS
),
1880 read_uctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_HDR_HEAD
) &
1881 RCV_HDR_HEAD_HEAD_MASK
,
1882 read_uctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_HDR_TAIL
),
1885 init_packet(rcd
, &packet
);
1886 init_ps_mdata(&mdata
, &packet
);
1888 for (i
= 0; i
< HFI1_RCVHDR_DUMP_MAX
; i
++) {
1889 __le32
*rhf_addr
= (__le32
*)rcd
->rcvhdrq
+ mdata
.ps_head
+
1891 struct ib_header
*hdr
;
1892 u64 rhf
= rhf_to_cpu(rhf_addr
);
1893 u32 etype
= rhf_rcv_type(rhf
), qpn
;
1898 if (ps_done(&mdata
, rhf
, rcd
))
1901 if (ps_skip(&mdata
, rhf
, rcd
))
1904 if (etype
> RHF_RCV_TYPE_IB
)
1907 packet
.hdr
= hfi1_get_msgheader(rcd
, rhf_addr
);
1910 lnh
= be16_to_cpu(hdr
->lrh
[0]) & 3;
1912 if (lnh
== HFI1_LRH_BTH
)
1913 packet
.ohdr
= &hdr
->u
.oth
;
1914 else if (lnh
== HFI1_LRH_GRH
)
1915 packet
.ohdr
= &hdr
->u
.l
.oth
;
1917 goto next
; /* just in case */
1919 opcode
= (be32_to_cpu(packet
.ohdr
->bth
[0]) >> 24);
1920 qpn
= be32_to_cpu(packet
.ohdr
->bth
[1]) & RVT_QPN_MASK
;
1921 psn
= mask_psn(be32_to_cpu(packet
.ohdr
->bth
[2]));
1923 seq_printf(s
, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1924 mdata
.ps_head
, opcode
, qpn
, psn
);
1926 update_ps_mdata(&mdata
, rcd
);
1930 const rhf_rcv_function_ptr normal_rhf_rcv_functions
[] = {
1931 [RHF_RCV_TYPE_EXPECTED
] = kdeth_process_expected
,
1932 [RHF_RCV_TYPE_EAGER
] = kdeth_process_eager
,
1933 [RHF_RCV_TYPE_IB
] = process_receive_ib
,
1934 [RHF_RCV_TYPE_ERROR
] = process_receive_error
,
1935 [RHF_RCV_TYPE_BYPASS
] = process_receive_bypass
,
1936 [RHF_RCV_TYPE_INVALID5
] = process_receive_invalid
,
1937 [RHF_RCV_TYPE_INVALID6
] = process_receive_invalid
,
1938 [RHF_RCV_TYPE_INVALID7
] = process_receive_invalid
,
1941 const rhf_rcv_function_ptr netdev_rhf_rcv_functions
[] = {
1942 [RHF_RCV_TYPE_EXPECTED
] = process_receive_invalid
,
1943 [RHF_RCV_TYPE_EAGER
] = process_receive_invalid
,
1944 [RHF_RCV_TYPE_IB
] = hfi1_ipoib_ib_rcv
,
1945 [RHF_RCV_TYPE_ERROR
] = process_receive_error
,
1946 [RHF_RCV_TYPE_BYPASS
] = hfi1_vnic_bypass_rcv
,
1947 [RHF_RCV_TYPE_INVALID5
] = process_receive_invalid
,
1948 [RHF_RCV_TYPE_INVALID6
] = process_receive_invalid
,
1949 [RHF_RCV_TYPE_INVALID7
] = process_receive_invalid
,