2 * Copyright(c) 2015-2018 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/delay.h>
53 #define SC(name) SEND_CTXT_##name
55 * Send Context functions
57 static void sc_wait_for_packet_egress(struct send_context
*sc
, int pause
);
60 * Set the CM reset bit and wait for it to clear. Use the provided
61 * sendctrl register. This routine has no locking.
63 void __cm_reset(struct hfi1_devdata
*dd
, u64 sendctrl
)
65 write_csr(dd
, SEND_CTRL
, sendctrl
| SEND_CTRL_CM_RESET_SMASK
);
68 sendctrl
= read_csr(dd
, SEND_CTRL
);
69 if ((sendctrl
& SEND_CTRL_CM_RESET_SMASK
) == 0)
74 /* global control of PIO send */
75 void pio_send_control(struct hfi1_devdata
*dd
, int op
)
79 int write
= 1; /* write sendctrl back */
80 int flush
= 0; /* re-read sendctrl to make sure it is flushed */
83 spin_lock_irqsave(&dd
->sendctrl_lock
, flags
);
85 reg
= read_csr(dd
, SEND_CTRL
);
87 case PSC_GLOBAL_ENABLE
:
88 reg
|= SEND_CTRL_SEND_ENABLE_SMASK
;
90 case PSC_DATA_VL_ENABLE
:
92 for (i
= 0; i
< ARRAY_SIZE(dd
->vld
); i
++)
95 /* Disallow sending on VLs not enabled */
96 mask
= (mask
& SEND_CTRL_UNSUPPORTED_VL_MASK
) <<
97 SEND_CTRL_UNSUPPORTED_VL_SHIFT
;
98 reg
= (reg
& ~SEND_CTRL_UNSUPPORTED_VL_SMASK
) | mask
;
100 case PSC_GLOBAL_DISABLE
:
101 reg
&= ~SEND_CTRL_SEND_ENABLE_SMASK
;
103 case PSC_GLOBAL_VLARB_ENABLE
:
104 reg
|= SEND_CTRL_VL_ARBITER_ENABLE_SMASK
;
106 case PSC_GLOBAL_VLARB_DISABLE
:
107 reg
&= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK
;
111 write
= 0; /* CSR already written (and flushed) */
113 case PSC_DATA_VL_DISABLE
:
114 reg
|= SEND_CTRL_UNSUPPORTED_VL_SMASK
;
118 dd_dev_err(dd
, "%s: invalid control %d\n", __func__
, op
);
123 write_csr(dd
, SEND_CTRL
, reg
);
125 (void)read_csr(dd
, SEND_CTRL
); /* flush write */
128 spin_unlock_irqrestore(&dd
->sendctrl_lock
, flags
);
131 /* number of send context memory pools */
132 #define NUM_SC_POOLS 2
134 /* Send Context Size (SCS) wildcards */
135 #define SCS_POOL_0 -1
136 #define SCS_POOL_1 -2
138 /* Send Context Count (SCC) wildcards */
139 #define SCC_PER_VL -1
140 #define SCC_PER_CPU -2
141 #define SCC_PER_KRCVQ -3
143 /* Send Context Size (SCS) constants */
144 #define SCS_ACK_CREDITS 32
145 #define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */
147 #define PIO_THRESHOLD_CEILING 4096
149 #define PIO_WAIT_BATCH_SIZE 5
151 /* default send context sizes */
152 static struct sc_config_sizes sc_config_sizes
[SC_MAX
] = {
153 [SC_KERNEL
] = { .size
= SCS_POOL_0
, /* even divide, pool 0 */
154 .count
= SCC_PER_VL
}, /* one per NUMA */
155 [SC_ACK
] = { .size
= SCS_ACK_CREDITS
,
156 .count
= SCC_PER_KRCVQ
},
157 [SC_USER
] = { .size
= SCS_POOL_0
, /* even divide, pool 0 */
158 .count
= SCC_PER_CPU
}, /* one per CPU */
159 [SC_VL15
] = { .size
= SCS_VL15_CREDITS
,
164 /* send context memory pool configuration */
165 struct mem_pool_config
{
166 int centipercent
; /* % of memory, in 100ths of 1% */
167 int absolute_blocks
; /* absolute block count */
170 /* default memory pool configuration: 100% in pool 0 */
171 static struct mem_pool_config sc_mem_pool_config
[NUM_SC_POOLS
] = {
172 /* centi%, abs blocks */
173 { 10000, -1 }, /* pool 0 */
174 { 0, -1 }, /* pool 1 */
177 /* memory pool information, used when calculating final sizes */
178 struct mem_pool_info
{
180 * 100th of 1% of memory to use, -1 if blocks
183 int count
; /* count of contexts in the pool */
184 int blocks
; /* block size of the pool */
185 int size
; /* context size, in blocks */
189 * Convert a pool wildcard to a valid pool index. The wildcards
190 * start at -1 and increase negatively. Map them as:
195 * Return -1 on non-wildcard input, otherwise convert to a pool number.
197 static int wildcard_to_pool(int wc
)
200 return -1; /* non-wildcard */
204 static const char *sc_type_names
[SC_MAX
] = {
211 static const char *sc_type_name(int index
)
213 if (index
< 0 || index
>= SC_MAX
)
215 return sc_type_names
[index
];
219 * Read the send context memory pool configuration and send context
220 * size configuration. Replace any wildcards and come up with final
221 * counts and sizes for the send context types.
223 int init_sc_pools_and_sizes(struct hfi1_devdata
*dd
)
225 struct mem_pool_info mem_pool_info
[NUM_SC_POOLS
] = { { 0 } };
226 int total_blocks
= (chip_pio_mem_size(dd
) / PIO_BLOCK_SIZE
) - 1;
227 int total_contexts
= 0;
231 int cp_total
; /* centipercent total */
232 int ab_total
; /* absolute block total */
237 * When SDMA is enabled, kernel context pio packet size is capped by
238 * "piothreshold". Reduce pio buffer allocation for kernel context by
239 * setting it to a fixed size. The allocation allows 3-deep buffering
240 * of the largest pio packets plus up to 128 bytes header, sufficient
241 * to maintain verbs performance.
243 * When SDMA is disabled, keep the default pooling allocation.
245 if (HFI1_CAP_IS_KSET(SDMA
)) {
246 u16 max_pkt_size
= (piothreshold
< PIO_THRESHOLD_CEILING
) ?
247 piothreshold
: PIO_THRESHOLD_CEILING
;
248 sc_config_sizes
[SC_KERNEL
].size
=
249 3 * (max_pkt_size
+ 128) / PIO_BLOCK_SIZE
;
254 * - copy the centipercents/absolute sizes from the pool config
255 * - sanity check these values
256 * - add up centipercents, then later check for full value
257 * - add up absolute blocks, then later check for over-commit
261 for (i
= 0; i
< NUM_SC_POOLS
; i
++) {
262 int cp
= sc_mem_pool_config
[i
].centipercent
;
263 int ab
= sc_mem_pool_config
[i
].absolute_blocks
;
266 * A negative value is "unused" or "invalid". Both *can*
267 * be valid, but centipercent wins, so check that first
269 if (cp
>= 0) { /* centipercent valid */
271 } else if (ab
>= 0) { /* absolute blocks valid */
273 } else { /* neither valid */
276 "Send context memory pool %d: both the block count and centipercent are invalid\n",
281 mem_pool_info
[i
].centipercent
= cp
;
282 mem_pool_info
[i
].blocks
= ab
;
285 /* do not use both % and absolute blocks for different pools */
286 if (cp_total
!= 0 && ab_total
!= 0) {
289 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
293 /* if any percentages are present, they must add up to 100% x 100 */
294 if (cp_total
!= 0 && cp_total
!= 10000) {
297 "Send context memory pool centipercent is %d, expecting 10000\n",
302 /* the absolute pool total cannot be more than the mem total */
303 if (ab_total
> total_blocks
) {
306 "Send context memory pool absolute block count %d is larger than the memory size %d\n",
307 ab_total
, total_blocks
);
313 * - copy from the context size config
314 * - replace context type wildcard counts with real values
315 * - add up non-memory pool block sizes
316 * - add up memory pool user counts
319 for (i
= 0; i
< SC_MAX
; i
++) {
320 int count
= sc_config_sizes
[i
].count
;
321 int size
= sc_config_sizes
[i
].size
;
325 * Sanity check count: Either a positive value or
326 * one of the expected wildcards is valid. The positive
327 * value is checked later when we compare against total
331 count
= dd
->n_krcv_queues
;
332 } else if (i
== SC_KERNEL
) {
333 count
= INIT_SC_PER_VL
* num_vls
;
334 } else if (count
== SCC_PER_CPU
) {
335 count
= dd
->num_rcv_contexts
- dd
->n_krcv_queues
;
336 } else if (count
< 0) {
339 "%s send context invalid count wildcard %d\n",
340 sc_type_name(i
), count
);
343 if (total_contexts
+ count
> chip_send_contexts(dd
))
344 count
= chip_send_contexts(dd
) - total_contexts
;
346 total_contexts
+= count
;
349 * Sanity check pool: The conversion will return a pool
350 * number or -1 if a fixed (non-negative) value. The fixed
351 * value is checked later when we compare against
352 * total memory available.
354 pool
= wildcard_to_pool(size
);
355 if (pool
== -1) { /* non-wildcard */
356 fixed_blocks
+= size
* count
;
357 } else if (pool
< NUM_SC_POOLS
) { /* valid wildcard */
358 mem_pool_info
[pool
].count
+= count
;
359 } else { /* invalid wildcard */
362 "%s send context invalid pool wildcard %d\n",
363 sc_type_name(i
), size
);
367 dd
->sc_sizes
[i
].count
= count
;
368 dd
->sc_sizes
[i
].size
= size
;
370 if (fixed_blocks
> total_blocks
) {
373 "Send context fixed block count, %u, larger than total block count %u\n",
374 fixed_blocks
, total_blocks
);
378 /* step 3: calculate the blocks in the pools, and pool context sizes */
379 pool_blocks
= total_blocks
- fixed_blocks
;
380 if (ab_total
> pool_blocks
) {
383 "Send context fixed pool sizes, %u, larger than pool block count %u\n",
384 ab_total
, pool_blocks
);
387 /* subtract off the fixed pool blocks */
388 pool_blocks
-= ab_total
;
390 for (i
= 0; i
< NUM_SC_POOLS
; i
++) {
391 struct mem_pool_info
*pi
= &mem_pool_info
[i
];
393 /* % beats absolute blocks */
394 if (pi
->centipercent
>= 0)
395 pi
->blocks
= (pool_blocks
* pi
->centipercent
) / 10000;
397 if (pi
->blocks
== 0 && pi
->count
!= 0) {
400 "Send context memory pool %d has %u contexts, but no blocks\n",
404 if (pi
->count
== 0) {
405 /* warn about wasted blocks */
409 "Send context memory pool %d has %u blocks, but zero contexts\n",
413 pi
->size
= pi
->blocks
/ pi
->count
;
417 /* step 4: fill in the context type sizes from the pool sizes */
419 for (i
= 0; i
< SC_MAX
; i
++) {
420 if (dd
->sc_sizes
[i
].size
< 0) {
421 unsigned pool
= wildcard_to_pool(dd
->sc_sizes
[i
].size
);
423 WARN_ON_ONCE(pool
>= NUM_SC_POOLS
);
424 dd
->sc_sizes
[i
].size
= mem_pool_info
[pool
].size
;
426 /* make sure we are not larger than what is allowed by the HW */
427 #define PIO_MAX_BLOCKS 1024
428 if (dd
->sc_sizes
[i
].size
> PIO_MAX_BLOCKS
)
429 dd
->sc_sizes
[i
].size
= PIO_MAX_BLOCKS
;
431 /* calculate our total usage */
432 used_blocks
+= dd
->sc_sizes
[i
].size
* dd
->sc_sizes
[i
].count
;
434 extra
= total_blocks
- used_blocks
;
436 dd_dev_info(dd
, "unused send context blocks: %d\n", extra
);
438 return total_contexts
;
441 int init_send_contexts(struct hfi1_devdata
*dd
)
444 int ret
, i
, j
, context
;
446 ret
= init_credit_return(dd
);
450 dd
->hw_to_sw
= kmalloc_array(TXE_NUM_CONTEXTS
, sizeof(u8
),
452 dd
->send_contexts
= kcalloc(dd
->num_send_contexts
,
453 sizeof(struct send_context_info
),
455 if (!dd
->send_contexts
|| !dd
->hw_to_sw
) {
457 kfree(dd
->send_contexts
);
458 free_credit_return(dd
);
462 /* hardware context map starts with invalid send context indices */
463 for (i
= 0; i
< TXE_NUM_CONTEXTS
; i
++)
464 dd
->hw_to_sw
[i
] = INVALID_SCI
;
467 * All send contexts have their credit sizes. Allocate credits
468 * for each context one after another from the global space.
472 for (i
= 0; i
< SC_MAX
; i
++) {
473 struct sc_config_sizes
*scs
= &dd
->sc_sizes
[i
];
475 for (j
= 0; j
< scs
->count
; j
++) {
476 struct send_context_info
*sci
=
477 &dd
->send_contexts
[context
];
480 sci
->credits
= scs
->size
;
491 * Allocate a software index and hardware context of the given type.
493 * Must be called with dd->sc_lock held.
495 static int sc_hw_alloc(struct hfi1_devdata
*dd
, int type
, u32
*sw_index
,
498 struct send_context_info
*sci
;
502 for (index
= 0, sci
= &dd
->send_contexts
[0];
503 index
< dd
->num_send_contexts
; index
++, sci
++) {
504 if (sci
->type
== type
&& sci
->allocated
== 0) {
506 /* use a 1:1 mapping, but make them non-equal */
507 context
= chip_send_contexts(dd
) - index
- 1;
508 dd
->hw_to_sw
[context
] = index
;
510 *hw_context
= context
;
511 return 0; /* success */
514 dd_dev_err(dd
, "Unable to locate a free type %d send context\n", type
);
519 * Free the send context given by its software index.
521 * Must be called with dd->sc_lock held.
523 static void sc_hw_free(struct hfi1_devdata
*dd
, u32 sw_index
, u32 hw_context
)
525 struct send_context_info
*sci
;
527 sci
= &dd
->send_contexts
[sw_index
];
528 if (!sci
->allocated
) {
529 dd_dev_err(dd
, "%s: sw_index %u not allocated? hw_context %u\n",
530 __func__
, sw_index
, hw_context
);
533 dd
->hw_to_sw
[hw_context
] = INVALID_SCI
;
536 /* return the base context of a context in a group */
537 static inline u32
group_context(u32 context
, u32 group
)
539 return (context
>> group
) << group
;
542 /* return the size of a group */
543 static inline u32
group_size(u32 group
)
549 * Obtain the credit return addresses, kernel virtual and bus, for the
552 * To understand this routine:
553 * o va and dma are arrays of struct credit_return. One for each physical
554 * send context, per NUMA.
555 * o Each send context always looks in its relative location in a struct
556 * credit_return for its credit return.
557 * o Each send context in a group must have its return address CSR programmed
558 * with the same value. Use the address of the first send context in the
561 static void cr_group_addresses(struct send_context
*sc
, dma_addr_t
*dma
)
563 u32 gc
= group_context(sc
->hw_context
, sc
->group
);
564 u32 index
= sc
->hw_context
& 0x7;
566 sc
->hw_free
= &sc
->dd
->cr_base
[sc
->node
].va
[gc
].cr
[index
];
567 *dma
= (unsigned long)
568 &((struct credit_return
*)sc
->dd
->cr_base
[sc
->node
].dma
)[gc
];
572 * Work queue function triggered in error interrupt routine for
575 static void sc_halted(struct work_struct
*work
)
577 struct send_context
*sc
;
579 sc
= container_of(work
, struct send_context
, halt_work
);
584 * Calculate PIO block threshold for this send context using the given MTU.
585 * Trigger a return when one MTU plus optional header of credits remain.
587 * Parameter mtu is in bytes.
588 * Parameter hdrqentsize is in DWORDs.
590 * Return value is what to write into the CSR: trigger return when
591 * unreturned credits pass this count.
593 u32
sc_mtu_to_threshold(struct send_context
*sc
, u32 mtu
, u32 hdrqentsize
)
598 /* add in the header size, then divide by the PIO block size */
599 mtu
+= hdrqentsize
<< 2;
600 release_credits
= DIV_ROUND_UP(mtu
, PIO_BLOCK_SIZE
);
602 /* check against this context's credits */
603 if (sc
->credits
<= release_credits
)
606 threshold
= sc
->credits
- release_credits
;
612 * Calculate credit threshold in terms of percent of the allocated credits.
613 * Trigger when unreturned credits equal or exceed the percentage of the whole.
615 * Return value is what to write into the CSR: trigger return when
616 * unreturned credits pass this count.
618 u32
sc_percent_to_threshold(struct send_context
*sc
, u32 percent
)
620 return (sc
->credits
* percent
) / 100;
624 * Set the credit return threshold.
626 void sc_set_cr_threshold(struct send_context
*sc
, u32 new_threshold
)
630 int force_return
= 0;
632 spin_lock_irqsave(&sc
->credit_ctrl_lock
, flags
);
634 old_threshold
= (sc
->credit_ctrl
>>
635 SC(CREDIT_CTRL_THRESHOLD_SHIFT
))
636 & SC(CREDIT_CTRL_THRESHOLD_MASK
);
638 if (new_threshold
!= old_threshold
) {
641 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK
))
643 & SC(CREDIT_CTRL_THRESHOLD_MASK
))
644 << SC(CREDIT_CTRL_THRESHOLD_SHIFT
));
645 write_kctxt_csr(sc
->dd
, sc
->hw_context
,
646 SC(CREDIT_CTRL
), sc
->credit_ctrl
);
648 /* force a credit return on change to avoid a possible stall */
652 spin_unlock_irqrestore(&sc
->credit_ctrl_lock
, flags
);
655 sc_return_credits(sc
);
661 * Set the CHECK_ENABLE register for the send context 'sc'.
663 void set_pio_integrity(struct send_context
*sc
)
665 struct hfi1_devdata
*dd
= sc
->dd
;
666 u32 hw_context
= sc
->hw_context
;
669 write_kctxt_csr(dd
, hw_context
,
671 hfi1_pkt_default_send_ctxt_mask(dd
, type
));
674 static u32
get_buffers_allocated(struct send_context
*sc
)
679 for_each_possible_cpu(cpu
)
680 ret
+= *per_cpu_ptr(sc
->buffers_allocated
, cpu
);
684 static void reset_buffers_allocated(struct send_context
*sc
)
688 for_each_possible_cpu(cpu
)
689 (*per_cpu_ptr(sc
->buffers_allocated
, cpu
)) = 0;
693 * Allocate a NUMA relative send context structure of the given type along
696 struct send_context
*sc_alloc(struct hfi1_devdata
*dd
, int type
,
697 uint hdrqentsize
, int numa
)
699 struct send_context_info
*sci
;
700 struct send_context
*sc
= NULL
;
710 /* do not allocate while frozen */
711 if (dd
->flags
& HFI1_FROZEN
)
714 sc
= kzalloc_node(sizeof(*sc
), GFP_KERNEL
, numa
);
718 sc
->buffers_allocated
= alloc_percpu(u32
);
719 if (!sc
->buffers_allocated
) {
722 "Cannot allocate buffers_allocated per cpu counters\n"
727 spin_lock_irqsave(&dd
->sc_lock
, flags
);
728 ret
= sc_hw_alloc(dd
, type
, &sw_index
, &hw_context
);
730 spin_unlock_irqrestore(&dd
->sc_lock
, flags
);
731 free_percpu(sc
->buffers_allocated
);
736 sci
= &dd
->send_contexts
[sw_index
];
742 spin_lock_init(&sc
->alloc_lock
);
743 spin_lock_init(&sc
->release_lock
);
744 spin_lock_init(&sc
->credit_ctrl_lock
);
745 seqlock_init(&sc
->waitlock
);
746 INIT_LIST_HEAD(&sc
->piowait
);
747 INIT_WORK(&sc
->halt_work
, sc_halted
);
748 init_waitqueue_head(&sc
->halt_wait
);
750 /* grouping is always single context for now */
753 sc
->sw_index
= sw_index
;
754 sc
->hw_context
= hw_context
;
755 cr_group_addresses(sc
, &dma
);
756 sc
->credits
= sci
->credits
;
757 sc
->size
= sc
->credits
* PIO_BLOCK_SIZE
;
759 /* PIO Send Memory Address details */
760 #define PIO_ADDR_CONTEXT_MASK 0xfful
761 #define PIO_ADDR_CONTEXT_SHIFT 16
762 sc
->base_addr
= dd
->piobase
+ ((hw_context
& PIO_ADDR_CONTEXT_MASK
)
763 << PIO_ADDR_CONTEXT_SHIFT
);
765 /* set base and credits */
766 reg
= ((sci
->credits
& SC(CTRL_CTXT_DEPTH_MASK
))
767 << SC(CTRL_CTXT_DEPTH_SHIFT
))
768 | ((sci
->base
& SC(CTRL_CTXT_BASE_MASK
))
769 << SC(CTRL_CTXT_BASE_SHIFT
));
770 write_kctxt_csr(dd
, hw_context
, SC(CTRL
), reg
);
772 set_pio_integrity(sc
);
774 /* unmask all errors */
775 write_kctxt_csr(dd
, hw_context
, SC(ERR_MASK
), (u64
)-1);
777 /* set the default partition key */
778 write_kctxt_csr(dd
, hw_context
, SC(CHECK_PARTITION_KEY
),
779 (SC(CHECK_PARTITION_KEY_VALUE_MASK
) &
781 SC(CHECK_PARTITION_KEY_VALUE_SHIFT
));
783 /* per context type checks */
784 if (type
== SC_USER
) {
785 opval
= USER_OPCODE_CHECK_VAL
;
786 opmask
= USER_OPCODE_CHECK_MASK
;
788 opval
= OPCODE_CHECK_VAL_DISABLED
;
789 opmask
= OPCODE_CHECK_MASK_DISABLED
;
792 /* set the send context check opcode mask and value */
793 write_kctxt_csr(dd
, hw_context
, SC(CHECK_OPCODE
),
794 ((u64
)opmask
<< SC(CHECK_OPCODE_MASK_SHIFT
)) |
795 ((u64
)opval
<< SC(CHECK_OPCODE_VALUE_SHIFT
)));
797 /* set up credit return */
798 reg
= dma
& SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK
);
799 write_kctxt_csr(dd
, hw_context
, SC(CREDIT_RETURN_ADDR
), reg
);
802 * Calculate the initial credit return threshold.
804 * For Ack contexts, set a threshold for half the credits.
805 * For User contexts use the given percentage. This has been
806 * sanitized on driver start-up.
807 * For Kernel contexts, use the default MTU plus a header
808 * or half the credits, whichever is smaller. This should
809 * work for both the 3-deep buffering allocation and the
810 * pooling allocation.
812 if (type
== SC_ACK
) {
813 thresh
= sc_percent_to_threshold(sc
, 50);
814 } else if (type
== SC_USER
) {
815 thresh
= sc_percent_to_threshold(sc
,
816 user_credit_return_threshold
);
817 } else { /* kernel */
818 thresh
= min(sc_percent_to_threshold(sc
, 50),
819 sc_mtu_to_threshold(sc
, hfi1_max_mtu
,
822 reg
= thresh
<< SC(CREDIT_CTRL_THRESHOLD_SHIFT
);
823 /* add in early return */
824 if (type
== SC_USER
&& HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN
))
825 reg
|= SC(CREDIT_CTRL_EARLY_RETURN_SMASK
);
826 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN
)) /* kernel, ack */
827 reg
|= SC(CREDIT_CTRL_EARLY_RETURN_SMASK
);
829 /* set up write-through credit_ctrl */
830 sc
->credit_ctrl
= reg
;
831 write_kctxt_csr(dd
, hw_context
, SC(CREDIT_CTRL
), reg
);
833 /* User send contexts should not allow sending on VL15 */
834 if (type
== SC_USER
) {
836 write_kctxt_csr(dd
, hw_context
, SC(CHECK_VL
), reg
);
839 spin_unlock_irqrestore(&dd
->sc_lock
, flags
);
842 * Allocate shadow ring to track outstanding PIO buffers _after_
843 * unlocking. We don't know the size until the lock is held and
844 * we can't allocate while the lock is held. No one is using
845 * the context yet, so allocate it now.
847 * User contexts do not get a shadow ring.
849 if (type
!= SC_USER
) {
851 * Size the shadow ring 1 larger than the number of credits
852 * so head == tail can mean empty.
854 sc
->sr_size
= sci
->credits
+ 1;
855 sc
->sr
= kcalloc_node(sc
->sr_size
,
856 sizeof(union pio_shadow_ring
),
865 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n",
877 /* free a per-NUMA send context structure */
878 void sc_free(struct send_context
*sc
)
880 struct hfi1_devdata
*dd
;
888 sc
->flags
|= SCF_IN_FREE
; /* ensure no restarts */
890 if (!list_empty(&sc
->piowait
))
891 dd_dev_err(dd
, "piowait list not empty!\n");
892 sw_index
= sc
->sw_index
;
893 hw_context
= sc
->hw_context
;
894 sc_disable(sc
); /* make sure the HW is disabled */
895 flush_work(&sc
->halt_work
);
897 spin_lock_irqsave(&dd
->sc_lock
, flags
);
898 dd
->send_contexts
[sw_index
].sc
= NULL
;
900 /* clear/disable all registers set in sc_alloc */
901 write_kctxt_csr(dd
, hw_context
, SC(CTRL
), 0);
902 write_kctxt_csr(dd
, hw_context
, SC(CHECK_ENABLE
), 0);
903 write_kctxt_csr(dd
, hw_context
, SC(ERR_MASK
), 0);
904 write_kctxt_csr(dd
, hw_context
, SC(CHECK_PARTITION_KEY
), 0);
905 write_kctxt_csr(dd
, hw_context
, SC(CHECK_OPCODE
), 0);
906 write_kctxt_csr(dd
, hw_context
, SC(CREDIT_RETURN_ADDR
), 0);
907 write_kctxt_csr(dd
, hw_context
, SC(CREDIT_CTRL
), 0);
909 /* release the index and context for re-use */
910 sc_hw_free(dd
, sw_index
, hw_context
);
911 spin_unlock_irqrestore(&dd
->sc_lock
, flags
);
914 free_percpu(sc
->buffers_allocated
);
918 /* disable the context */
919 void sc_disable(struct send_context
*sc
)
922 struct pio_buf
*pbuf
;
927 /* do all steps, even if already disabled */
928 spin_lock_irq(&sc
->alloc_lock
);
929 reg
= read_kctxt_csr(sc
->dd
, sc
->hw_context
, SC(CTRL
));
930 reg
&= ~SC(CTRL_CTXT_ENABLE_SMASK
);
931 sc
->flags
&= ~SCF_ENABLED
;
932 sc_wait_for_packet_egress(sc
, 1);
933 write_kctxt_csr(sc
->dd
, sc
->hw_context
, SC(CTRL
), reg
);
936 * Flush any waiters. Once the context is disabled,
937 * credit return interrupts are stopped (although there
938 * could be one in-process when the context is disabled).
939 * Wait one microsecond for any lingering interrupts, then
940 * proceed with the flush.
943 spin_lock(&sc
->release_lock
);
944 if (sc
->sr
) { /* this context has a shadow ring */
945 while (sc
->sr_tail
!= sc
->sr_head
) {
946 pbuf
= &sc
->sr
[sc
->sr_tail
].pbuf
;
948 (*pbuf
->cb
)(pbuf
->arg
, PRC_SC_DISABLE
);
950 if (sc
->sr_tail
>= sc
->sr_size
)
954 spin_unlock(&sc
->release_lock
);
956 write_seqlock(&sc
->waitlock
);
957 while (!list_empty(&sc
->piowait
)) {
960 struct hfi1_qp_priv
*priv
;
962 wait
= list_first_entry(&sc
->piowait
, struct iowait
, list
);
963 qp
= iowait_to_qp(wait
);
965 list_del_init(&priv
->s_iowait
.list
);
966 priv
->s_iowait
.lock
= NULL
;
967 hfi1_qp_wakeup(qp
, RVT_S_WAIT_PIO
| HFI1_S_WAIT_PIO_DRAIN
);
969 write_sequnlock(&sc
->waitlock
);
971 spin_unlock_irq(&sc
->alloc_lock
);
974 /* return SendEgressCtxtStatus.PacketOccupancy */
975 static u64
packet_occupancy(u64 reg
)
978 SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK
)
979 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT
;
982 /* is egress halted on the context? */
983 static bool egress_halted(u64 reg
)
985 return !!(reg
& SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK
);
988 /* is the send context halted? */
989 static bool is_sc_halted(struct hfi1_devdata
*dd
, u32 hw_context
)
991 return !!(read_kctxt_csr(dd
, hw_context
, SC(STATUS
)) &
992 SC(STATUS_CTXT_HALTED_SMASK
));
996 * sc_wait_for_packet_egress
997 * @sc: valid send context
998 * @pause: wait for credit return
1000 * Wait for packet egress, optionally pause for credit return
1002 * Egress halt and Context halt are not necessarily the same thing, so
1005 * NOTE: The context halt bit may not be set immediately. Because of this,
1006 * it is necessary to check the SW SFC_HALTED bit (set in the IRQ) and the HW
1007 * context bit to determine if the context is halted.
1009 static void sc_wait_for_packet_egress(struct send_context
*sc
, int pause
)
1011 struct hfi1_devdata
*dd
= sc
->dd
;
1018 reg
= read_csr(dd
, sc
->hw_context
* 8 +
1019 SEND_EGRESS_CTXT_STATUS
);
1020 /* done if any halt bits, SW or HW are set */
1021 if (sc
->flags
& SCF_HALTED
||
1022 is_sc_halted(dd
, sc
->hw_context
) || egress_halted(reg
))
1024 reg
= packet_occupancy(reg
);
1027 /* counter is reset if occupancy count changes */
1028 if (reg
!= reg_prev
)
1031 /* timed out - bounce the link */
1033 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
1034 __func__
, sc
->sw_index
,
1035 sc
->hw_context
, (u32
)reg
);
1036 queue_work(dd
->pport
->link_wq
,
1037 &dd
->pport
->link_bounce_work
);
1045 /* Add additional delay to ensure chip returns all credits */
1046 pause_for_credit_return(dd
);
1049 void sc_wait(struct hfi1_devdata
*dd
)
1053 for (i
= 0; i
< dd
->num_send_contexts
; i
++) {
1054 struct send_context
*sc
= dd
->send_contexts
[i
].sc
;
1058 sc_wait_for_packet_egress(sc
, 0);
1063 * Restart a context after it has been halted due to error.
1065 * If the first step fails - wait for the halt to be asserted, return early.
1066 * Otherwise complain about timeouts but keep going.
1068 * It is expected that allocations (enabled flag bit) have been shut off
1069 * already (only applies to kernel contexts).
1071 int sc_restart(struct send_context
*sc
)
1073 struct hfi1_devdata
*dd
= sc
->dd
;
1078 /* bounce off if not halted, or being free'd */
1079 if (!(sc
->flags
& SCF_HALTED
) || (sc
->flags
& SCF_IN_FREE
))
1082 dd_dev_info(dd
, "restarting send context %u(%u)\n", sc
->sw_index
,
1086 * Step 1: Wait for the context to actually halt.
1088 * The error interrupt is asynchronous to actually setting halt
1093 reg
= read_kctxt_csr(dd
, sc
->hw_context
, SC(STATUS
));
1094 if (reg
& SC(STATUS_CTXT_HALTED_SMASK
))
1097 dd_dev_err(dd
, "%s: context %u(%u) not halting, skipping\n",
1098 __func__
, sc
->sw_index
, sc
->hw_context
);
1106 * Step 2: Ensure no users are still trying to write to PIO.
1108 * For kernel contexts, we have already turned off buffer allocation.
1109 * Now wait for the buffer count to go to zero.
1111 * For user contexts, the user handling code has cut off write access
1112 * to the context's PIO pages before calling this routine and will
1113 * restore write access after this routine returns.
1115 if (sc
->type
!= SC_USER
) {
1116 /* kernel context */
1119 count
= get_buffers_allocated(sc
);
1124 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1125 __func__
, sc
->sw_index
,
1126 sc
->hw_context
, count
);
1134 * Step 3: Wait for all packets to egress.
1135 * This is done while disabling the send context
1137 * Step 4: Disable the context
1139 * This is a superset of the halt. After the disable, the
1140 * errors can be cleared.
1145 * Step 5: Enable the context
1147 * This enable will clear the halted flag and per-send context
1150 return sc_enable(sc
);
1154 * PIO freeze processing. To be called after the TXE block is fully frozen.
1155 * Go through all frozen send contexts and disable them. The contexts are
1156 * already stopped by the freeze.
1158 void pio_freeze(struct hfi1_devdata
*dd
)
1160 struct send_context
*sc
;
1163 for (i
= 0; i
< dd
->num_send_contexts
; i
++) {
1164 sc
= dd
->send_contexts
[i
].sc
;
1166 * Don't disable unallocated, unfrozen, or user send contexts.
1167 * User send contexts will be disabled when the process
1168 * calls into the driver to reset its context.
1170 if (!sc
|| !(sc
->flags
& SCF_FROZEN
) || sc
->type
== SC_USER
)
1173 /* only need to disable, the context is already stopped */
1179 * Unfreeze PIO for kernel send contexts. The precondition for calling this
1180 * is that all PIO send contexts have been disabled and the SPC freeze has
1181 * been cleared. Now perform the last step and re-enable each kernel context.
1182 * User (PSM) processing will occur when PSM calls into the kernel to
1183 * acknowledge the freeze.
1185 void pio_kernel_unfreeze(struct hfi1_devdata
*dd
)
1187 struct send_context
*sc
;
1190 for (i
= 0; i
< dd
->num_send_contexts
; i
++) {
1191 sc
= dd
->send_contexts
[i
].sc
;
1192 if (!sc
|| !(sc
->flags
& SCF_FROZEN
) || sc
->type
== SC_USER
)
1194 if (sc
->flags
& SCF_LINK_DOWN
)
1197 sc_enable(sc
); /* will clear the sc frozen flag */
1202 * pio_kernel_linkup() - Re-enable send contexts after linkup event
1203 * @dd: valid devive data
1205 * When the link goes down, the freeze path is taken. However, a link down
1206 * event is different from a freeze because if the send context is re-enabled
1207 * whowever is sending data will start sending data again, which will hang
1208 * any QP that is sending data.
1210 * The freeze path now looks at the type of event that occurs and takes this
1211 * path for link down event.
1213 void pio_kernel_linkup(struct hfi1_devdata
*dd
)
1215 struct send_context
*sc
;
1218 for (i
= 0; i
< dd
->num_send_contexts
; i
++) {
1219 sc
= dd
->send_contexts
[i
].sc
;
1220 if (!sc
|| !(sc
->flags
& SCF_LINK_DOWN
) || sc
->type
== SC_USER
)
1223 sc_enable(sc
); /* will clear the sc link down flag */
1228 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1230 * -ETIMEDOUT - if we wait too long
1231 * -EIO - if there was an error
1233 static int pio_init_wait_progress(struct hfi1_devdata
*dd
)
1238 /* max is the longest possible HW init time / delay */
1239 max
= (dd
->icode
== ICODE_FPGA_EMULATION
) ? 120 : 5;
1241 reg
= read_csr(dd
, SEND_PIO_INIT_CTXT
);
1242 if (!(reg
& SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK
))
1250 return reg
& SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK
? -EIO
: 0;
1254 * Reset all of the send contexts to their power-on state. Used
1255 * only during manual init - no lock against sc_enable needed.
1257 void pio_reset_all(struct hfi1_devdata
*dd
)
1261 /* make sure the init engine is not busy */
1262 ret
= pio_init_wait_progress(dd
);
1263 /* ignore any timeout */
1265 /* clear the error */
1266 write_csr(dd
, SEND_PIO_ERR_CLEAR
,
1267 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK
);
1270 /* reset init all */
1271 write_csr(dd
, SEND_PIO_INIT_CTXT
,
1272 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK
);
1274 ret
= pio_init_wait_progress(dd
);
1277 "PIO send context init %s while initializing all PIO blocks\n",
1278 ret
== -ETIMEDOUT
? "is stuck" : "had an error");
1282 /* enable the context */
1283 int sc_enable(struct send_context
*sc
)
1285 u64 sc_ctrl
, reg
, pio
;
1286 struct hfi1_devdata
*dd
;
1287 unsigned long flags
;
1295 * Obtain the allocator lock to guard against any allocation
1296 * attempts (which should not happen prior to context being
1297 * enabled). On the release/disable side we don't need to
1298 * worry about locking since the releaser will not do anything
1299 * if the context accounting values have not changed.
1301 spin_lock_irqsave(&sc
->alloc_lock
, flags
);
1302 sc_ctrl
= read_kctxt_csr(dd
, sc
->hw_context
, SC(CTRL
));
1303 if ((sc_ctrl
& SC(CTRL_CTXT_ENABLE_SMASK
)))
1304 goto unlock
; /* already enabled */
1306 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1316 /* the alloc lock insures no fast path allocation */
1317 reset_buffers_allocated(sc
);
1320 * Clear all per-context errors. Some of these will be set when
1321 * we are re-enabling after a context halt. Now that the context
1322 * is disabled, the halt will not clear until after the PIO init
1323 * engine runs below.
1325 reg
= read_kctxt_csr(dd
, sc
->hw_context
, SC(ERR_STATUS
));
1327 write_kctxt_csr(dd
, sc
->hw_context
, SC(ERR_CLEAR
), reg
);
1330 * The HW PIO initialization engine can handle only one init
1331 * request at a time. Serialize access to each device's engine.
1333 spin_lock(&dd
->sc_init_lock
);
1335 * Since access to this code block is serialized and
1336 * each access waits for the initialization to complete
1337 * before releasing the lock, the PIO initialization engine
1338 * should not be in use, so we don't have to wait for the
1339 * InProgress bit to go down.
1341 pio
= ((sc
->hw_context
& SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK
) <<
1342 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT
) |
1343 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK
;
1344 write_csr(dd
, SEND_PIO_INIT_CTXT
, pio
);
1346 * Wait until the engine is done. Give the chip the required time
1347 * so, hopefully, we read the register just once.
1350 ret
= pio_init_wait_progress(dd
);
1351 spin_unlock(&dd
->sc_init_lock
);
1354 "sctxt%u(%u): Context not enabled due to init failure %d\n",
1355 sc
->sw_index
, sc
->hw_context
, ret
);
1360 * All is well. Enable the context.
1362 sc_ctrl
|= SC(CTRL_CTXT_ENABLE_SMASK
);
1363 write_kctxt_csr(dd
, sc
->hw_context
, SC(CTRL
), sc_ctrl
);
1365 * Read SendCtxtCtrl to force the write out and prevent a timing
1366 * hazard where a PIO write may reach the context before the enable.
1368 read_kctxt_csr(dd
, sc
->hw_context
, SC(CTRL
));
1369 sc
->flags
|= SCF_ENABLED
;
1372 spin_unlock_irqrestore(&sc
->alloc_lock
, flags
);
1377 /* force a credit return on the context */
1378 void sc_return_credits(struct send_context
*sc
)
1383 /* a 0->1 transition schedules a credit return */
1384 write_kctxt_csr(sc
->dd
, sc
->hw_context
, SC(CREDIT_FORCE
),
1385 SC(CREDIT_FORCE_FORCE_RETURN_SMASK
));
1387 * Ensure that the write is flushed and the credit return is
1388 * scheduled. We care more about the 0 -> 1 transition.
1390 read_kctxt_csr(sc
->dd
, sc
->hw_context
, SC(CREDIT_FORCE
));
1391 /* set back to 0 for next time */
1392 write_kctxt_csr(sc
->dd
, sc
->hw_context
, SC(CREDIT_FORCE
), 0);
1395 /* allow all in-flight packets to drain on the context */
1396 void sc_flush(struct send_context
*sc
)
1401 sc_wait_for_packet_egress(sc
, 1);
1404 /* drop all packets on the context, no waiting until they are sent */
1405 void sc_drop(struct send_context
*sc
)
1410 dd_dev_info(sc
->dd
, "%s: context %u(%u) - not implemented\n",
1411 __func__
, sc
->sw_index
, sc
->hw_context
);
1415 * Start the software reaction to a context halt or SPC freeze:
1416 * - mark the context as halted or frozen
1417 * - stop buffer allocations
1419 * Called from the error interrupt. Other work is deferred until
1420 * out of the interrupt.
1422 void sc_stop(struct send_context
*sc
, int flag
)
1424 unsigned long flags
;
1426 /* stop buffer allocations */
1427 spin_lock_irqsave(&sc
->alloc_lock
, flags
);
1428 /* mark the context */
1430 sc
->flags
&= ~SCF_ENABLED
;
1431 spin_unlock_irqrestore(&sc
->alloc_lock
, flags
);
1432 wake_up(&sc
->halt_wait
);
1435 #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1436 #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1439 * The send context buffer "allocator".
1441 * @sc: the PIO send context we are allocating from
1442 * @len: length of whole packet - including PBC - in dwords
1443 * @cb: optional callback to call when the buffer is finished sending
1444 * @arg: argument for cb
1446 * Return a pointer to a PIO buffer, NULL if not enough room, -ECOMM
1447 * when link is down.
1449 struct pio_buf
*sc_buffer_alloc(struct send_context
*sc
, u32 dw_len
,
1450 pio_release_cb cb
, void *arg
)
1452 struct pio_buf
*pbuf
= NULL
;
1453 unsigned long flags
;
1454 unsigned long avail
;
1455 unsigned long blocks
= dwords_to_blocks(dw_len
);
1460 spin_lock_irqsave(&sc
->alloc_lock
, flags
);
1461 if (!(sc
->flags
& SCF_ENABLED
)) {
1462 spin_unlock_irqrestore(&sc
->alloc_lock
, flags
);
1463 return ERR_PTR(-ECOMM
);
1467 avail
= (unsigned long)sc
->credits
- (sc
->fill
- sc
->alloc_free
);
1468 if (blocks
> avail
) {
1469 /* not enough room */
1470 if (unlikely(trycount
)) { /* already tried to get more room */
1471 spin_unlock_irqrestore(&sc
->alloc_lock
, flags
);
1474 /* copy from receiver cache line and recalculate */
1475 sc
->alloc_free
= READ_ONCE(sc
->free
);
1477 (unsigned long)sc
->credits
-
1478 (sc
->fill
- sc
->alloc_free
);
1479 if (blocks
> avail
) {
1480 /* still no room, actively update */
1481 sc_release_update(sc
);
1482 sc
->alloc_free
= READ_ONCE(sc
->free
);
1488 /* there is enough room */
1491 this_cpu_inc(*sc
->buffers_allocated
);
1493 /* read this once */
1496 /* "allocate" the buffer */
1498 fill_wrap
= sc
->fill_wrap
;
1499 sc
->fill_wrap
+= blocks
;
1500 if (sc
->fill_wrap
>= sc
->credits
)
1501 sc
->fill_wrap
= sc
->fill_wrap
- sc
->credits
;
1504 * Fill the parts that the releaser looks at before moving the head.
1505 * The only necessary piece is the sent_at field. The credits
1506 * we have just allocated cannot have been returned yet, so the
1507 * cb and arg will not be looked at for a "while". Put them
1508 * on this side of the memory barrier anyway.
1510 pbuf
= &sc
->sr
[head
].pbuf
;
1511 pbuf
->sent_at
= sc
->fill
;
1514 pbuf
->sc
= sc
; /* could be filled in at sc->sr init time */
1515 /* make sure this is in memory before updating the head */
1517 /* calculate next head index, do not store */
1519 if (next
>= sc
->sr_size
)
1522 * update the head - must be last! - the releaser can look at fields
1523 * in pbuf once we move the head
1527 spin_unlock_irqrestore(&sc
->alloc_lock
, flags
);
1529 /* finish filling in the buffer outside the lock */
1530 pbuf
->start
= sc
->base_addr
+ fill_wrap
* PIO_BLOCK_SIZE
;
1531 pbuf
->end
= sc
->base_addr
+ sc
->size
;
1532 pbuf
->qw_written
= 0;
1533 pbuf
->carry_bytes
= 0;
1534 pbuf
->carry
.val64
= 0;
1540 * There are at least two entities that can turn on credit return
1541 * interrupts and they can overlap. Avoid problems by implementing
1542 * a count scheme that is enforced by a lock. The lock is needed because
1543 * the count and CSR write must be paired.
1547 * Start credit return interrupts. This is managed by a count. If already
1548 * on, just increment the count.
1550 void sc_add_credit_return_intr(struct send_context
*sc
)
1552 unsigned long flags
;
1554 /* lock must surround both the count change and the CSR update */
1555 spin_lock_irqsave(&sc
->credit_ctrl_lock
, flags
);
1556 if (sc
->credit_intr_count
== 0) {
1557 sc
->credit_ctrl
|= SC(CREDIT_CTRL_CREDIT_INTR_SMASK
);
1558 write_kctxt_csr(sc
->dd
, sc
->hw_context
,
1559 SC(CREDIT_CTRL
), sc
->credit_ctrl
);
1561 sc
->credit_intr_count
++;
1562 spin_unlock_irqrestore(&sc
->credit_ctrl_lock
, flags
);
1566 * Stop credit return interrupts. This is managed by a count. Decrement the
1567 * count, if the last user, then turn the credit interrupts off.
1569 void sc_del_credit_return_intr(struct send_context
*sc
)
1571 unsigned long flags
;
1573 WARN_ON(sc
->credit_intr_count
== 0);
1575 /* lock must surround both the count change and the CSR update */
1576 spin_lock_irqsave(&sc
->credit_ctrl_lock
, flags
);
1577 sc
->credit_intr_count
--;
1578 if (sc
->credit_intr_count
== 0) {
1579 sc
->credit_ctrl
&= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK
);
1580 write_kctxt_csr(sc
->dd
, sc
->hw_context
,
1581 SC(CREDIT_CTRL
), sc
->credit_ctrl
);
1583 spin_unlock_irqrestore(&sc
->credit_ctrl_lock
, flags
);
1587 * The caller must be careful when calling this. All needint calls
1588 * must be paired with !needint.
1590 void hfi1_sc_wantpiobuf_intr(struct send_context
*sc
, u32 needint
)
1593 sc_add_credit_return_intr(sc
);
1595 sc_del_credit_return_intr(sc
);
1596 trace_hfi1_wantpiointr(sc
, needint
, sc
->credit_ctrl
);
1598 sc_return_credits(sc
);
1602 * sc_piobufavail - callback when a PIO buffer is available
1603 * @sc: the send context
1605 * This is called from the interrupt handler when a PIO buffer is
1606 * available after hfi1_verbs_send() returned an error that no buffers were
1607 * available. Disable the interrupt if there are no more QPs waiting.
1609 static void sc_piobufavail(struct send_context
*sc
)
1611 struct hfi1_devdata
*dd
= sc
->dd
;
1612 struct list_head
*list
;
1613 struct rvt_qp
*qps
[PIO_WAIT_BATCH_SIZE
];
1615 struct hfi1_qp_priv
*priv
;
1616 unsigned long flags
;
1617 uint i
, n
= 0, top_idx
= 0;
1619 if (dd
->send_contexts
[sc
->sw_index
].type
!= SC_KERNEL
&&
1620 dd
->send_contexts
[sc
->sw_index
].type
!= SC_VL15
)
1622 list
= &sc
->piowait
;
1624 * Note: checking that the piowait list is empty and clearing
1625 * the buffer available interrupt needs to be atomic or we
1626 * could end up with QPs on the wait list with the interrupt
1629 write_seqlock_irqsave(&sc
->waitlock
, flags
);
1630 while (!list_empty(list
)) {
1631 struct iowait
*wait
;
1633 if (n
== ARRAY_SIZE(qps
))
1635 wait
= list_first_entry(list
, struct iowait
, list
);
1636 iowait_get_priority(wait
);
1637 qp
= iowait_to_qp(wait
);
1639 list_del_init(&priv
->s_iowait
.list
);
1640 priv
->s_iowait
.lock
= NULL
;
1642 priv
= qps
[top_idx
]->priv
;
1643 top_idx
= iowait_priority_update_top(wait
,
1648 /* refcount held until actual wake up */
1652 * If there had been waiters and there are more
1653 * insure that we redo the force to avoid a potential hang.
1656 hfi1_sc_wantpiobuf_intr(sc
, 0);
1657 if (!list_empty(list
))
1658 hfi1_sc_wantpiobuf_intr(sc
, 1);
1660 write_sequnlock_irqrestore(&sc
->waitlock
, flags
);
1662 /* Wake up the top-priority one first */
1664 hfi1_qp_wakeup(qps
[top_idx
],
1665 RVT_S_WAIT_PIO
| HFI1_S_WAIT_PIO_DRAIN
);
1666 for (i
= 0; i
< n
; i
++)
1668 hfi1_qp_wakeup(qps
[i
],
1669 RVT_S_WAIT_PIO
| HFI1_S_WAIT_PIO_DRAIN
);
1672 /* translate a send credit update to a bit code of reasons */
1673 static inline int fill_code(u64 hw_free
)
1677 if (hw_free
& CR_STATUS_SMASK
)
1678 code
|= PRC_STATUS_ERR
;
1679 if (hw_free
& CR_CREDIT_RETURN_DUE_TO_PBC_SMASK
)
1681 if (hw_free
& CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK
)
1682 code
|= PRC_THRESHOLD
;
1683 if (hw_free
& CR_CREDIT_RETURN_DUE_TO_ERR_SMASK
)
1684 code
|= PRC_FILL_ERR
;
1685 if (hw_free
& CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK
)
1686 code
|= PRC_SC_DISABLE
;
1690 /* use the jiffies compare to get the wrap right */
1691 #define sent_before(a, b) time_before(a, b) /* a < b */
1694 * The send context buffer "releaser".
1696 void sc_release_update(struct send_context
*sc
)
1698 struct pio_buf
*pbuf
;
1701 unsigned long old_free
;
1703 unsigned long extra
;
1704 unsigned long flags
;
1710 spin_lock_irqsave(&sc
->release_lock
, flags
);
1712 hw_free
= le64_to_cpu(*sc
->hw_free
); /* volatile read */
1713 old_free
= sc
->free
;
1714 extra
= (((hw_free
& CR_COUNTER_SMASK
) >> CR_COUNTER_SHIFT
)
1715 - (old_free
& CR_COUNTER_MASK
))
1717 free
= old_free
+ extra
;
1718 trace_hfi1_piofree(sc
, extra
);
1720 /* call sent buffer callbacks */
1721 code
= -1; /* code not yet set */
1722 head
= READ_ONCE(sc
->sr_head
); /* snapshot the head */
1724 while (head
!= tail
) {
1725 pbuf
= &sc
->sr
[tail
].pbuf
;
1727 if (sent_before(free
, pbuf
->sent_at
)) {
1732 if (code
< 0) /* fill in code on first user */
1733 code
= fill_code(hw_free
);
1734 (*pbuf
->cb
)(pbuf
->arg
, code
);
1738 if (tail
>= sc
->sr_size
)
1742 /* make sure tail is updated before free */
1745 spin_unlock_irqrestore(&sc
->release_lock
, flags
);
1750 * Send context group releaser. Argument is the send context that caused
1751 * the interrupt. Called from the send context interrupt handler.
1753 * Call release on all contexts in the group.
1755 * This routine takes the sc_lock without an irqsave because it is only
1756 * called from an interrupt handler. Adjust if that changes.
1758 void sc_group_release_update(struct hfi1_devdata
*dd
, u32 hw_context
)
1760 struct send_context
*sc
;
1764 spin_lock(&dd
->sc_lock
);
1765 sw_index
= dd
->hw_to_sw
[hw_context
];
1766 if (unlikely(sw_index
>= dd
->num_send_contexts
)) {
1767 dd_dev_err(dd
, "%s: invalid hw (%u) to sw (%u) mapping\n",
1768 __func__
, hw_context
, sw_index
);
1771 sc
= dd
->send_contexts
[sw_index
].sc
;
1775 gc
= group_context(hw_context
, sc
->group
);
1776 gc_end
= gc
+ group_size(sc
->group
);
1777 for (; gc
< gc_end
; gc
++) {
1778 sw_index
= dd
->hw_to_sw
[gc
];
1779 if (unlikely(sw_index
>= dd
->num_send_contexts
)) {
1781 "%s: invalid hw (%u) to sw (%u) mapping\n",
1782 __func__
, hw_context
, sw_index
);
1785 sc_release_update(dd
->send_contexts
[sw_index
].sc
);
1788 spin_unlock(&dd
->sc_lock
);
1792 * pio_select_send_context_vl() - select send context
1794 * @selector: a spreading factor
1797 * This function returns a send context based on the selector and a vl.
1798 * The mapping fields are protected by RCU
1800 struct send_context
*pio_select_send_context_vl(struct hfi1_devdata
*dd
,
1801 u32 selector
, u8 vl
)
1803 struct pio_vl_map
*m
;
1804 struct pio_map_elem
*e
;
1805 struct send_context
*rval
;
1808 * NOTE This should only happen if SC->VL changed after the initial
1809 * checks on the QP/AH
1810 * Default will return VL0's send context below
1812 if (unlikely(vl
>= num_vls
)) {
1818 m
= rcu_dereference(dd
->pio_map
);
1821 return dd
->vld
[0].sc
;
1823 e
= m
->map
[vl
& m
->mask
];
1824 rval
= e
->ksc
[selector
& e
->mask
];
1828 rval
= !rval
? dd
->vld
[0].sc
: rval
;
1833 * pio_select_send_context_sc() - select send context
1835 * @selector: a spreading factor
1836 * @sc5: the 5 bit sc
1838 * This function returns an send context based on the selector and an sc
1840 struct send_context
*pio_select_send_context_sc(struct hfi1_devdata
*dd
,
1841 u32 selector
, u8 sc5
)
1843 u8 vl
= sc_to_vlt(dd
, sc5
);
1845 return pio_select_send_context_vl(dd
, selector
, vl
);
1849 * Free the indicated map struct
1851 static void pio_map_free(struct pio_vl_map
*m
)
1855 for (i
= 0; m
&& i
< m
->actual_vls
; i
++)
1861 * Handle RCU callback
1863 static void pio_map_rcu_callback(struct rcu_head
*list
)
1865 struct pio_vl_map
*m
= container_of(list
, struct pio_vl_map
, list
);
1871 * Set credit return threshold for the kernel send context
1873 static void set_threshold(struct hfi1_devdata
*dd
, int scontext
, int i
)
1877 thres
= min(sc_percent_to_threshold(dd
->kernel_send_context
[scontext
],
1879 sc_mtu_to_threshold(dd
->kernel_send_context
[scontext
],
1881 dd
->rcd
[0]->rcvhdrqentsize
));
1882 sc_set_cr_threshold(dd
->kernel_send_context
[scontext
], thres
);
1886 * pio_map_init - called when #vls change
1888 * @port: port number
1889 * @num_vls: number of vls
1890 * @vl_scontexts: per vl send context mapping (optional)
1892 * This routine changes the mapping based on the number of vls.
1894 * vl_scontexts is used to specify a non-uniform vl/send context
1895 * loading. NULL implies auto computing the loading and giving each
1896 * VL an uniform distribution of send contexts per VL.
1898 * The auto algorithm computers the sc_per_vl and the number of extra
1899 * send contexts. Any extra send contexts are added from the last VL
1902 * rcu locking is used here to control access to the mapping fields.
1904 * If either the num_vls or num_send_contexts are non-power of 2, the
1905 * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1906 * rounded up to the next highest power of 2 and the first entry is
1907 * reused in a round robin fashion.
1909 * If an error occurs the map change is not done and the mapping is not
1913 int pio_map_init(struct hfi1_devdata
*dd
, u8 port
, u8 num_vls
, u8
*vl_scontexts
)
1916 int extra
, sc_per_vl
;
1918 int num_kernel_send_contexts
= 0;
1919 u8 lvl_scontexts
[OPA_MAX_VLS
];
1920 struct pio_vl_map
*oldmap
, *newmap
;
1922 if (!vl_scontexts
) {
1923 for (i
= 0; i
< dd
->num_send_contexts
; i
++)
1924 if (dd
->send_contexts
[i
].type
== SC_KERNEL
)
1925 num_kernel_send_contexts
++;
1926 /* truncate divide */
1927 sc_per_vl
= num_kernel_send_contexts
/ num_vls
;
1929 extra
= num_kernel_send_contexts
% num_vls
;
1930 vl_scontexts
= lvl_scontexts
;
1931 /* add extras from last vl down */
1932 for (i
= num_vls
- 1; i
>= 0; i
--, extra
--)
1933 vl_scontexts
[i
] = sc_per_vl
+ (extra
> 0 ? 1 : 0);
1936 newmap
= kzalloc(sizeof(*newmap
) +
1937 roundup_pow_of_two(num_vls
) *
1938 sizeof(struct pio_map_elem
*),
1942 newmap
->actual_vls
= num_vls
;
1943 newmap
->vls
= roundup_pow_of_two(num_vls
);
1944 newmap
->mask
= (1 << ilog2(newmap
->vls
)) - 1;
1945 for (i
= 0; i
< newmap
->vls
; i
++) {
1946 /* save for wrap around */
1947 int first_scontext
= scontext
;
1949 if (i
< newmap
->actual_vls
) {
1950 int sz
= roundup_pow_of_two(vl_scontexts
[i
]);
1952 /* only allocate once */
1953 newmap
->map
[i
] = kzalloc(sizeof(*newmap
->map
[i
]) +
1957 if (!newmap
->map
[i
])
1959 newmap
->map
[i
]->mask
= (1 << ilog2(sz
)) - 1;
1961 * assign send contexts and
1962 * adjust credit return threshold
1964 for (j
= 0; j
< sz
; j
++) {
1965 if (dd
->kernel_send_context
[scontext
]) {
1966 newmap
->map
[i
]->ksc
[j
] =
1967 dd
->kernel_send_context
[scontext
];
1968 set_threshold(dd
, scontext
, i
);
1970 if (++scontext
>= first_scontext
+
1972 /* wrap back to first send context */
1973 scontext
= first_scontext
;
1976 /* just re-use entry without allocating */
1977 newmap
->map
[i
] = newmap
->map
[i
% num_vls
];
1979 scontext
= first_scontext
+ vl_scontexts
[i
];
1981 /* newmap in hand, save old map */
1982 spin_lock_irq(&dd
->pio_map_lock
);
1983 oldmap
= rcu_dereference_protected(dd
->pio_map
,
1984 lockdep_is_held(&dd
->pio_map_lock
));
1986 /* publish newmap */
1987 rcu_assign_pointer(dd
->pio_map
, newmap
);
1989 spin_unlock_irq(&dd
->pio_map_lock
);
1990 /* success, free any old map after grace period */
1992 call_rcu(&oldmap
->list
, pio_map_rcu_callback
);
1995 /* free any partial allocation */
1996 pio_map_free(newmap
);
2000 void free_pio_map(struct hfi1_devdata
*dd
)
2002 /* Free PIO map if allocated */
2003 if (rcu_access_pointer(dd
->pio_map
)) {
2004 spin_lock_irq(&dd
->pio_map_lock
);
2005 pio_map_free(rcu_access_pointer(dd
->pio_map
));
2006 RCU_INIT_POINTER(dd
->pio_map
, NULL
);
2007 spin_unlock_irq(&dd
->pio_map_lock
);
2010 kfree(dd
->kernel_send_context
);
2011 dd
->kernel_send_context
= NULL
;
2014 int init_pervl_scs(struct hfi1_devdata
*dd
)
2017 u64 mask
, all_vl_mask
= (u64
)0x80ff; /* VLs 0-7, 15 */
2018 u64 data_vls_mask
= (u64
)0x00ff; /* VLs 0-7 */
2020 struct hfi1_pportdata
*ppd
= dd
->pport
;
2022 dd
->vld
[15].sc
= sc_alloc(dd
, SC_VL15
,
2023 dd
->rcd
[0]->rcvhdrqentsize
, dd
->node
);
2024 if (!dd
->vld
[15].sc
)
2027 hfi1_init_ctxt(dd
->vld
[15].sc
);
2028 dd
->vld
[15].mtu
= enum_to_mtu(OPA_MTU_2048
);
2030 dd
->kernel_send_context
= kcalloc_node(dd
->num_send_contexts
,
2031 sizeof(struct send_context
*),
2032 GFP_KERNEL
, dd
->node
);
2033 if (!dd
->kernel_send_context
)
2036 dd
->kernel_send_context
[0] = dd
->vld
[15].sc
;
2038 for (i
= 0; i
< num_vls
; i
++) {
2040 * Since this function does not deal with a specific
2041 * receive context but we need the RcvHdrQ entry size,
2042 * use the size from rcd[0]. It is guaranteed to be
2043 * valid at this point and will remain the same for all
2046 dd
->vld
[i
].sc
= sc_alloc(dd
, SC_KERNEL
,
2047 dd
->rcd
[0]->rcvhdrqentsize
, dd
->node
);
2050 dd
->kernel_send_context
[i
+ 1] = dd
->vld
[i
].sc
;
2051 hfi1_init_ctxt(dd
->vld
[i
].sc
);
2052 /* non VL15 start with the max MTU */
2053 dd
->vld
[i
].mtu
= hfi1_max_mtu
;
2055 for (i
= num_vls
; i
< INIT_SC_PER_VL
* num_vls
; i
++) {
2056 dd
->kernel_send_context
[i
+ 1] =
2057 sc_alloc(dd
, SC_KERNEL
, dd
->rcd
[0]->rcvhdrqentsize
, dd
->node
);
2058 if (!dd
->kernel_send_context
[i
+ 1])
2060 hfi1_init_ctxt(dd
->kernel_send_context
[i
+ 1]);
2063 sc_enable(dd
->vld
[15].sc
);
2064 ctxt
= dd
->vld
[15].sc
->hw_context
;
2065 mask
= all_vl_mask
& ~(1LL << 15);
2066 write_kctxt_csr(dd
, ctxt
, SC(CHECK_VL
), mask
);
2068 "Using send context %u(%u) for VL15\n",
2069 dd
->vld
[15].sc
->sw_index
, ctxt
);
2071 for (i
= 0; i
< num_vls
; i
++) {
2072 sc_enable(dd
->vld
[i
].sc
);
2073 ctxt
= dd
->vld
[i
].sc
->hw_context
;
2074 mask
= all_vl_mask
& ~(data_vls_mask
);
2075 write_kctxt_csr(dd
, ctxt
, SC(CHECK_VL
), mask
);
2077 for (i
= num_vls
; i
< INIT_SC_PER_VL
* num_vls
; i
++) {
2078 sc_enable(dd
->kernel_send_context
[i
+ 1]);
2079 ctxt
= dd
->kernel_send_context
[i
+ 1]->hw_context
;
2080 mask
= all_vl_mask
& ~(data_vls_mask
);
2081 write_kctxt_csr(dd
, ctxt
, SC(CHECK_VL
), mask
);
2084 if (pio_map_init(dd
, ppd
->port
- 1, num_vls
, NULL
))
2089 for (i
= 0; i
< num_vls
; i
++) {
2090 sc_free(dd
->vld
[i
].sc
);
2091 dd
->vld
[i
].sc
= NULL
;
2094 for (i
= num_vls
; i
< INIT_SC_PER_VL
* num_vls
; i
++)
2095 sc_free(dd
->kernel_send_context
[i
+ 1]);
2097 kfree(dd
->kernel_send_context
);
2098 dd
->kernel_send_context
= NULL
;
2101 sc_free(dd
->vld
[15].sc
);
2105 int init_credit_return(struct hfi1_devdata
*dd
)
2110 dd
->cr_base
= kcalloc(
2111 node_affinity
.num_possible_nodes
,
2112 sizeof(struct credit_return_base
),
2118 for_each_node_with_cpus(i
) {
2119 int bytes
= TXE_NUM_CONTEXTS
* sizeof(struct credit_return
);
2121 set_dev_node(&dd
->pcidev
->dev
, i
);
2122 dd
->cr_base
[i
].va
= dma_alloc_coherent(&dd
->pcidev
->dev
,
2124 &dd
->cr_base
[i
].dma
,
2126 if (!dd
->cr_base
[i
].va
) {
2127 set_dev_node(&dd
->pcidev
->dev
, dd
->node
);
2129 "Unable to allocate credit return DMA range for NUMA %d\n",
2135 set_dev_node(&dd
->pcidev
->dev
, dd
->node
);
2142 void free_credit_return(struct hfi1_devdata
*dd
)
2148 for (i
= 0; i
< node_affinity
.num_possible_nodes
; i
++) {
2149 if (dd
->cr_base
[i
].va
) {
2150 dma_free_coherent(&dd
->pcidev
->dev
,
2152 sizeof(struct credit_return
),
2154 dd
->cr_base
[i
].dma
);
2161 void seqfile_dump_sci(struct seq_file
*s
, u32 i
,
2162 struct send_context_info
*sci
)
2164 struct send_context
*sc
= sci
->sc
;
2167 seq_printf(s
, "SCI %u: type %u base %u credits %u\n",
2168 i
, sci
->type
, sci
->base
, sci
->credits
);
2169 seq_printf(s
, " flags 0x%x sw_inx %u hw_ctxt %u grp %u\n",
2170 sc
->flags
, sc
->sw_index
, sc
->hw_context
, sc
->group
);
2171 seq_printf(s
, " sr_size %u credits %u sr_head %u sr_tail %u\n",
2172 sc
->sr_size
, sc
->credits
, sc
->sr_head
, sc
->sr_tail
);
2173 seq_printf(s
, " fill %lu free %lu fill_wrap %u alloc_free %lu\n",
2174 sc
->fill
, sc
->free
, sc
->fill_wrap
, sc
->alloc_free
);
2175 seq_printf(s
, " credit_intr_count %u credit_ctrl 0x%llx\n",
2176 sc
->credit_intr_count
, sc
->credit_ctrl
);
2177 reg
= read_kctxt_csr(sc
->dd
, sc
->hw_context
, SC(CREDIT_STATUS
));
2178 seq_printf(s
, " *hw_free %llu CurrentFree %llu LastReturned %llu\n",
2179 (le64_to_cpu(*sc
->hw_free
) & CR_COUNTER_SMASK
) >>
2181 (reg
>> SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_SHIFT
)) &
2182 SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_MASK
),
2183 reg
& SC(CREDIT_STATUS_LAST_RETURNED_COUNTER_SMASK
));